9 research outputs found

    A Statistical Model of Riemannian Metric Variation for Deformable Shape Analysis

    Get PDF
    The analysis of deformable 3D shape is often cast in terms of the shape's intrinsic geometry due to its invariance to a wide range of non-rigid deformations. However, object's plasticity in non-rigid transformation often result in transformations that are not completely isometric in the surface's geometry and whose mode of deviation from isometry is an identifiable characteristic of the shape and its deformation modes. In this paper, we propose a novel generative model of the variations of the intrinsic metric of de formable shapes, based on the spectral decomposition of the Laplace-Beltrami operator. To this end, we assume two independent models for the eigenvectors and the eigenvalues of the graph-Laplacian of a 3D mesh which are learned in a supervised way from a set of shapes belonging to the same class. We show how this model can be efficiently learned given a set of 3D meshes, and evaluate the performance of the resulting generative model in shape classification and retrieval tasks. Comparison with state-of-the-art solutions for these problems confirm the validity of the approach

    Local Color Voxel and Spatial Pattern for 3D Textured Recognition

    Get PDF
    3D textured retrieval including shape, color dan pattern is still a challenging research. Some approaches are proposed, but voxel-based approach has not much been made yet, where by using this approach, it still keeps both geometry and texture information. It also maps all 3D models into the same dimension. Based on this fact, a novel voxel pattern based is proposed by considering local pattern on a voxel called local color voxel pattern (LCVP). Voxels textured is observed by considering voxel to its neighbors. LCVP is computed around each voxel to its neighbors. LCVP value will indicate uniq pattern on each 3D models. LCVP also quantizes color on each voxel to generate a specific pattern. Shift and reflection circular also will be done. In an additional way, inspired by promising recent results from image processing, this paper also implement spatial pattern which utilizing Weber, Oriented Gradient to extract global spatial descriptor. Finally, a combination of local spectra and spatial and established global features approach called multi Fourier descriptor are proposed. For optimal retrieval, the rank combination is performed between local and global approaches. Experiments were performed by using dataset SHREC'13 and SHREC'14 and showed that the proposed method could outperform some performances to state-of-the-art

    Local Color Voxel and Spatial Pattern for 3D Textured Recognition

    Full text link

    Maximum Energy Subsampling: A General Scheme For Multi-resolution Image Representation And Analysis

    Get PDF
    Image descriptors play an important role in image representation and analysis. Multi-resolution image descriptors can effectively characterize complex images and extract their hidden information. Wavelets descriptors have been widely used in multi-resolution image analysis. However, making the wavelets transform shift and rotation invariant produces redundancy and requires complex matching processes. As to other multi-resolution descriptors, they usually depend on other theories or information, such as filtering function, prior-domain knowledge, etc.; that not only increases the computation complexity, but also generates errors. We propose a novel multi-resolution scheme that is capable of transforming any kind of image descriptor into its multi-resolution structure with high computation accuracy and efficiency. Our multi-resolution scheme is based on sub-sampling an image into an odd-even image tree. Through applying image descriptors to the odd-even image tree, we get the relative multi-resolution image descriptors. Multi-resolution analysis is based on downsampling expansion with maximum energy extraction followed by upsampling reconstruction. Since the maximum energy usually retained in the lowest frequency coefficients; we do maximum energy extraction through keeping the lowest coefficients from each resolution level. Our multi-resolution scheme can analyze images recursively and effectively without introducing artifacts or changes to the original images, produce multi-resolution representations, obtain higher resolution images only using information from lower resolutions, compress data, filter noise, extract effective image features and be implemented in parallel processing

    Descriptor Based Analysis of Digital 3D Shapes

    Get PDF
    corecore