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Summary

Analysis and processing of 3D digital shapes is a significant research area with
numerous medical, industrial, and entertainment applications which has gained
enormously in importance as optical scanning modalities have started to make
acquired 3D geometry commonplace. The area holds many challenges. One
such challenge, which is addressed in this thesis, is to develop computational
methods for classifying shapes which are in agreement with the human way of
understanding and classifying shapes.

In this dissertation we first present a shape descriptor based on the process
of diffusion on the surface of the shape – the auto diffusion function. When
all heat is inserted at a single point, the function describes how much of that
heat will remain at the same point after a period of time. This method allows
for finding shape features at different scales related to time parameter. For
instance, in conjunction with the method of Reeb graphs for skeletonization, it
is an effective tool for generating scale dependent skeletons of shapes represented
as 3D triangle meshes.

The second part of the thesis aims at capturing the style phenomenon. The style
of an object is easily recognized by humans but a computational method for
finding the style of an object is elusive. Instead of codifying the style explicitly,
which can be only done within a specific context, we develop a general method
for dealing with both style and function which uses the supervision provided
by a set of training examples and can be evaluated using any shape descriptor,
that produces dissimilarity measures between different shapes. Our methods
decouple the effect of style from the effect of function and assess how suitable a
descriptor is to a specific problem.
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Resumé

Analyse og processering af digitale 3D former er et betydeligt forskningsområde
med mange medicinske og industrielle anvendelser samt anvendelser i under-
holdningsindustrien. Det er et område, der er vokset i betydning som metoder
til optisk scanning har gjort opmålt 3D geometri langt mere almindeligt end
tidligere. Det er også et område med store udfordringer. En væsentlig udfor-
dring, der er et vigtigt emne i denne afhandling, omhandler udvikling af metoder
der ved hjælpe af beregning klassificerer former på en måde som er samstem-
mende med menneskelig forståelse og klassifikation af former.

I denne afhandling præsenterer vi først en form beskrivelse, der er baseret på
diffusionsprocesser på overfladen af en form - autodiffusionsfunktionen. Når
varme koncentreres i et punkt beskriver autodiffusionsfunktionen hvor meget af
denne varme, der er tilbage i punktet efter et et tidsinterval. Denne metode gør
det muligt at finde træk ved formen afhængigt af skala som igen er givet ved
tidsparameteren. For eksempel er metoden sammen med Reeb graph metoden
velegenet til at finde en skeletstruktur repræsentation af 3D modeller, der er
givet som trekantsnet.

Denne anden del af denne afhandling omhandler fænomenet stil. Et objekts stil
bedømmes let af mennesker, men en beregningsmæssig metode til at finde et
objekts stil er et vanskeligt problem. I stedet for at kode stilen eksplicit, hvilket
kun kan gøres i en specifik sammenhæng, så udvikler vi en generel metode til
at håndtere både stil og funktion som anvender den indlæring vi får fra et
træningssæt og som kan evalueres med enhver formbeskrivelse, der giver et af-
standsmål mellem forskellige former. Vores metode afkobler effekten af stil fra
den som funktionen har og giver ydermere et mål for hvor egnet en formbeskriv-
else er til at løse et specifikt problem.
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Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in engineering.

The thesis deals with methods of finding meaningful shape descriptors, the ones
which agree with the ways humans understand shapes. A structural shape
descriptor based on the process of diffusion on a shape is proposed and a method
of example based style and function detection is introduced.

The thesis consists of a summary report and a collection of research papers
written during the period 2009–2011, and elsewhere published (or submitted for
publication).

Kongens Lyngby, September 2011

Katarzyna Wełnicka
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Chapter 1

Introduction

Shapes are everywhere around us: from particles at nanoscale, through the way
our bodies look, the houses we live in, food we eat, the tableware we use for
that, sofas and chairs we sit in, fonts we see while reading this text, cars we
drive and all mechanical parts inside, almost everything has a shape.

Shapes also exist in our heads. From childhood we learn how to perceive shapes,
how to recognize objects based on their shape, how to interact with them and
even how to design and build them. We are able to think about abstractions
of different shapes, and also many mathematical constructs, especially those
connected to geometry, have some shapes. We can even make our subjective
judgments if we like some shapes or if some shapes go together well or not.

Today, shapes can also be digitalized. Recent development of 3D scanners al-
lowed us to be able to capture shapes directly from real objects. This enables
automating many shape related tasks, which before needed to be done by hand
and required long hours of tedious work. For this purpose, algorithms for deal-
ing with shapes are being developed. Many shape descriptors which capture
different properties of shapes, are proposed each year and we do not have one
which is perfect and which solves all kinds of problems. It is a challenge to
have methods that mimic the human way of understanding and distinguishing
shapes.
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Figure 1.1: Columns from classical temple orders (source: wikipedia)
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Our human way of thinking about shapes is expressed in the ability to design
and to detect different styles. Styles in architecture are known from ancient
times. Look for example at those classical column orders on Figure 1.1. Those
styles were codified by experts and studied carefully through the centuries.

Style is obviously not only related to architecture but arises also in many other
contexts. For example, we can talk about styles of tableware, furniture or fonts.
Many natural phenomena also have a property that some of the shapes can be
related to more than one attribute, and one of those attributes can be seen as a
style, for example a human face can look different depending on the expression.
Most of us can easily determine the style without being experts. For example
we can say if a given set of shapes match together even if we cannot explain
exactly why.

Figure 1.2: Tea set Dishwares of different styles: ’Dragonware’ designed by Bar-
bara Flügel, ’Blanche’ designed by Gertrud Lönegren, transferware style from
early 20th century and ’Ostfriesische Rose’ by Wallendorfer Porzellan Manufak-
tur (source: wikipedia).

Style expresses itself as the traits of an object. However, it is hard to make a
general definition of style. We understand style as a second order property of
a shape while a first order property is the function. We can for example have
different styles of tableware for serving tea (Figure 1.2). Each of them contains
at least: a pot, a cup, a saucer, a creamer and a sugar bowl. Being a cup or
a saucer is the main property and it largely determines the shape of an object.
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But this property is not quite enough to define a shape, because the style also
impacts how the things look. From Figure 1.2 we also see that style can be
transfered from an object of one function to an object of second function, so in
some way we have two orthogonal properties of shapes the stronger one, which
is function and the weaker one which is the style.

Up till now most of the shape retrieval research concentrated on being able
to detect the function. The frameworks which are used in order to evaluate
retrieval performance of new descriptors contain different shapes classified as
tables, chairs, binoculars, humans, four leg animals etc. The function is more
easy to distinguish as it contains coarse geometric properties: for example the
class of bikes is significantly different from the class of cars or sofas, which are
in turn different from the chairs.

Style retrieval is a more complicated problem. The reason is that one needs to
get rid of the function’s impact on the shape. For some specific problems two
orthogonal representations can be decoupled. When working with pose invariant
articulated shapes, we get rid of a pose while using shape descriptors based only
on the intrinsic geometry of the shapes. In a similar way by using skeletons
or segmentation we can get rid of the local details, as for example the type of
animal, and leave only the pose information. However, style usually influences
many aspects of geometry such as proportions, local details, sharp or round
edges or some additional decorations and repeating patterns.

Filtering the style, by designing a descriptors which is purely style related can
be very tedious, so automatic methods are needed. Style properties also depend
on the context so a set of suitable descriptors might be differ from one problem
to another. In order to come up with a general style framework we have taken
the example based approach, where style and function are defined by providing
example shapes.

Rather than focus on the specific descriptors, we worked on methods for dealing
with different descriptors in the context of style retrieval (Chapter 7). The
reason for that is that it allows for a general framework, while different context
is introduced by the training shapes. By working in the space of dissimilarities,
we obtained independence on the nature of the descriptors which can have many
different forms (for an overview of descriptors see Chapter 3).

The preliminary part of this work was to study the Laplace Beltrami based
descriptors as they contain a lot of shape information. While attempting to
combine the information coming from different eigenfunctions (Chapter 5) of
the Laplace Beltrami operator, we arrived with a new descriptor related to the
process of heat diffusion on the shape. With the use of this descriptor one is
able to capture the structure of the shape at different scales (Chapter 6).



Chapter 2

Tools

Our work is based on many methods and theories that have been invented by
other people and can be found in the literature. In this chapter we present
theoretical background and implementation details of main methods that were
used during the project.

In Section 2.1 the Laplace Beltrami operator and heat kernel is introduced and
the properties of eigenfunctions of LBO are analyzed. Section 2.2 is about Reeb
graphs which allow to create a graph representation of the shape based on the
level sets of some function defined in the domain of that shape. In section 2.3
we present the continuous version of translation invariant dynamic time warping
method that was used for computing the distances between the outline curves
and then used in the style and function related framework (Chapter 7) and
section 2.4 we present slippage analysis, on which we based one the 3D shape
descriptors also used as an input in the style-function setup.

2.1 Laplace Beltrami Operator and Diffusion

Laplace-Beltrami operator contains a lot of information about geometry of the
shape. It can be found in equations describing physical phenomena such as wave
propagation and heat distribution. In geometric processing it is not only used
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in the context of shape analysis but also for smoothing, parametrization, editing
and deformation.

The Laplace-Beltrami operator (LBO) is defined [124] on a Riemannian manifold
Ω as the divergence of the gradient of a scalar function f : Ω→ R:

∆f = ∇· (∇f).

2.1.1 Eigendecomposition of LBO

Laplace Beltrami operator can be decomposed into orthogonal eigenfunctions
φ0, φ1, . . . , and corresponding eigenvalues 0 ≤ λ0 ≤ λ1 ≤ . . . , by finding the
solutions of a Helmoltz equation:

∆f + λf = 0.

The eigenfunctions corresponding to the first few eigenvalues align surprisingly
well with the protrusions and features of the shape. This phenomenon can
be explained by investigating the Rayleigh Quotient method which is used for
calculating the eigensolutions to the symmetric operator, which in the case of
the Helmholtz equation is equal to −∆. The problem is stated as a minimization
problem:

φi = arg min
06=fi∈C2

0(Ω)

〈φj∈{0..i−1},fi〉=0

〈fi,−∆fi〉
〈fi, fi〉

(2.1)

and
λi = min

06=fi∈C2
0(Ω)

〈φj∈{0..i−1},fi〉=0

〈fi,−∆fi〉
〈fi, fi〉

.

For the compact manifold the divergence and minus gradient are formal adjoint
operators [30], which means that:

〈∇f,X〉v = −〈f,∇ ·X〉. (2.2)

Note that we use two different inner products:

〈f, g〉 =

∫
Ω

f(x)g(x)dx

is the inner product of two scalar functions over our manifold Ω and

〈X,Y〉v =

∫
Ω

〈X(x),Y(x)〉Ωdx



2.1 Laplace Beltrami Operator and Diffusion 7

Figure 2.1: First 16 eigenvalues of the Laplace Beltrami operator for a dancer
model. Red color indicates positive, blue negative, and yellow the values which
are close to zero. The color pattern was striped to allow for better display of
the level sets of a function. Note how functions try to ’burn’ its gradient on
protrusions.
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is the inner product of two vector fields, where 〈, 〉Ω is the inner product defined
by the structure of our Riemmanian manifold Ω [124].

By applying property 2.2 to X = ∇f [11], we transform the 2.1 problem into

φi = arg min
06=fi∈C2

0(Ω)

〈φj∈{0..i−1},fi〉=0

〈∇fi,∇fi〉v
〈fi, fi〉

,

which is equivalent to the Dirichlet energy minimalization problem with the
constraint in a form of 〈fi, fj〉 = δij , where δij is the Kronecker delta.

The above formulation shows an analogy between the eigenfunctions of the
LBO and harmonic functions. Both minimize the Dirichlet energy, but the
eigenfunctions are constrained by the orthogonality requirement rather than
other boundary conditions.

Put more loosely, the eigenfunctions are mutually orthogonal, have as small
as possible gradients everywhere while 〈φi, φi〉 = 1. For a closed surface, a
constant function will suffice as φ0. However, φ1, the Fiedler vector, must be
orthogonal to φ0 and consequently it is positive on half the shape and negative
on the other half. The requirement that the gradients should be as small as
possible translates into the well known fact that the direction of change of the
eigenvectors naturally follow the shape [86] as illustrated in Figure 2.1.

2.1.2 The Diffusion Kernel

The diffusion kernel K(x, y, t), or heat kernel, is a fundamental solution to the
heat equation:

(∆x + ∂t)u(x, t) = 0

where ∆x denotes the Laplace Beltrami operator acting on the spatial variable
x where t ∈ [0,∞) is the time variable. It solves the equation with the initial
condition u(0, x) = δ(y), where δ(y) is Dirac delta function at the position y,
which means that all heat is initially concentrated in one point at the position of
y. The general solution can be obtained by convolution of the heat kernel with
the initial condition g(x) = u(0, x). The heat kernel can be expressed [124, page
32] in the terms of LBO eigensolutions as:

K(x, y, t) =

∞∑
i=0

e−λitφi(x)φi(y)
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2.1.3 Discretization of the Laplace Beltrami Operator on
a Triangular Mesh

In our implementation Ω is represented as a triangular mesh with n vertices.
A function defined on such a mesh has the form of an n dimensional vector
where each entry is related to some vertex on the mesh. A linear operator on a
function has a form of n× n matrix.

Many discretization schemes of the Laplace Beltrami Operator have been pro-
posed so far with various properties or requirements [12,123,155,158].

We use the cotangent approximation of the Laplace Beltrami operator. There
are at least two derivations of cotangent weights: one is based on the Discrete
Exterior Calculus [39] and the other one comes from the Dirichlet energy of a
map between two surfaces [118].

For a given vertex pi, with a set of incident vertices Ni and a function f defined
on vertices, laplacian has the form:

∇f(pi) ≈
1

si

∑
j∈Ni

cotαij + cotβij
2

(f(pj)− f(pi)),

where angles are defined to be opposite to the edge connecting vertex pi and
vertex pj (Figure 2.2) and si is the area around the vertex, corresponding to a
face being a dual of the vertex pi, which means that the vertices of such face
are being circumcenters of the corresponding faces. If those circumcenters are
outside a triangle, the midpoint of the edge opposing pi point can be used [24].

Note that a division by si makes this operator not symmetric. We obtain the
symmetric version by applying the generalized eigenvalue formulation [125]. .

Lf = λSf

Where L is a matrix with entries:

Lij =


− cotαij+cot βij

2 , if i ∈ Nj ,
0, if j 6= i and i /∈ Nj ,∑
k 6=i−Lik, if i = j,

and S is a diagonal matrix with Sii = si.



10 Tools

p

p
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jij

ij
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i

Figure 2.2: Cotan weights computation

It is worth noting that the eigenvalues solved with this system are not orthogonal
with respect to the standard dot product, however they are orthogonal with
respect to generalized product, where 〈f, g〉 = fTSg.

This way we obtained a sparse system. We solve a generalized eigenproblem with
the L and S matrices. Because we are interested mostly in the first few hundreds
of eigenvalues we use the sparse solver ARPACK together with SuperLU package
[85].

2.2 Reeb Graphs

Reeb graphs [110] have its origin in differential topology and allow to extract
the graph presentation from the shape. Depending on the type of the function
used, different features of the shape can be outlined.

Given a manifold Ω and a function f : Ω → R, p is a critical point of f if
∇(f(p)) = 0.

f is a Morse function when for each critical point p, the Hessian martix H(f(p)),
which contains the second order derivatives of f , is non-singular. In other words
we expect from the critical points of f to be non-degenarate.

The Reeb graph [7] of a Morse function f on a manifold Ω is the quotient space
of Ω×R defined by the equivalence relation:
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(p, f(p)) ∼ (q, f(q))⇔f(p) = f(q) and

p, q ∈ the same connected component of f−1(f(p)).

Figure 2.3: Reeb graph extracted from scissors shape when a scalar function is
given as one of the coordinates.

Reeb graphs trace the evolution of the level sets of the function on the manifold.
The nodes of the Reeb graph correspond to the critical points of the function
f . At a critical point either level sets appear, disappear, split or merge. The
edges are build from regular points and each of such points corresponds to one
level set (Figure 2.3).

The graph itself is a topological construct, but one can position it in the space
of an object by placing each of its points in the center of corresponding level
set.

2.2.1 Reeb Graph Computation for Triangular Meshes

In order to extract the Reeb graph we use a sweep algorithm, as it allows us
to compute an average position of each level set and place the skeleton points
in space. The algorithm is similar to the one described by Cole-MCLaughlin et
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source sink regular saddle saddle

Table 2.1: The vertex with its one ring. The type of the vertex depends on the
configuration of vertices with function values greater than f(v), (red), and with
values smaller than f(v) (blue).

al. [36]. If the positioning of the vertices is not needed, a faster algorithm, that
analyses the iso-contours only at the critical points [115], can be used.

In the discrete case where instead of a manifold we have a triangular mesh, the
function f is defined over the vertices. We assume that those values extend
linearly on the edges and triangles of the mesh. In such setup f is smooth and
it can only have critical points at the vertices. The Morse condition can be
transformed into the requirement that all critical points have pairwise different
values. One way of ensuring that is to sort the vertices according to function
values, and always use the order provided by that sorting. This approach might
also be seen as getting rid of degeneracies by introducing ε perturbations to the
function.

Every vertex v can be classified as regular or critical being source, sink or saddle
according to the function values of the vertices that belong to one-ring of that
vertex. In our computations we only analyzed the cases without boundary.
If boundary is needed the algorithm can be easily extended by adding more
one-ring cases to be analyzed [36].

The classification depends on the number of connected segments with values
greater than f(v), which we denote Ng(v), and the number of connected seg-
ments with values smaller than the value of f(v), denoted as Ns(v). Depending
on these number, v is:

source if Ns(v) = 0,

sink if Ng(v) = 0,

regular if Ns(v) = 1 and Ng(v) = 1,

saddle if Ns(v) > 1.



2.2 Reeb Graphs 13

Figure 2.4: Even if one-ring of an active critical point looks the same, the global
situation is different. In the first case at a saddle two loops are merged into one,
second case shows that two loops are created.

From local data of one-ring we know the type of the point, however we do
not know in the case of saddle what kind of topological change occur at that
point, whether two level sets are being connected or whether they are being
disconnected, as it requires a more a more global look. This is solved by the
TraceLevelSetTriangles(t,vi) method which, starting at triangle t collects the
triangles while traversing the mesh. It goes from one triangle to the other
through the edge having vk and vj vertices with property k ≤ i and j > i.
Traverse stops when arriving back at triangle t (the process is ilustrated by
green arrows on Figure 2.4). The whole sweeping procedure is presented in
Algorithm 1. For the set of triangles incident to vi the following notation is
used:

Tall(vi) contains all triangles incident to vertex vi

T−(vi) is the subset of Tall(vi) with all vertices vk such that k ≤ i

T+(vi) is the subset of Tall(vi) with all vertices vk such that k ≥ i

To(vi) = Tall(vi)− T−(vi)− T+(vi)

For clarity, the Algorithm 1 returns only a list of Reeb edges. It is easy to see
that from those edges the node connectivity of the whole Reeb graph can be
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Algorithm 1: Sweeping algorithm which creates Reeb edges.
Data: Mesh with vertices vi, uniquely sorted according to f value
Result: edges
activeEdges ← ∅;
edges ← ∅;
for i ← 1 to n do

switch type(vi) do
case source

e = newEdge();
e.vstart = vi;
e.activeTriangles.Insert(Tall(vi)) ; activeEdges.Insert(e);

end
case sink

e = activeEdges.findEdgeWithTriangle(any t ∈ Tall(vi));
activeEdges.remove(e); e.vstop = vi; edges.insert(e);

end
case regular

e = activeEdges.findEdgeWithActiveTriangle(any t ∈ T−(vi));
e.appendPoint(vi);
e.activeTriangles.Remove(T−(vi));
e.activeTriangles.Add(T+(vi));

end
case saddle

E = activeEdges.findEdgesWithActiveTriangles(T−(vi));
forall e ∈ E do close old cycles

activeEdges.remove(e); e.vstop = vi ; edges.insert(e);
end
Ttrans = T0(vi) ;
while Ttrans 6= ∅ do create new edges

t = Ttrans.last;
T = traceLevelSetTriangles(t,vi);
Ttrans.remove(T);
e = newEdge();
e.vstart = vi;
e.activeTriangles.Insert(T); activeEdges.Insert(e);

end
end

end
end
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retrieved by using e.vstart and e.vstop fields of each edge e. Also it is possible
to have this connectivity information being created by the time of sweeping, as
it only needs a new graph node structure, and insertion operations, added when
critical points are being processed.

2.3 Comparing Curves with Dynamic TimeWarp-
ing Methods

Below we present a method of finding distances between two curves by warping
one curve onto other curve.

The curve X is represented as polygonal chain xi=0..n. The standard dynamic
time warping (DTW) problem for two curves A and B is to find a sequence
of correspondences between their vertices ai=0..n,bi=0..m, denoted as C = cikjk
where ik ∈ {0..n} and jk ∈ {0..m} and satisfying conditions:

monotonicity if cikjk , ciljl ∈ C and ik ≤ il then jk ≤ jl

continuity for incident correspondences cikjk and cik+1jk+1
we have:

ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1

Classical DTW searches for the correspondence with minimal sum of lengths of
vectors vij = ai − bj whose endpoints are defined as vertices indicated by the
correspondence.

dDTW(A,B) = min
C(A,B)

∑
cikjk

∈C(A,B)

‖vikjk‖

The translation invariant version of Dynamic Time Warping rather then mini-
mizing the sum of lengths of vij minimizes the sum of lengths of difference of
vectors vij for two incident correspondences:

dTIW(A,B) = min
C(A,B)

∑
cikjk

∈C(A,B),k>0

‖vikjk − vik−1jk−1
‖

= min
C(A,B)

∑
cikjk

∈C(A,B),k>0

‖v′ikjk‖

The discrete version of DTW depends heavily on how the vertices are positioned
on the curve as for a given vertex the corresponding point must be taken from
the vertices of the second curve.
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Figure 2.5: Wile the standard DTW minimizes vikjk vectors, the translation
invariant version minimizes v′ikjk , which can be seen as it’s discrete derivative.

Figure 2.6: The comparison between discrete and continuous version of transla-
tion dynamic time warping. The continuous version depends only on geometry
of the curve while the discrete relies on the discretization

We use the method of Efrat et al. [45] and transform the translation invariant
DTW into a continuous setting. In such a case we want to represent as ai any
point on a polygonal chain A and for this purpose we extended linearly the
index i ∈ {0...n} to a domain of real numbers 0 ≤ i ≤ n. This is done using
the interpolation of values known at vertices: ai = (λ − 1)adie + λabic where
λ = i−bic

die−bic . As a result vectors vij = ai − bj are also extended to a two dimen-
sional surface defined as the combinatorial manifold V(A,B) = A⊕−B. After
this modification the translation invariant problem can be defined as finding the
shortest monotonous path P(A,B) on this manifold which connects the end-
points v00 and vnm. The minimized function dCTIW is the length of this path
and this value is used to establish the dissimilarity between the curves.
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Figure 2.7: A manifold V(A,B) when comparing two similar curves. Geodesic
between the v00 and vnm is marked with black. Although the embedding of
this manifold is complicated, the inner structure is simple as each of the local
patches are connected in a way that forms a n×m grid.

2.4 Slippage Analysis

Slippage analysis [23, 104], can be used to describe the properties of a surface
patch. It is related to the point-to-plane version of the Iterative Closest Point
algorithm for rigid surface alignment [34].

At one iteration step, the ICP algorithm, after finding correspondences be-
tween the points of both surfaces, searches for such transformation of the source
surface, sampled at points S = {s0, ..., sn}, that aligns points si with the cor-
responding points of the destination surface di, having normals ni. For that
reason a rotation R and translation t of the source surface which minimizes the
alignment error:

E(R, t) =
∑
i

l2i =
∑
i

((Rsi + t− di) · ni)2

needs to be found. R is a 3 × 3 orthogonal matrix, and t =
[
tx ty tz

]T is a
vector of coordinates.

Locally, the rotation can be linearized in a way that instead of a rotation matrix
R, a vector r =

[
α β γ

]T of rotations around x, y and z axes is used, which
leads to:

E(r, t) =
∑
i

((si − di + t) · ni + r · si × ni)
2.

So we search for a vector x =
[
α β γ tx ty tz

]T which minimizes E.
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Figure 2.8: Point to plane setup. The transformation of source surface is needed
which minimizes the sum of distances li.

This is achieved by setting all partial derivatives to zero ∂E
∂xi

= 0 which results
in the following system of equations:

Cx = b,

where

C =
∑
i


ci,xci,x ci,xci,y ci,xci,z ci,xni,x ci,xni,y ci,xni,z
ci,yci,x ci,yci,y ci,yci,z ci,yni,x ci,yni,y ci,yni,z
ci,zci,x ci,zci,y ci,zci,z ci,zni,x ci,zni,y ci,zni,z
ni,xci,x ni,xci,y ni,xci,z ni,xni,x ni,xni,y ni,xni,z
ni,yci,x ni,yci,y ni,yci,z ni,yni,x ni,yni,y ni,yni,z
ni,zci,x ni,zci,y ni,zci,z ni,zni,x ni,zni,y ni,zni,z


for c = s× n and

b = −
∑
i


ci,x(si − di) · ni
ci,y(si − di) · ni
ci,z(si − di) · ni
ni,x(si − di) · ni
ni,y(si − di) · ni
ni,z(si − di) · ni

 .

This equation is solved by one iteration of the ICP algorithm, and the transfor-
mation to the source surface according to values of x is applied.
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Slippage analysis studies the situation when two copies of the same surface are
optimally aligned, which means that si=di. In this case the matrix C encodes
how much the error increases when moving at some direction from the solution.
If the increase in all directions is large, then the problem is well defined, but if
it is zero at some direction it means that this problem is not fully constrained.

In other words, we are looking at the conditioning of the alignment problem
posed as the task of aligning the surface to itself, which is encoded in C – a
Hessian matrix of that problem. This conditioning is expressed in the number
of vanishing eigenvalues which is equivalent to the number of slippable motions.
In practice, for the discrete setup, the eigenvalues are not likely to be perfectly
zero. Instead, it is enough for eigenvalues to be smaller than some threshold.
The corresponding eigenvector encodes the type of motion: translation, rotation
or a mix of both. This way we can detect if the surface is:

spherical if there are three zero eigenvalues, and all corresponding eigenvectors
are rotations,

planar if there are three zero eigenvalues, and one eigenvector is a rotation and
the other two are translations,

cylindrical if there are two zero eigenvalues, with one translation and one
rotation,

revolved if there is one rotational zero eigenvalue,

extruded if there is one translational zero eigenvalue,

helical if there is one zero eigenvalue with the eigenvector having both rota-
tional and translational parts.

Slippage analysis can be used to describe the local properties at given point of
the surface by taking samples which are within some radius from that point [104].

In order to have translational and rotational degrees of freedom measured with
the same importance, vectors di × ni and ni need to have comparable magni-
tudes. Therefore the points need to be translated such that the center of the
patch is moved into the coordinates origin, and rescaled so that the radius of
the sampled patch has unit length.
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Chapter 3

Overview of Shape
Descriptors

As we previously mentioned in the Introduction, style is hard to find, and not
easily captured by a single descriptor. For this reason a method to combine
descriptors is presented in Chapter 7. In order to be able to cast as wide a net
as possible when looking for style information we need to have a broad under-
standing of different types of descriptors. Therefore, we present a short overview
of the existing shape descriptors in the context of shape retrieval methods.

In a broad sense, a shape descriptor is information about the shape that can be
automatically computed from the discrete shape representations. Descriptors
vary from very simple ones being just an integer or real number, through more
compound descriptors like histograms, distributions, to even more complicated
as for example the graph representations or a set of images. Descriptors can
also be seen as points in a space which is very often highly dimensional and
nonlinear. The purpose of computing a descriptor is to classify or compare
shapes in a meaningful way. Descriptors can also be used as shape fingerprints:
a simplified and usually not complete representation of a shape which captures
its important properties and is useful for more efficient search for similar shapes.
By using local shape descriptors, we can find local correspondences between
parts of shapes which can then be used in order to perform shape matching or
partial shape retrieval.
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In the context of shape retrieval, we can treat any descriptor as a way of com-
paring shapes. The simple descriptors being numbers or vectors are easy to
compare. More complicated descriptors also require their own methods of as-
sessing the similarity, as for example, methods for comparing two histograms or
two distributions or graph matching. In this context, a method of comparing
two shapes, even without having any intermediate representation, can also be
seen as a descriptor, as it helps establish the notion of similarity between shapes.

Different descriptors capture different aspects of shapes. Some descriptors mea-
sure a specific property of the shape like, for example, orientation in space,
others might be invariant to that value, and for some such a property is in-
directly contained among other features of the shape. There is no single best
descriptor suitable to work for all kinds of problems, rather the choice of appro-
priate descriptors depends a lot on the context of use. That is why this is a very
active field of research and many descriptors are proposed each year. The main
aim is to be able to capture the features which are also intuitive for humans
and for the distances between shapes generated through such descriptors to be
compatible with some aspects of similarity between the shapes.

In this survey we do not aim to present all descriptors, but to show the main
methods used to obtain them. Note that some of the citations repeat in multiple
sections as one descriptor can be obtained through the use of many methods.

3.1 Local Descriptors

Local shape descriptors are building blocks of many global methods. Usually
such descriptor is a simple number or a vector evaluated at a given point. By
locality we do not necessarily mean that a descriptor contains only the local
information but rather it is defined on the local domain.

3.1.1 The Domain of Calculations

The points at which we calculate the local descriptors lie on the shape’s surface
or in the volume enclosed by that surface, but other options are also possible.
The samples can also be taken from the surrounding space as for example in the
work of Mademlis et al. [92], where the impact of the shape on the surrounding
area is computed through measuring the properties of a potential field, created
by the shape. Some descriptors can be evaluated at not one point, but at pairs,
triplets or n-tuples of points on the shape [110].
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Descriptors which require additional parameters for their computation can also
be treated as local descriptors, with parameter space used instead of the shape
space. Instead of shape space parameter space is being used. For example,
the planar symmetry measure [77, 98] is evaluated with respect to a plane, so
samples are taken from the space of all possible planes.

3.1.2 Simple Descriptors

The simplest local descriptors can be computed directly or can be seen as purely
local because of their infinitesimal nature. The most natural example of such
descriptor is a position of the point in space [110] or a normal to a surface at a
given point [63]. We can also have principal curvatures or some higher degree
derivatives, through the further we go the more differentiable should the surface
be.

One might directly use principal curvatures κmin and κmax [156]. Another
option is to use the mean 1

2 (κmin + κmax) or a Gaussian κminκmax curvature.
Other curvature based formulas were constructed, such as the shape index [82]
being expressed as s = 2

π arctan κmin+κmin
κmax−κmin . This measure is concentrated on

the type rather than the amount of curvature at a given point.

In a similar manner, instead of coordinates and normals, other formulas which
rely on this information can be applied. Simplest examples are the point’s
distance from the center of mass or an angle between the normal and a line
connecting the center of the mass and the point’s position [1].

3.1.3 Local Measures From Neighborhood

Very often the shape is represented as a triangular mesh or by a point set,
which means that the differential values need to be computed by using discrete
geometry methods. A way to establish a robust measure is to evaluate it from the
neighborhood. For example, curvatures can be computed by fitting osculating
polynomials to points lying nearby on the shape’s surface [28]. If the shape is
represented by a surface mesh, the triangle edges can be used to form the tensor
of curvature, and the principal curvatures can be computed from eigenvalues of
that tensor [146]. Anther approach is to take integral invariants: integrals of
some functions over the intersections of surfaces (or inside of the shape) with a
ball of a specific radius. Those integrals are related to many geometric invariants
such as principal curvatures [120].
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Neighborhood is either expressed as a clearly defined area around the point
from which we are taking measurements or has a form of a kernel [93], when
the impact of a given point to a measure is related to its distance from the base
point. By changing the size of the neighborhood, features of different scales can
be captured [120].

With the use of a neighborhood, information about the local structure of the
shape can be retrieved. For example, covariance matrices of normal vectors
are added with the appropriate weighing scheme to form the normal voting
tensor [134]. The magnitudes of its eigenvalues allow to classify a vertex as a
part of face, sharp edge or corner.

The Taylor algorithm [102] classifies each point of the surface as being part of
a blend, plane, tube, cylinder, cone, a branching or a sharp vertex, by analyzing
the intersection curve of the bubble centered at that point with the surface.
More bubbles with different radii can be used for more exact computations or
for different level of detail [101].

Slippage analysis [104] is related to the point to plane registration problem,
and surface properties are examined through its ability to align to itself. This
ability is measured by looking at the conditioning (number of nonzero eigenval-
ues) of the 6x6 covariance matrix of the second partial derivatives (Hessian) of
the objective function, which determines the optimal rotation and translation
to be applied in order to align one collection of points (with normals) to the
other collection. The number of zero (or very small) eigenvalues of this Hes-
sian indicates whether we have a surface which is: spherical, planar, cylindrical,
revolved, extruded or helical.

3.1.4 Rich Local Descriptors

Descriptors presented in this section are also evaluated at a local point of the
shape, however the output is more complex. In the broad context, local descrip-
tors might be obtained in a similar way as global descriptors by restricting the
area of computation to the neighborhood of a given point. For example Shilane
et al. [133] use the spherical harmonics method [77], which was defined in the
global context, but restrict the shape to regions contained in balls of different
radii. Constraining to a ball centered at the sampled point is also done by Mitra
et al. [99] and those regions are called shingles. There are also algorithms with
the whole shape included as a neighborhood. In such case the advantage is to
have canonical position and the canonical vector: the point of evaluation and
the normal evaluated at a given point if a point is on a surface.
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Johnson et al. [72] introduced spin images. For each local point on a surface
a partial coordinate system can be defined, with position of the 3D point in the
space as the center, and its normal to the surface as one of the axes. With
such a frame two cylindrical coordinates are evaluated: α: the distance to
the line through the normal and β: the distance to the tangent plane. A 2D
histogram called the spin image is created for each point by accumulating the
(α, β) coordinates of that point in the base of the other points on the surface.
Techniques from image processing can be used for further analysis. This method
requires uniform sampling of the surfaces. Bin size should also be set properly,
depending on the mesh resolution or sampling density.

A similar idea is used in defining the shape context [13] for finding the cor-
respondence in 2D shapes. For each point a polar histogram is created by
accumulating the relative polar coordinates of the other points seen in the coor-
dinate system of the base point. χ2 statistics establishes the similarity measure
between two histograms. This similarity is used as the cost in the assignment
problem solved in order to get the point to point correspondences for two shapes.

Gatzke et al. [53] use curvatures maps as a local shape descriptor. Those are
the Gaussian or mean curvatures calculated not only locally at a given point but
also at an equally sampled neighborhood around that point. To get the sampling
positions geodesic fans are used: first, geodesics lines are computed, equally
spaced in the conformal plane of the point, and then per each geodesic the
point samples on those geodesics are taken at equal distances (rings). Evaluating
curvature on those samples creates a two dimensional curvature measure. To
establish similarity, all possible alignments of the geodesics in fans are taken into
account and the minimal dissimilarity (L2 norm) is taken as the dissimilarity
measure. One dimensional curvature measure can be calculated by averaging
the curvature values for all samples along a ring.

Local descriptors at each point are usually used to establish the initial corre-
spondences in a shape matching process. At a greater computational cost, rich
descriptors usually contain more specified information collected from a wider
neighborhood, and in result they are more powerful in reducing the ambiguity
at the shape matching process.

3.1.5 Position Related Descriptors

There are descriptors which, although evaluated at a local position, are related
to the point’s position within the shape. Such descriptors are usually expensive
to compute, as for any point they require the relation to all the other points
of the shape expressed as a geodesic or euclidean distance or another more
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complicated formula.

The idea of local diameter [51] is related to the diameter defined with the
Medial Axis Transform [22], but it is made to be robust for meshed discrete
surfaces. It is calculated based on the statistics of distances to the surface in-
tersection with 50 rays shot from the point with a 120◦ opening with respect to
the surface normal at the center, with the top 30% and bottom 10% outliers re-
moved. This should to some extent be invariant to the articulated deformations,
but not at places where bending occurs e.g. the elbows.

The centricity [62] is defined as an average of geodesic distances to all other
points of the shape. The eccentricity [65] on the other hand is the maximum
of these distances. Instead of the geodesic distance on the boundary, a geodesic
distance through the enclosed volume can be used which was called the inner-
distance by Ling et al. [89]. It is calculated using the shortest path algorithm
on a graph, constructed with the sample points on the surface as vertices and
with an edge connecting two points of the surface being established if it belongs
to the enclosed volume.

Anther intrinsic function defined on the surface of the shape is a conformal
factor [15]. The uniformization theorem states that any 2-manifold can be
conformally mapped to a surface with the same topology having a constant
Gaussian curvature. When doing such a mapping a scalar function φ describing
the scaling of the metric can be found and this is exactly defined as a conformal
factor. In a continuous setting φ can be computed as a solution of the non
linear pde: ∇2φ = κ − exp(2φ)κu, where κ is the Gaussian curvature and
κu is the uniform target Gaussian curvature. In a discrete setup the equation
Lφ = Ku−Ko is solved, where L is a discrete Laplace-Beltrami operator, and K
are target and original Gaussian curvatures. To compare the factors for different
shapes, a histogram is created and an L1 norm is used. If the shape genus is
zero, the conformal factor expresses how much work is needed to transform the
model into a sphere. It depends only on intrinsic properties of the shape: a local
metric encoded in the Laplace-Beltrami operator and Gaussian curvature. This
measure reassembles Gaussian curvature but it is much less noisy. The method
is robust to the noise but sensitive to the topological changes.

Each eigenfunctions of the Laplace-Beltrami operator [124] can be repre-
sented as a function which minimizes Dirichlet energy [11], with the requirement
that it should integrate to one, and with the additional constraint of the k-th
eigenfunction being orthogonal to all i-th eigenfunctions where i < k. Because
the gradient of a function is being minimized, the function change follows the
main protrusions of the shape. Laplace-Beltrami eigenfunctions are calculated
either within the domain of shape’s surface manifold [86] or within the inside
domain of the 3d shape [95, 122] with the Dirichlet or Neuman conditions im-
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posed at the boundary. The first nonzero eigenfunction, Fiedler vector, is very
often used as a function describing the shape [131] but also the further eigen-
functions were proposed [122]. Rustamov [125] proposes GPS coordinates,
which for a given point are a vector of all eigenfunction values at that point
divided by the square root of the corresponding eigenvalue. One should not rely
on the ordering of the Laplace-Beltrami eigenfunctions because a small distor-
tion of the shape might cause switching of them if the corresponding eigenvalues
are close [69]. When shape matching is an application, ’unswitching’ methods
should be applied [69,95].

The heat equation is related to the Laplace-Beltrami operator and the heat
kernel can be expressed with the eigensolutions of the operator [124]. If all the
heat was injected at a point x, the value of a heat kernel K(x, y, t) indicates
how much of that heat is present at point y after time t of the heat diffusion
process. Note that this function is defined on two points of the manifold but by
restricting y to y = x [54, 143] we obtain a function which expresses how much
heat remains at the same point after time t. This function follows the general
shape of the manifold. For example, heat will remain in the tip of the finger-like
surface as it does not have so many options to escape, however it will spread
away if the point is located on a saddle-shaped surface. The time parameter t
indicates the scale of features we are interested in. At small scale it is related to
Gaussian curvature, according to the Minakshisundaram-Pleijel [97] expansion
of the heat kernel, while at larger scale it is related to the general structure of
the mesh.

3.2 Collecting Local Measures

When going from local to global descriptors, global information needs to be
aggregated from the local points. The collecting can be done by uniform sam-
pling. Osada et al. [110] selects points randomly based on the triangular mesh
representation. First, a triangle is selected with probability proportional to
its area. Then, for each chosen triangle with vertices (A,B,C), a point is
constructed by using two random numbers between 0 and 1: r1 and r2 as
P = (1−√r1)A+

√
r1(1− r2)B +

√
r1r2C.

Very often direct integration of the discrete representation of the shape suffices.
For example, if we have a triangular mesh, the measures at vertices can be taken
with weights according to triangle areas incident to the given vertices [80]. Some
other measures can also be taken along the edges [146] and weighted according
to the edge length. For volume or embedding space related samplings, the space
is divided into a three dimensional grid and values are taken from the grid
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centers [95].

3.2.1 Integration

If a local descriptor has numerical value, integration is the simplest way to
aggregate local information. Usually it means that all local values are summed
up according to sampling weights. Examples of such measure may be: a center
point of the shape, the shape’s surface area, or volume [163] if the shape is a
closed manifold. Also moments can be used: mpqr =

∫
boundary

xpyqzrdxdydz.
By integrating the Gaussian curvature we get the Euler characteristic of the
manifold according to Gauss-Bonnet theorem.

3.2.2 Distributions

In order to obtain more specialized information, aggregation into bins can be
performed and a histogram is created. Each bin corresponds to a range of values
and we accumulate how many times a given value was represented in our shape.

Binning can be seen as classifying points according to values of a local shape
descriptor and then counting how much volume or area or how many sampling
points each class contains. Instead of volume, other types of data can be aggre-
gated, e.g. curvature.

Samples do not have to be single points. Instead a function can be evaluated
on pairs or triples of points (see section 3.1.1). Osada et al. [110] introduces
shape distributions. A shape signature a probability distribution sampled
from some shape function. The following functions were proposed: A3 the
angle between three random points of a surface, D1 the distance between a
fixed point (for example centroid) and one random point on the surface, D2
the distance between two random points on the surface, D3 the square root of
the area of the triangle between three random points on the surface or D4 the
cube root of the volume of the tetrahedron between four random points on the
surface.

In a similar fashion, a binning space can be higher dimensional. For example
Gal et al. [51] create two dimensional histograms by combining local diameter
and centricity functions.

Bins can also be partitions of a sphere as in the case of the extended Gaussian
image descriptor [63], which is a distribution of normals across the model.
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In order to establish dissimilarity, a measure between different histograms needs
to be taken. Osada et al. [110] gives a few possibilites: χ2 D(f, g) =

∫ (f−g)2

f+g ,
Minkowski Ln D(f, g) = (

∫
|f − g|n)1/n, cumulative Minkowski Ln mea-

sures: D(f, g) = (
∫
|f̂ − ĝ|n)1/n, where (f̂ =

∫ x
−∞ f) or Bhattacharyya:

D(f, g) = 1 −
∫ √

fg. Ankerst et al. [5] use the extended euclidean distance
d2
A(x, y) = (x− y) ·A · (x− y)T with weights aij = e−σd(i,j) where d(i, j) is the

distance between bin centers. In order to compare two histograms, Mitra et al.
use resemblance: the minimum and maximum histograms are computed bin-
wise from two histograms and the quotient of the volume of the minimum to the
volume of the maximum is defined to be the resemblance measure. Note that
this value is between zero and one and has a higher value if the shapes are more
similar. So to have a distance between the shapes, one minus the resemblance
needs to be taken.

Quantization can cause huge histogram differences even through the shape
changes smoothly because a lot of local values jump to the next bin. To combat
this many of those measures take into account not only the direct difference
between the bins but also the difference to a nearby bin with some weight. In
order to achieve continuity between a shape’s change and the descriptor, before
binning the samples are convoluted with a Gaussian kernel of a fixed width [112].
This approach was also proposed within a statistics related context and named
as the density based framework [1].

If we have a local descriptor with too many dimensions, very soon the curse of
dimensionality problems to be confronted as the number of bins grows exponen-
tially with the number of dimensions. The bag of words or bag of features [87]
approach can be used in such case. This method was imported from other
fields, appearing within text retrieval [127] and then being imported into the
image [117] and video [136] retrieval problems. The first step of such approach
is to construct a vocabulary by clustering (usually by using k-mean clustering)
the feature space based on the samples provided from the training set. Those
samples are usually taken uniformly from all of the training shapes. A bin is
assigned to each cluster, which defines a partitioning of the feature space. In
order to calculate the descriptor for a given shape, each bin collects the samples
according to their classification. There is also a soft version of this algorithm
where sample contribution to a bin is proportional to the proximity to a class
center [111]. The spatially enhanced version of this algorithm also takes into
account distances between two samples in the shape space, resulting in a two
dimensional histogram. This can be implemented by having a second orthogonal
level of clusters in the shape space, coming from the division of the embedding
space [87]. Anther approach is to take pairs of samples and have one classifica-
tion level according to the first sample, the other one according to the second
sample and the weight on the binning being related to how far those two samples
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are with respect to the shape space either by taking euclidean, geodesic, or heat
kernel related distances [111].

3.2.3 Importance

Instead of accumulating local information, a different approach is to store a col-
lection of local descriptors coming from the samples. Keeping all samples which
were taken is memory consuming and not computationally efficient. That is why
a subset of those samples needs to be selected based on feature importance. In
a similar fashion, when performing binning we can incorporate importance of a
sample as its weight.

We can evaluate the saliency of the sample from its local geometric properties.
This means that, based on our beliefs, we heuristically design a descriptor which
measures how important a sample is. Dey et al. takes n most persistent maxima
of the auto diffusion function at a coarse time scale [40]. In the work of Nowotni
et al. [108] salient points detection is based on the 2D SIFT method which is
used for finding the blob features of 2D images. Local extrema of the difference
of Gaussian filters, which approximates the scale normalized Laplacian of the
Gaussian, is applied to intensity image f : Lnorm(x, σ) = σ2∆G(x, σ) ∗ f(x) ≈
1
k (G(x, kσ)∗f(x)−G(x, σ)∗f(x)), where k denotes the fixed step scale factor. A
three dimensional version of the algorithm is applied with the shape transformed
into volumetric form containing ones for the cell inside and zero for the outside.
A similar approach is used by Lee et al. [84] where saliency is related to the
difference of a Gaussian filter with sigma as parameter of the mean curvature
and the same filter at two times sigma scale. In order to accumulate information
from different scales, a non-linear suppression operator can be used [66] that
adds together the normalized version of Lnorms for different scales, multiplied
by a square of the difference of maximum and average value.

Instead of feature points, regions can be obtained by growing techniques while
fitting a quadric [50]. This allows for region related measures which are combined
into the saliency formula: the area of the region, the number of local minima
and maxima of the Gaussian curvature, the integral of the whole curvature and
curvature variance in the region.

Saliency information can also be built relying on the performance input, supplied
by a training dataset. Such a set, with additional labels indicating membership
in a specific class, is used by Shilane et al. [132] to define saliency as the retrieval
performance within the database of the local shape descriptor. For the query
shape X one evaluates the distance from all local shape descriptors x ∈ X to all
the other local descriptors from the shape Y and the minimum running over all
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the samples of Y is taken as the distance form x to Y . This distance is used to
create a retrieval list for the descriptor at point x. Then, retrieval performance
is measured according to Discounted Cumulative Gain (DCG). To estimate the
performance measure for descriptors of a query shape, whose class label is un-
known so retrieval performance cannot be computed directly, a mapping from
likelihood to DCG is performed. Likelihood is defined as a multivariate normal
distribution of the samples in the feature space following the idea that features
which are different from the standard ones are more significant [73]. The map-
ping function is learned in the training phase with likelihood function evaluated
based on training samples. As experimental results have shown, clustering ac-
cording to likelihood groups the features with similar DCG. So for a new feature
the likelihood is evaluated, then features from the training dataset having simi-
lar likelihoods can be taken and their DCG values used to asses DCG of the new
feature. Funkhouser et al. [49] applies the retrieval performance idea to shape
matching, but the nearby salient features are eliminated by using a distance
threshold. The features are added into a list according to their performance
measures, but those which are less distant to features already in the list are not
included.

The connection of significance and the distribution of features was directly used
by Gelfand et al. [55], where samples are binned based on a real valued local
descriptor and the samples from least populated bins are taken as the most
significant ones.

3.2.4 Space Division

A specialized description can be achieved if the integration is performed per
some part of the shape, created either by dividing the embedding space or by
some other clustering methods. For example, horizontal division of the space
results in a descriptor informing how much of the curvature is allocated at the
lower part of the shape vs. the upper part.

For comparing molecules Ankerst et al. [5] use histograms where the bins are
defined as specific sections of the 3D shape: shells as divisions along distance
from the center, sectors as division related to spherical angles, and spiderweb
as both types of division combined. The amount of volume of the shape within
the sector is used as the integrated value.

Bustos et al. [26] divide the shape according to octant based partitioning and add
to a global shape descriptor eight sub shape descriptos computed by constraining
the main point.
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3.3 Pose Normalization

An invariance property term is always paired with some transformation being
performed on the shape. A descriptor having invariance property will not change
after applying such transformation. Different transformations are considered
in this context such as: scaling, rotation, translation, or different isometric
embedding in a space. It can also be a local topology change as for example
connecting nearby legs of the Homer shape by a small tube [125]. Coarse scale
shape descriptors might be invariant to a transformation which changes local
details, such as smoothing or adding noise.

Many descriptors have invariance properties inherited form the way they were
constructed. A histogram of D2 distances between sampled pairs of points is
translation and rotation invariant, and one which is computed only on geodesic
distances on the surface will be pose invariant.

Changing descriptors from a not-invariant to an invariant version can be done
by transforming the shape into a canonical pose before applying the descriptor
extraction. For example, translational invariance is achieved by calculating the
center of mass and translating the shape so that the center is being in the origin
of the coordinate frame. The rotation related canonical pose can be obtained
by applying a spherical axis transform [5], so the eigenvectors of a covariance
matrix are used as a canonical coordinate frame. This approach is also known as
principal component analysis based rotation normalization [26, 154]. Kazdhan
et al. [78] factors out anisotropy by rescaling the model by the inverse square
root of the covariance matrix. Note that all covariance related methods require
translation normalization first.

Multidimensional scaling based on geodesic distances between points located
at the shape is a broadly used method of achieving a pose invariance [46, 75].
Also spectral embedding in the coordinates of first eigenfunctions of the Laplace
Beltrami operator can be applied [68].

There are some issues concerning how the canonical positions are defined. For
example a center of mass might not really be what is supposed to be the center of
a shape, as it is sensitive to outliers – for example, a spherical shape which needs
to be compared with a very similar spherical shape with a handle. Similar issue
happens when applying canonical rotation based on the PCA eigensolutions. For
some classes of shapes, a symmetry might be a better hint on how to position
the shape [119]. For box-like shapes a rectilinear measure [88], which is related
to the area of the surface and the sum of three orthogonal projected areas of
the surface. The coordinate system for which the shape reaches top rectilinear
scores can be chosen as the frame. Scale invariance is achieved by scaling the
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shape according to its size. But it is not clear if the size is related more to
the radius of the bounding sphere, the maximum distance between all pairs of
points or to the variance of equally sampled surface points.

Another approach is to generate many instances of a shape, each one in a slightly
different size or rotation angle, and evaluate the distance as the minimum dis-
tance [32, 53] between all possible configurations. Such an approach is also
reflected in a formulation of the Gromov-Hausdorf distance [100] when the in-
fimum is taken through all possible isometric embeddings of compared shapes.
Depending on the richness of configuration space, the ’all-possible’ formulation
can be too expensive or even impossible to implement.

3.4 Harmonics

If a descriptor is a function f defined in the domain Ω, it can be transformed
into a different representation by choosing the basis of orthogonal functions ψi
for Ω, and projecting f on those bases µi =< f, ψi >. The most known bases
for this operation for Ω being a riemanian manifold are the eigenfunctions of
Laplace Beltrami operator on Ω. Those functions have an advantage that if we
want to go back to the original representation and take a sum

∑
i µiψi with a

finite number of i = 0..n, the result is a smooth approximation of f and the
exactness of this approximation is related to n [124]. For some domains Ω the
eigenfunctions can be computed analytically. If we have a circle Ω = S1 we
obtain the Fourier transform, with a sphere we will get spherical harmonics.
For a shape with an unknown analytic formula, an approximate solution can be
found numerically [123].

3.4.1 Spherical Harmonics and Rotation Invariance

Spherical harmonics Y ml are the eigenfunctions of Laplace Beltrami operator on
the sphere. They are used extensively because of the possibility to group the ex-
pansion coefficients in a way which results in rotationally invariant descriptors.
Each frequency l, or in other words eigenvalue, has a 2l + 1 dimensional space
of corresponding eigenfunctions. When we take the expansion of contribution
to f according to frequency fl =

∑m=l
m=−l µlmY

m
l and apply the L2 norm to fl

we will get the energy of a spherical component at a frequency l and is rota-
tionally invariant. A collection of such norms ordered by l is called a spherical
harmonics shape descriptor [48].
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This descriptor can be used directly with any descriptors in a form of spherical
functions. Funkhouser et al. [48] subdivide the space into a set of concentric
shells and a spherical function is obtained by intersecting a shell of a specific
radius with the voxelized boundary of a shape: in the voxel space we have 1
if a voxel contains a boundary and 0 otherwise. The side effect of the use of
concentric shell division is that they are unable to detect if the inner part of the
shape was rotated [77].

Vranic et al. [154] also use concentric spheres with different radii, but the func-
tion value is defined as the distance between the center of a shape and the
intersection point of the shape with a ray shot from the center to given direc-
tion. If an intersection within the given shell interval does not occur, the value
is set to zero.

Kazdhan et al. [79], among different possibilities, proposes the use of a spher-
ical harmonic descriptor on extended gaussian image [63], the spherical extent
function, which associates with the ray through the origin the most distant in-
tersection with the shape, the amount of surface area that sits over the ray or
the average distance and standard deviation of points on the intersection of the
surface and the ray.

Zernike moments are an extension of spherical harmonics in a way that the
radial values are also taken into account. Novotni et al. [109] use the Zernike
descriptors directly on the volumetric representation of the boundary of the
shape.

3.4.2 View Based Descriptors and Fourier Transforms

A three dimensional version of fast Fourier transform can be applied directly to
a voxelized axis aligned representation of the shapes [152]. 3D shapes can also
be reduced to two dimensional image representations, and image or 2D shape
analysis methods can be used for further processing.

Vranic [153] creates two dimensional silhouettes of objects by projecting the
axis aligned shapes on the sub coordinate frames. Those silhouettes are then
described by a one dimensional function defined by distance from a center and
then fast Fourier transform is applied. As a second descriptor, he uses six depth
buffer images which are taken from faces of a cuboid that contains the shape.
Each depth buffer is further transformed using two dimensional fast Fourier
transform.

Light field descriptors [32] follow the idea that similar objects should look



3.5 Segmentation 35

similar from different view points and take silhouettes from camera positions
defined at vertices of a dodecahedron. Then, the best similarity between two
such descriptors is established while considering all possible rotations of one
camera system relative to another and taking the minimum distance. For image
metric Zernike moments and a Fourier descriptor of function, being a distance
from center to a boundary, are used.

3.4.3 Harmonics on Arbitrary Shape

For most manifolds the analytic formulas for Laplace Beltrami eigensolutions are
unknown but it is still possible to obtain their approximation numerically [123].
If as Ω we use the shape itself, either as a surface manifold or as an inner part
of the shape with some boundary conditions, eigenvalues and eigenfunctions of
Laplace Beltrami operator contain a lot of shape information. The eigenfunc-
tions were already mentioned in the Section 3.1.5. Although there are different
shapes with similar spectra, Reuter et al. [123] proposes to use eigenvalues as
the shape DNA descriptor.

Rustamov [126] maps selected functions defined on a shape into template shapes,
which can be further projected onto the eigenvalues of the Laplace Beltrami
operator defined on the template shape. Many known methods, such as light
field descriptors or spherical harmonics, can be described with the use of this
framework, by specifying different functions on a shape, different mappings and
different template shapes.

3.5 Segmentation

Retrieval of semantic information requires decomposition of shapes into mean-
ingful parts [6]. Those parts are then treated as basic primitives that build the
shape. The shape of each of those primitives and the relation between them can
be further analyzed [129]. The meaning of those parts depends on the context
which for example is different for mechanical parts than for articulated shapes.

Segmenting a shape is related to classification of local points of the shape. The
main difference is that we also consider how different classes are positioned
within a shape, as a segment is a connected set of local points of the same
class. Segmenting algorithms aim to have a small number of parts with smooth
or feature aligned boundaries. Shapira et al. [129] segments according to val-
ues of real functions defined on the surface mesh such as shape diameter. The
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Gaussian mixture model is used to fit the k-Gaussians to a histogram of the
shape diameter function. Then a probability of being one of those classes is
assigned to each triangle of a mesh, according to fitted Gaussian values. The
result is further regularized by using the graph cut algorithm, with energy con-
taining a data term according to probabilities and a smoothness term according
to dihedral angle between triangles and the length of the edge shared by the
triangles.

Shamir et al. [128] also use a local function defined on the mesh and apply the
mean shift algorithm. The algorithm finds maxima of the estimated probability
density function on the feature space which is built from coordinates of local
points and descriptors evaluated at those points. Points converging to the same
value are considered as clusters. This method was imported from the image
clustering and filtering technique. It requires some adjustments to work for
meshes, in this case the mesh around the actual point is flattened and the
algorithm works in euclidean space.

In work of Dey et al. [71] segments are constructed from a set of points that
flow into the same critical points. The flow is defined along the gradient of the
distance from the boundary.

Medial structures are used by Mortara et al. [101] in the plumber algorithm,
which extracts tubular regions from the mesh. Medial loops are also used by
Goes et al. [38] but distance between points is evaluated as a diffusion distance
instead of geodesic distance. Here, a duality between medial loop and segment
border is used while performing refinement operations.

Katz [75] segments shapes which consist of a core part and limbs. MDS scaling is
performed based on geodesic distances between the vertices of a mesh. In such
space, spherical mirroring is performed, and the convex hull of the mirrored
part is computed. The core part of a mesh corresponds to the areas lying in
the convex hull following the extraction of the limbs, which correspond to inner
parts of the mirrored mesh.

Clustering with a bottom up approach starts with a huge amount of small
regions, for example triangles in the case of a mesh representation. The cost
of merging two neighbor areas is usually defined in some form of energy and,
at each step, merging that has the smallest cost is performed. In the work of
Attene et al. [8] clusters correspond to primitives, such as plane, sphere, cone
or cylinder and are merged if the resulting area fits one of the primitives from
the primitive set well. In similar fashion, Gal et al. [50] use the energy which is
an error of fitting a quadric and Gelfand et al. [104] connect regions according
to the slippage consistency: the number of eigenvalues of a slippage matrix and
the signature of the slippage matrix has to be similar.
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Huang et al. [64] define meaningful parts as those that tend to move rigidly
and analyze vibration modes of the Hessian matrix of the deformation energy.
Solomon et al. [138] segment according to intrinsic primitives and perform k-
means clustering with distances based on the Killing vector field eigensolutions
[14]. K-means clustering segmentation within the space of GPS coordinates,
which are Laplace Beltrami eigenfunctions divided by the square root of the
corresponding eigenvalue, was proposed by Rustamov et al. [125]. Xu et al. [161]
suggest using intrinsic reflectional symmetry to help in the process of meaningful
clustering of man-made objects.

Golovinsky et al. [59] computes the final segmentation along areas with the
highest probability of having a cut, estimated from many random segmentations
boundaries, based on the k-means clustering algorithm, the mean cuts algorithm
and hierarchical clustering initialized with different parameters.

Kalogerakis et al. [74] use the conditional random field method with energy
terms related both to geometry of parts and their pairwise relations. The ob-
jective function is learned from a collection of labeled training meshes. If two
parts have the same label and are neighbors, they cannot be separated with that
scheme.

3.6 Graphs and Skeletons

Shape skeletons are graphs whose elements are identified with different regions
of a shape. Graph representations are connected to segmentations, since a
graph representation can be obtained from the segmentation by connecting the
neighboring segments with an edge [64]. Conversely, a shape can be partitioned
according to the structure of its skeleton [91]. Matching and comparing general
graphs is a big research topic in itself. This section aims at describing methods
for extracting skeletons and matching techniques which use specific properties
of skeleton representations.

Shock graph [135] is obtained by thinning a two dimensional shape and an-
alyzing critical points of the thinning function. Sundar et al. [144] generalizes
this idea to three dimensional shapes through volumetric thinning, with the
use of additional information about the type of shock depending on the type
of singularity that occurred when the graph was produced. A shock graph is a
directed acyclic graph and direction is defined by the thinning direction, which
makes the problem of matching much simpler than for general graphs. Par-
tial matching is performed in coarse to fine hierarchical order. The measure of
topological similarity of the subtrees, related to the number of eigenvalues of
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the adjacency matrix, and measure of the local shape information are used to
decide if two nodes are matched together or not. After matching, a goodness
measure is produced which is combined from the number of nodes matched and
accuracy of the match.

A similar approach to the shock graph can be seen in the work of Au et al. [9]
where the mesh is contracted to a skeleton by applying constrained Laplacian
smoothing.

A skeleton can also be obtained by analyzing the critical topological character-
istics, such as critical points or curves, of a repulsive field over a discretization
of the 3d object [37].

Sharf et al. [130] apply deformable models, a method which is typically used
for surface reconstruction. A skeleton is created by following the centers of
active fronts. The skeleton is simplified by removing arcs whose related front
tension is smaller than a given threshold.

Given a manifold Ω and a Morse function f : Ω → R, the Reeb graph [19]
is a quotient space of Ω × R defined by the equivalence relation (p, f(p)) ∼
(q, f(q)) ⇔ f(p) = f(q) and p and q are in the same connected component of
f−1(f(p)). Reeb graphs trace the evolution of the level sets of functions defined
on a manifold. Nodes of a Reeb graph correspond to the critical points of the
functions, and edges represent connections between them.

Marini et al. [94] matches Reeb graphs of different shapes by a bottom up
subgraph matching method, where initial mappings between nodes are expanded
as long as possible. Expansion is always performed on a candidate pair which
has the best heuristic similarity cost. Reeb graph is a directed graph and this
property allows to reduce the complexity of expansion. Tierny et al. [150] use the
fact that each of the Reeb graph edges has either tubular or disk like topology
so they are mapped to a unit planar disk or a unit planar annulus. The stretch
measures are used as descriptors for each part and a search for maximally similar
subgraph is performed.

To establish correspondences and the similarity measure between two shapes
Hilaga et al. [62] use the hierarchy of multiresolutional Reeb graphs calcu-
lated from the centricity function. At each level a Reeb graph of given resolution
is computed. Reeb graph resolution is connected to a method where only se-
lected level sets are examined, the ones with values placed equidistantly, and the
distance defines the resolution [115]. Nodes of a multiresolutional Reeb graph
correspond to the edges of the Reeb graph, and incident nodes are connected
by an edge. To get a hierarchical sub graph, the resolution value is halved.
In a result, each node from the coarser graph has corresponding children sub
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nodes. Then, attributes are used to establish similarity between two nodes. A
ratio of the area of the node to the whole object or length of the node to the
whole object are used as attributes for matching in the finest resolution. For the
coarser resolution, the attribute of a node is defined as the sum of the attributes
in the subnodes. Correspondances are established using the coarse to fine strat-
egy in such a way that nodes in different ’branches’ of a Reeb graph should
not be matched. Similarity is calculated as the sum of similarities between
matched nodes. In an augmented version of the algorithm [151], the matching
cost is enriched with distances between different geometrical attributes such as
the spherical coordinates of the node centers, statistic measure of the extent,
relative volume, locally estimated shape index etc.

Medial axis transform [22] of a surface F can be defined as a set of medial
balls, the maximal empty balls that do not contain any point of F and are not
contained in any other such balls [3]. For two dimensional shapes medial axes
have a skeletal structure. For the 3D case, medial axes contain surfaces. There
are methods for further extraction of medial axes from those surfaces which
result in a skeleton. For example, Dey and Sun [41] extract such skeletons by
using critical points of the geodesic function, which is defined for a given center
of a ball as the geodesic distance between a pair of points touching this ball.

Medial axes representation is noisy with respect to shape perturbations. Small
noise at a boundary might cause addition of lot of new branches. Filtrations
are used to reduce the medial axis transform noise. Such a filtration is a subset
of the medial axis with a set of points for which any ball containing the set of
closest points on the boundary has radius at least λ [31]. However, by using
λ-filtrations, thin but long elements might be lost. Scale axis transform [56] is a
version which scales the radii of the medial balls by a factor s. That way, some
balls are no longer maximal as they are contained withing other balls. After
performing medial axis transform on the surface defined by scaled balls, radii
are scaled back to the original size.

3.7 Persistence Diagrams

Size functions [47] analyze variations of the number of connected components
of the lower level sets of a manifold S with respect to a continuous function
f . A size function has two parameters x and y > x. It counts the number
of connected components of Sy which contain at least one point of Sx, where
Sx = {p ∈ S : f(p) < x}. The functions can be represented as collection of
cornerpoints and cornerlines. Size functions can be compared by computing the
Hausdorff distance between the corner element sets of two shapes, with allowing
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the points to be matched with the diagonal x = y.

For 3D representation size function very often becomes trivial, so a setup requir-
ing two functions was proposed [18]. First function extracts the skeletal graph
according to level sets, and the second function measures geometric properties
at a given node of the graph, and this function defines the filtration.

Persistent homology [44] is a more general framework for measuring topological
features of manifolds or, in a discrete case, simplicial complexes. It analyzes all
kinds of topological changes that can happen while incrementally growing the
space. The growth of that space is defined by ordering of the added elements or
by some time-parametrized filtration scheme. The events of topological change
can be paired as births and deaths of different homology classes and displayed
as points on the persistence diagram. The difference between death and birth
time define the persistence of a given feature, which on a persistence diagram,
can be measured as the length from the diagonal of a persistence diagram. The
distances between two persistence diagrams can be computed as the Hausdorff
distance by matching the points of the diagram, which is the assignment prob-
lem, and can be solved for example by the Hungarian algorithm. Note that
persistence was used by Dey et al. [40] in order to find the most significant
maxima of the auto diffusion function.

An interesting example of using persistence homology is a barcode descriptor
which does not act on a shape directly but in the space of a tangent shape.
Barcodes are defined [27] as the set of intervals which describe the persistence
of filtration of tangent complexes of the shape. Those tangent complexes are
filtered with respect to the osculating circle radii. The filtration with parameter
δ removes those directions in the tangent space that have the tangent curvature
greater than δ.

3.8 Direct Comparison via Matching

Evaluating distances between shapes is possible without using intermediate rep-
resentation in the form of a shape descriptor.

If two shapes are aligned in the same coordinate space a Hausdorff distance
between them can be computed as the maximum, over all points from the two
shapes, of distances from a given point to a closest point from the second shape.
Some other distance formulations are also possible. For example, if the volume
enclosed by given shapes can be measured, we can use Jaccard distance [67],
which measures the volume of XOR operation evaluated on both shapes, divided
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by the SUM.

Usually we do not have perfectly aligned shapes. A Gromov Hausdorff [100] dis-
tance is defined as minimum Hausdorff distance among all possible embeddings
of shapes in the space. There is also an alternative formulation which does not
require common embedding space but correspondences between points of two
sets need to be established.

From this example we can see that shape matching methods are also a way of
establishing distance based shape descriptors. Note also that many matching
methods minimize some functional and such functional can be used as a distance
measure. For example Zhang et al. [164] uses as a cost measure the energy of
deforming a mesh according to correspondence established points.

Matching curves (see also Section 2.3) is very often done by applying the dy-
namic time warping algorithms [45] and minimized objective function can be
further used as a distance measure between those curves. For surfaces, the use
of dynamic time warping becomes NP-hard. Usually 3D methods work on coarse
correspondences of feature points [164], also methods based on exploration of
Möbius [81] space, or isometric embedding based on heat kernel [113] can be
applied for almost isometric shapes.

3.9 Combining Different Measures of Dissimilar-
ity

Very often one type of descriptor is not enough to capture all properties that we
need. In the retrieval framework, combined descriptors usually perform much
better than base descriptors [58]. In order to combine different descriptors a
common representation is needed. Although there are many various types of
descriptors, most of them have a way of measuring dissimilarities.

Giorgi et al. [57] uses relevance feedback which is given as a threshold number
assigned to a specific feedback shape in the database. Combining different dis-
similarities is done by taking the maximum one. The feedback from the user is
taken into account by scaling down measures in a way that di(qery, feedback)
is no greater then threshold. If a measure is within a given threshold it remains
unscaled.

Bustos et al. [26] combines the descriptors by summing the normalized distances
with weights computed according to impurity measure function. Impurity is re-
lated to fractions of objects of the same class at k first positions within the
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retrieval list. This is based on a hypothesis that a well suited descriptor will
retrieve objects from the training set that belong to the same class. The frame-
work requires a training dataset with labeled classes. Note also that in this
scheme weighting depends on the actual query shape.

Ceri et al. [29] propose the use of a Contrario model which is a statistical
method of combining information provided by different dissimilarity measures
di=1..N . The need for combining descriptors is in this case motivated by the
fact that size functions are used as descriptors and different shapes might have
similar size functions. At the time of evaluating how similar S′ ∈ B is to a
query shape S, all distances from S to B need to be known. The scheme is
based on probabilities and each measure is assumed to be independent, so all
terms related to measures are combined by multiplication. Each such term is
equal to the ratio of shapes in B which are not more distant to S than S′. This
term multiplied by the number of shapes in B is known as the number of false
alarms and is used as a dissimilarity measure for the retrieval problem.
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Contributions

The goal of this project was to find meaningful ways of describing shapes that
agree with the ways that human mind analyzes them. Especially, we were
motivated by the task of capturing the features related to style.

The contribution of this thesis to the area of shape description methods is
twofold.

The first is to propose a descriptor, which is related to the structure of the shape,
namely the auto diffusion function. With this descriptor we also show a method
of finding meaningful shape subparts, and a very compact and informative way
of describing them.

The second contribution rather than designing new descriptors contains methods
for dealing with existing shape descriptors in the context of style and function
related problems. We assume in this work that any descriptor which produces
a measure of dissimilarity between two shapes can be used, which makes our
framework very general. We introduce a method on how to decouple the infor-
mation about style and about function if they are contained within the same
dissimilarity measure. We also give a way of assessing how style oriented a given
descriptor is, within the context of a specific training dataset. We propose a
consistency measure which was mostly motivated by the problem of replacing a
missing piece of an exemplar style set, by selecting the most similar style from
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the repository dataset which contains style and function labeled shapes.
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Scalar functions defined on manifold triangle meshes is a start-
ing point for many geometry processing algorithms such as mesh
parametrization, skeletonization, and segmentation. In this paper,
we propose the Auto Diffusion Function (ADF) which is a linear
combination of the eigenfunctions of the Laplace-Beltrami operator
in a way that has a simple physical interpretation. The ADF of a
given 3D object has a number of further desirable properties: Its
extrema are generally at the tips of features of a given object, its
gradients and level sets follow or encircle features, respectively, it
is controlled by a single parameter which can be interpreted as fea-
ture scale, and, finally, the ADF is invariant to rigid and isometric
deformations.

We describe the ADF and its properties in detail and compare it
to other choices of scalar functions on manifolds. As an example of an
application, we present a pose invariant, hierarchical skeletonization
and segmentation algorithm which makes direct use of the ADF.

5.1 Introduction

Many algorithms for processing or analysis of manifold shapes are aided by
scalar functions defined on the surface. It turns out that functions which are
smooth and aligned with the shape are excellent tools for parametrization and
extraction of topological information. In particular, harmonic functions, piece-
wise harmonic functions or eigenfunctions of the Laplace Beltrami operator have
been used a great deal. However, in order to define a harmonic function on a
mesh, its boundary conditions need to be specified (sources and sinks), and
while the eigenfunctions of the Laplace Beltrami operator carry a great deal of
shape information, it is often hard to find out precisely what each eigenfunction
represents. In particular, the picture gets more complicated when eigenfunc-
tions corresponding to eigenvectors larger than the first non-zero eigenvalue are
used.

Our goal is to find a smooth scalar function which attains its maxima on the
tips of features (tips of fingers, noses, tentacles, hoofs, tails, tops of heads, etc.).
Since the notion of a feature is scale dependent, we observe that the function
must be parameterized by a scale parameter, but it would defeat the purpose if
the user had to specify other information (e.g. feature points). Furthermore, we
desire that the function be invariant to any rigid transformation, scaling and to
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isometric deformations of the shape. We believe such a function would be highly
useful for a number of tasks such as feature point detection, skeletonization,
segmentation, and parametrization. However, in this paper, we focus on showing
the usefulness in relation to skeletonization and segmentation.

5.1.1 Contributions

Our main contributions are to describe the auto diffusion function (ADF) which
is a tool for shape analysis and to investigate its applications to geometry pro-
cessing.

Assume we assign some quantity, like for example heat or dye, subject to diffu-
sion to a single point on a manifold shape. For a point on this shape, x, and
a scale (or time) parameter t, the ADFt(x) is the fraction of the quantity that
remains at x after time t. Intuitively, it is fairly clear that the quantity that
remains will be bigger on or near features since for a family of metric disks
centered at x, the ratio of area of metric disk to its perimeter will be bigger for
a feature point than for a point on a flat part of the shape. Thus, more of the
initial quantity escapes in the flat case. Detailed description of ADF comes in
Sections 3 and 4, see also [16,30,124].

In Figure 5.1 we show a complex shape with the ADF compared to the Fiedler
vector (first eigenfunction corresponding to a non-zero eigenvalue). It is clear
that all the tentacles of the shape are encircled by iso-curves of the ADF while
that is not true of the Fiedler vector. We could have used a harmonic function,
but compared to harmonic functions, the main advantage of the ADF is that
it does not require the setting of any boundary conditions on feature points.
Instead, its extrema prove to be the natural feature points.

We also propose an algorithm for skeletonization and segmentation based on
the well known method of Reeb graphs applied to our ADF. Our contribution
pertains to the fact that a single branch point often turns into multiple bifurca-
tions on a Reeb graph, and each bifurcation tends to lie on or near the surface.
We address this issue by averaging points on the Reeb graph within some small
tolerance of a critical value. The final skeleton is combined from several Reeb
Skeletons, which are extracted using the ADF function evaluated at different
t-values.



48 Shape Analysis Using the Auto Diffusion Function

Figure 5.1: ADF and Fielder functions for the tentacles shape. The rings are
iso-curves and positive values map to intensity of blue while negative values map
to intensity of red. Notice how the level sets of the ADF encircle the tentacles
of the shape much more consistently than the Fiedler vector.

5.2 Related Work

5.2.1 Functions on Surfaces

Ni et al. [107] find a harmonic function by solving the Laplace equation with
selected vertices as the constraints. This yields a smooth function that has
maxima only at the given points, however it is necessary to provide the extrema
in advance. Moreover, the values of the extrema need to be carefully assigned
depending on the lengths of the protrusions. Otherwise, the saddle points will
be misplaced from the natural branching area. The fast computation of har-
monic functions in [160] allows for an interactive approach where the user defines
all of the constraint points and obtains a new harmonic function immediately.
Dong et al. [42] propose to use curve constraints as the boundary conditions.
These constraints are imposed by requiring that all vertices which belong to the
curve need to have the same value of the function. There exist some heuristic
algorithms aimed at finding good constraints for harmonic functions [42,70,140].

Given a single user provided source point, Aujay et al. [10] find the sinks as the
clustered maxima of the function of shortest distance to the source. They create
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harmonic functions which have boundary conditions defined at the sources and
sinks. Tierny [148] finds feature points automatically as the intersection of two
sets of points which, in turn, are the extrema of the geodesic distance to one of
a pair of diametrically opposite points. The scalar function is then the geodesic
distance to the nearest feature point. In [149] the geodesic distance is modified
by making areas separated by concavities, more distant. For more details see
Section 4.1. In general, methods based on geodesic distance are not always the
best choice because they are very sensitive to the small topology changes as
mentioned in [125].

When using the ADF or eigenvectors of the LBO it is not necessary to provide
extrema because they are defined by the function itself. The existing approaches
based on eigensolutions of Laplace Beltrami operator usually involve choosing
one of the eigenfunctions. Some of the papers [115, 122] suggest exactly that
but without specifying which one to choose. [131] takes the first nontrivial eigen-
function and creates the skeleton based on that. However, this approach may
overlook many shape details especially when the nontrivial eigenvalues are al-
most the same. [43] picks one of the Laplacian eigenfunctions according to a
given number of critical points that the function produces. But in this way one
imposes the complexity. For two shapes of very different complexity (say the
tentacles shape in Figure 5.1) this would lead to very different levels of detail
which is not likely to be desirable.

5.2.2 Skeletonization and Segmentation

Many methods for producing a skeletonization require either a volumetric rep-
resentation or a Voronoi diagram. Many of these are discussed in [9]. Most
of them create a lot of tiny branches and are sensitive to noise, others have a
big computational cost. Below, we restrict the discussion to those that directly
work on the surface mesh since that is most pertinent to this paper. [115, 131]
create a Reeb graph directly from the choosen LBO eigenfunctions and make a
segmentation and shape skeleton from this graph. Au et al. [9] get the skeleton
by shrinking the mesh using Laplacian smoothing. However it does not work
for coarse meshes, and it does not seem possible to specify the desired level of
detail.

Many segmentation algorithms are based on geometric properties of the parts,
for example their convexity or the local curvatures. As we require pose invari-
ance, we refer only to methods which meet this requirement. Katz et al [76] use
geodesic distance and angular distance as a metric for the k-means clustering
method. The number of clusters is obtained by taking the k that has the biggest
derivative of minimal distance of the k-th added representative from other repre-
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sentatives. In a later paper [75], Katz et al. obtain the pose invariance by using
multi-dimensional scaling (MDS) to make the geodesic distances similar to the
Euclidean distances in 3D space. The points that reside on the convex hull of
this representation are chosen as the feature points, then spherical mirroring is
used to extract the core component and the feature components. In the end, the
boundaries of the segments are refined by finding the optimal cut. This method
seems to work only with shapes that have a distinguishable core part.

Tierny et al [149] use an approach based on Reeb graphs evaluated on geodesic
and curvature based functions. The segmentation process is not only aided by
the topological information but it is also enhanced by the placement of the con-
strictions – the curves at the bottlenecks of the shape which are good candidates
for the boundaries of the segments. Some heuristic methods like the identifica-
tion of the core part of the object is conducted in order to remove some of the
constrictions and produce the final shape.

Spectral methods [165], especially based on eigendecomposition of the Laplace
Beltrami operator have pose invariance induced by the properties of the oper-
ator. Rustamov [125] proposes k-means clustering based on inner products of
points in GPS coordinates. The GPS coordinates of a vertex is the vector of
values of the LBO eigenfunctions at that vertex where each value is divided by
the square root of the corresponding eigenvalue. Reuter et al. [122] mention seg-
mentation based on the nodal domains of some of the eigenfunctions. In both of
those methods, the user needs to provide information. Liu et al. [90] perform 2D
contour analysis of the shape in the space of the first two eigenfunctions. The
problem is that these may fail to capture even basic shape properties. In [64]
modal analysis of the Hessian of the deformation energy is used to find the typ-
ical low energy deformations. Decomposition of the shape into parts is done by
finding the optimal approximation of those deformations by deformations which
are rigid for each segment.

[38] proposed to use the diffusion distance between points to make a shape
segmentation. Like the ADF, the diffusion distance is defined in terms of the
Gaussian kernel on the mesh, but the functions are otherwise very different: The
diffusion distance only makes sense for two points since the diffusion distance
from a point to itself is identically zero.
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5.3 Theoretical Background

5.3.1 The Laplace-Beltrami Eigensolutions

The Laplace-Beltrami operator (LBO) is defined on a Riemannian manifold Ω
as the divergence of the gradient of a scalar function f : Ω→ R.

∆f = ∇· (∇f)

The LBO can be found in equations describing physical phenomena such as wave
propagation and heat distribution. This operator has also been used extensively
by the computer graphics community in the last few years for many purposes
such as: mesh smoothing [105], parameterization [103, 118], editing [139], mor-
phing and deformation [2]. The decomposition [86] of the LBO into eigenvalues
(0 ≤ λ0 ≤ λ1 ≤ . . . ) and eigenfunctions (φ0, φ1, . . . ), which can be expressed as
the solution of the Helmholtz equation ∆f + λf = 0, has also lately been ex-
plored in a lot of applications for geometry processing including shape identifica-
tion [123], classification [125], segmentation [90], registration [95] or identifying
the shape symmetries [114].

The eigenfunctions corresponding to the first few eigenvalues align surprisingly
well with the protrusions and features of the object. This phenomenon can
be explained by investigating the Rayleigh Quotient method which is used for
calculating the eigensolutions to the symmetric operator, which in the case of
the Helmholtz equation is equal to −∆. The problem is stated as a minimization
problem:

φi = arg min
06=fi∈C2

0(Ω)

〈φj∈{0..i−1},fi〉=0

〈fi,−∆fi〉
〈fi, fi〉

The minimal value is equal to the corresponding eigenvalue λi. By applying the
fact [30] that for the compact manifold the divergence and minus gradient are
formal adjoint operators 〈∇f,X〉v = −〈f,∇ ·X〉 to the vector field X equal to
∇f [11], we transform this problem into the mimimization of the 〈∇fi,∇fi〉v,
which is equivalent to the Dirichlet Energy minimalization problem with the
constraints 〈fi, fj〉 = δij , where δij is here the Kronecker delta. Note that we
use here two different inner products: the first one 〈f, g〉 =

∫
Ω
f(x)g(x)dx is the

inner product of two scalar functions over our manifold Ω, and the second one
〈X,Y〉v =

∫
Ω
〈X(x),Y(x)〉Ωdx is the inner product of two vector fields, where

〈, 〉Ω is the inner product defined by the structure of our Riemmanian manifold
Ω [124].

Put more loosely, the eigenfunctions are mutually orthogonal, have as small as
possible gradients everywhere while 〈φi, φi〉 = 1. For a closed surface, a constant
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Figure 5.2: First four nontrivial eigenfunctions of the LBO for three different
human like shapes. Red color represent negative and blue positive values, yellow
shows area close to the nodal set. The order of the eigenfunctions depends on
the proportions of the specific parts. Note that the nodal sets do not always cut
the object symmetrically.

function will suffice as φ0. However, φ1, the Fiedler vector, must be orthogonal
to φ0 and consequently it is positive on half the shape and negative on the
other half. The requirement that the gradients should be as small as possible
translates into the well known fact that the direction of change of the Fiedler
vector naturally follows the shape [86] as illustrated in Figure 5.2 left column.

There is an analogy between the eigenfunctions of the LBO and harmonic func-
tions mentioned in Section 2.1. Both minimize the Dirichlet energy, but the
eigenfunctions are constrained by the orthogonality requirement rather than
boundary conditions.
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While using the LBO eigenfunctions, there are some important issues that need
to be remembered: The signs of eigenvectors are undefined, two eigenvectors
may be swapped, nodal sets can be unstable due to small metric changes. All
of these are addressed by the Auto Diffusion Function presented below. In
our implementation Ω is represented as a triangular mesh. We use the cotan
weights [39,118] to calculate the entries for the LBO and we solve a generalized
eigenproblem in a way similar to the one used by Rustamov [125]. Because we
are interested mostly in the first few hundreds of eigenvalues we use the sparse
solver ARPACK together with SuperLU.

5.3.2 The Diffusion Kernel

The diffusion kernelK(x, y, t), or heat kernel, is a fundamental solution (Green’s
function) to the heat equation:

(∆x + ∂t)u(x, t) = 0

where ∆x denotes the Laplace Beltrami operator acting on the spatial variable
x where t ∈ [0,∞) is the time variable. It solves the equation with the initial
condition u(0, x) = δ(y), where δ(y) is Dirac delta function at the position y,
which means that all heat is initially concentrated in one point at the position of
y. The general solution can be obtained by convolution of the heat kernel with
the initial condition g(x) = u(0, x). The heat kernel can be expressed [124, page
32] in the terms of LBO eigensolutions as:

K(x, y, t) =

∞∑
i=0

e−λitφi(x)φi(y)

5.4 The Auto Diffusion Function and its Inter-
pretation

If we inject a unit amount of some quantity like dye at a point x (this corresponds
to the initial Dirac delta function), the Auto Diffusion Function indicates how
much of the dye that remains after time t. So the ADF describes the diffusion
from the point to itself and can be written as:

K(x, x, t) =

∞∑
i=0

e−λitφ2
i (x)

In this way, we obtain a function which is only dependent on the eigenvectors
and eigenvalues of LBO, which, in turn, depend solely on the first fundamental
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form G, and is therefore independent of isometric deformations, translations,
and rotations. To make the function scale invariant we can simply divide the
exponential by the second eigenvalue [121]. So we define the Auto Diffusion
Function as:

ADFt(x) = K(x, x,
t

λ1
) =

∞∑
i=0

e−t
λi
λ1 φ2

i (x) (5.1)

As the equation shows, the ADF is simply a linear combination of squared LBO
eigenfunctions. If the parameter t is large, the eigenfunctions corresponding to
big eigenvalues count less, and then only the main features ’detected’ by the
smaller eigenvalues influence the ADF. As we decrease t, more features can be
seen (cf. Figure 5.3).

The physical interpretation of the ADF is given by the diffusion process: At the
tips of protrusions, less of the dye will escape than from flat areas. But if t is big
enough, and the protrusions are small, there will be enough time for the dye to
spread evenly to neighboring areas. On the other hand, for small t there must
be a connection between local Gaussian curvature and (5.1). This connection
can be made explicit by observing the Minakshisundaram-Pleijel expansion of
the heat kernel. For sufficiently close x and y

K(x, y, t) = (4πt)−n/2
∞∑
k=0

uk(x, y) tk

where n is the dimension of the Riemannian manifold and uk(x, y) are recursively
defined. If y = x then u0(x, x) = 1 and u1(x, x) = 1

6S(x), where S(x) is the
scalar curvature which is the Gaussian curvature in the case of a 2-manifold.
Therefore, we have

ADFtλ1
(x) = (4π)−1

(
1

t
+
S(x)

6

)
+O(t) (5.2)

However, (5.2) is not a viable alternative to (5.1) since the truncated terms are
insignificant only for small t. Conversely, (5.1) is faster to compute for bigger t
since fewer high frequency eigenfunctions are needed.

In practice, we do not include the first eigenfunction since it is constant, and we
only add eigenvectors corresponding to eigenvalues that fulfill e−t

λi
λ1 < δ, where

the threshold is δ = 0.01.
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Figure 5.3: ADF evaluated with t equal to respectively 2, 12 , and
1
32 (left to

right). In the magnified images t is 1
2 (top) and 1

32 (bottom). The lines show
the isocontours of the function; brighter color indicates bigger value of the ADF.

5.4.1 Comparison to the Existing Functions

In this section, we compare the ADF to some other functions as illustrated in
Figure 5.4. We concentrate on those functions that can be specified with no
direct annotation of feature points and are pose invariant.

From our point of view, using the geodesic distance to the closest feature entails
two problems. First, the function has first order discontinuities since it involves
taking the minimum of several geodesic distances. The second issue occurs when
some feature point is located at a much smaller protrusion than a neighboring
protrusion. Then, most of the surface at the ’parent area’ of the protrusion is
geodesically closest to the feature point of the smallest protrusion. This can
lead to a situation where the function at the ’parent area’ is mostly defined as
the distance to the point corresponding to the smallest detail. Observe what
happens with the isocurves close to the little finger on the last two hands on the
image 5.4 that represent Tierny’s geodesic functions. Even with the geodesic
distance enhanced by the curvature information the problem is still present.

The Fiedler vector aligns well with the overall shape, but some parts of the mesh
close to the zero level set are poorly aligned with the protrusions. One general
problem with using the Fiedler vector is that for highly symmetric objects, the
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smallest eigenvalues will be nearly identical, and the first few eigenvectors align
with directions of roughly the same significance. The advantage of the ADF is
that the weights of the eigenfunctions depend on the eigenvalues, so all of the
first few eigenvectors may contribute. As noted previously, for small values of
t, the ADF starts to resemble Gaussian curvature.

Figure 5.4: Different functions calculated on the human hand. The first two
top represent ADF for t=1 and t=0.1, the bottom two are the Fiedler vector
and highly smoothed Gaussian curvature, and the last two are geodesic based
(pure geodesic and enhanced by the curvature) from [148] (pictures used with
the author’s permission).
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5.5 Feature Based Skeletonization and Segmen-
tation

5.5.1 Reeb Graphs

Calculation of the Reeb graph is a natural application of functions defined over
a manifold. Given a manifold Ω and a function f : Ω→ R, p is a critical point
of f if ∇(f(p)) = 0. f is a Morse function when for each critical point p, the
Hessian martix H(f(p)) of the second order derivatives of f is non-singular,
which means that critical points of f are non-degenarate.

The Reeb graph [7] of a Morse function f on a manifold Ω traces the evolution
of the level sets of the function on the manifold and is the quotient space of
Ω ×R defined by the equivalence relation (p, f(p)) ∼ (q, f(q)) ⇔ f(p) = f(q)
and p and q are in the same connected component of f−1(f(p)).

The nodes of the Reeb graph correspond to the critical points of the function f
and the arcs, which we call the Reeb edges, represent the connections between
them. The Reeb graph itself is a topological construct. However, if the manifold
Ω is embeded in Euclidean space, the point corresponding to each connected
component of the level set function can be positioned at the center of mass of
the corresponding component of the level set curve. This we denote the Reeb
skeleton.

In the discrete case where the manifold is a triangular mesh, the function f
is defined over the vertices. The points can be classified as regular or critical
according only to the function values of the vertices that belong to the one
ring of the vertex. The critical points are sinks if they are at the maxima,
sources if there are at minima and saddles otherwise. The full description of
the point classification according to the one-ring of the vertex can be found
in [36]. Our Reeb graph computation is done using a sweep algorithm that
allows us to position the skeleton points in space. The algorithm is similar to
the one described in [36]. If the positioning of the vertices is not needed, a faster
algorithm, that analyses the iso-contours only at the critical points [115], can
be used.

5.5.2 Algorithm Outline

Reeb skeletons tend to look nicest at points which are not close to branch
points. Branch points have a tendency to be either on or very close to the
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surface rather than inside the shape where one would normally place a branch
point. Also, where a designer would typically have placed a single branch point,
Reeb skeletons tend to have multiple bifurcations. We address both problems
by defining a small interval around the critical function value corresponding to
a branch point. All points on the Reeb graph corresponding to values within
this interval are averaged into a single point which we denote a joint. The
remainders of the edges of the Reeb graph are denoted bones.

The method is somewhat similar to the extended Reeb graph method [7, 21]
which slices the shape into parts that have function values between probing
points according to a given frequency. Both methods work on critical areas
instead of the critical points which helps avoid degenerate situations. Critical
areas for saddle points correspond to our joint areas, but in our case the critical
points are placed in the middle of the sliced interval, and neighboring critical
areas that have small differences in function values (for a given t parameter of
the ADF function) are merged together in order to avoid topological noise.

The skeleton is combined from several Reeb skeletons which are extracted with
ADFt evaluated with different t-values. Usually, we refine a skeleton by com-
puting a new one at t← t

2 and then grafting details from the new fine skeleton
onto the coarse skeleton. We could also just compute a family of skeletons using
different t values for the ADF function, but this would make it hard to abso-
lutely guarantee that we obtain a hierarchy, i.e. that there are no details in the
coarse skeletons which later disappear in a fine skeleton.

5.5.3 Extracting Joints and Bones from the Reeb Skele-
ton

We denote as the Reeb edge area E all the points that are transfered into the
same arc of the Reeb graph. Each Reeb edge has two critical points at the
endpoints, the smaller one pEs and the bigger one pEe . So for each point q that
belongs to the given edge area ADFt(pEs ) ≤ ADFt(q) ≤ ADFt(pEe ). From each
edge area, two joint areas are extracted at both ends and they are defined as:

Js = {q ∈ E : ADFt(p
E
s ) + ε ≥ ADFt(q)}

Je = {q ∈ E : ADFt(p
E
e )− ε ≤ ADFt(q)}

The threshold epsilon used in those equation is:

ε = κµ =
κ

N

∞∑
i=0

e−t
λi
λ1
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where N is the number of vertices in the mesh and κ is a user defined threshold,
we use κ = 0.05, which works fine, but can be changed according to the user
preferences. µ is the hypothetical value of the ADFt if all of the eigenfunctions
were constant. Such an objective formulation helps in an intuitive threshold
manipulation as κ can be the same for ADFs with different t values and different
shapes.

Neighbouring joint areas are glued together into one joint area. If the edge
is small |ADFt(pEs ) − ADFt(pEe )| < 2ε then the whole edge area is added into
the joint area and the two critical points that are the endpoints of this edge
are merged together. If a joint contains sinks, this means that some geometric
details, such as fingers, are not fully captured, because of the threshold. Such
joints are indicated as improvement. Edge areas from the edge not contained in
the joint areas are called bones.

An edge area E which has a sink at the end pEe is treated in a special way since
only the pEs is a joint endpoint. However, if the |ADFt(pEs )− ADFt(pEe )| < 3ε
the whole edge is added to the edge area.

All the sink edges are integrated into the joint. This kind of edge is defined
recursively as an edge that has no brother edges and its parent is a sink edge
or it has no parent. For the parent P and the brother B the critical points are
shared in a way that: pPe = pEs and pBs = pEs .

In this way we get a graph structure with the bones being the edges of the graph
and the joints being vertices. An edge is incident with a vertex if its Reeb edge
area have joint areas belonging to the joint areas corresponding to this vertex.

5.5.4 Integrating Joints and Bones from Different Reeb
Graphs

As described, the algorithm produces a skeletal structure at a single LOD, but it
is possible to go to a finer level of detail by refining the improvement joints: The
structures from two Reeb graphs G1, G2 corresponding to different parameters
t1 > t2 are merged together in the following way. If there is a new bone from G2

that has both endpoints at the same improvement joint area from G1 then this
edge is grafted onto that improvement joint. The bone area is taken off from
the joint. If the bone disconnects the joint then new joints are created and the
edges are carefully connected to their incident joints. Refinement is illustrated
in Figure 5.5.

The operation of merging new Reeb graphs with the existing structure can be
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Figure 5.5: Ilustration of the process of merging two different graphs. Joint
areas on the mesh are marked black. Improvement joints are red, regular joints
blue, and bones yellow. The top left coarse mesh is connected with the bottom
left one. From the detailed mesh only those edges are taken which belong to
the improvement joints area (middle and bottom right).

repeated with gradually smaller values of t, until we have no improvement joints
or up to the desired level of detail.

5.5.5 Defining the Final Skeleton and Segmentation

The geometry of the skeleton is computed as follows: For each joint we calculate
the center of mass of the joint area, which we call the joint center, and then we
connect to it the incident bones. If we are at a one-parent-many-children joint
then it looks more pleasant if the joint center is moved towards the parent, so in
that case we calculate the joint center as the center of parent joint area. The
parts of the skeleton corresponding to the bones are the centers of the level sets.
However, the bones need to be connected to the joint: The parts corresponding
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Figure 5.6: Segmented poses of the Armadillo. On the top, the segmentations
have been created from a coarse skeleton (t = 1,κ = 0.04) and below we see the
result after refining the improvement joints (t = 0.25). Note that there is some
noise added to the last pose of the Armadillo to demonstrate insensitivity to
noise.

to the joint areas of the edges are a weighted average of the centers of level sets
and the joint center. The closer we are to the critical point the more position
of the joint center counts so finally for the critical point the position is equal to
the position of the joint center.

When doing segmentation, we integrate some of the joint areas with the bone
areas. If the joint connects only two bones then there is no branching at this
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Figure 5.7: Skeletons produced for different meshes with t = 0.5 and κ = 0.04
drawn on top of the ADF for the mesh. Improvement joints are red, regular
joints blue, and bones yellow.

level of detail. In that case those two bone areas and the joint area are connected
together into one segment. The joint area is also integrated into a bone area if it
has only one bone connection. In the one-parent-many-children case we connect
the joint node to the parent bone area. In other cases we leave the joint area
as a separate segment.

5.5.6 Parameters

The level of detail can be controlled by choosing the t and κ values. Especially
setting the t for the basic skeleton is important as new edges can only be inserted
into a joint that is marked as an improvement area. Those areas are detected if
there are maxima inside. For bigger t, the ADF tends to have less maxima than
for smaller values of t. κ controls whether features that are not very thin, like
humps, can be transformed into bones. Such a feature would usually produce an
edge of the Reeb graph with a small difference between minimal and maximal
function values, compared to thin features.
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The other measure of level of detail - the feature length - is controlled by the t
for the smallest added skeleton.

The described parameters are not shape specific but rather general. For a de-
fined set of parameters, all of the shapes can be processed by the skeletonization
algorithm. Then the results can be the base for other geometric tasks - for ex-
ample as a good similarity measure between the shapes.

5.6 Discussion and Future Work

We have proposed the ADF as an effective tool for shape analysis. It is gov-
erned by only one parameter, feature scale, which is arguably indispensable, and
its construction requires nearly nothing more than a framework for computing
eigenfunctions of the Laplace Beltrami Operator. Thus, it is also simple. We
have also explored the application of the ADF to the related tasks of skeletoniza-
tion which is shown in Figure 5.7 and segmentation which is shown in Figure 5.6.
The result is an algorithm which has a controllable level of detail, insensitivity
to noise and invariance to scale, rigid transformation and pose invariance. The
last properties being inherited from the ADF.

In the future, we would like to explore other applications of the ADF. For
instance matching features extracted as ADF maxima between shapes, and pa-
rameterization of shapes.
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Reeb Graphs have proven to be a useful tool for analyzing shapes,
especially when using functions related to meaningful geometric prop-
erties. Although some of the topological shape characteristics are
function invariant, the function might be seen as a lens through
which we look at shapes and the Auto Diffusion function is a lens
with continuously changing focal properties. Depending on the time
parameter, features of different scales can be spotted. This work
aims to make use of this continuous multi-spectral property. We
trace the evolution of Reeb Graphs obtained through the Auto Dif-
fusion Function at a given time, while continuously changing the
time parameter. Information collected through such tracing can be
useful for many shape analysis tasks. We show an application where
salient shape regions of different scales are retrieved.

6.1 Introduction

A lot of recent work in the shape processing community aimed at finding shape
descriptors which are able to reveal the shape’s general structure in an intuitive
way. The intuitiveness can help in the computer user interaction when perform-
ing shape retrieval tasks such as searching for shapes having similar subparts or
analyzing the structure diversity of the set of shapes within a given class.

Understanding the shape structure can be supported by studying scalar func-
tions defined over the shape [17]. It can be seen as a way to capture the main
shape features, for example through a Reeb Graph, which encodes the connected
levelsets of the function into a graph structure. One function, however, might
not be enough to capture all information about the shape. It is good to be able
to combine information from many functions like in [20], where information
from two Laplace Beltrami eigenfunctions is coupled together. In this article we
present a method to integrate the information from a continuously parametrized
family of functions. We achieve that through observing the evolution of a Reeb
Graph while continuously changing the function.

The study of diffusion process on a shape resulted in many sound methods for
extraction of meaningful pose invariant geometric features. Analyzing shapes
by looking at heat diffusion from a point to itself was previously done either
by fixing the points and changing time values which is known as Heat Kernel
Signatures [143], or by considering a specific time value and looking at function
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on the mesh known as the Auto Diffusion Function [54]. Our method combines
both of these approaches by tracing the evolution of Reeb Graphs when changing
the time parameter of the ADF.

We also introduce a simple algorithm for establishing correspondences between
Reeb Graph edges through voting.

Matching edges of Reeb Graphs across the timescale leads to an application
where the salient shape regions can be discovered together with the scale they
belong to.

6.2 Related Work

6.2.1 Salient Features

The saliency approach usually appears in the context of the efficient shape
retrieval or shape matching. It might be related to different geometric features
such as: local shape descriptors evaluated at given points [55,132], shape views
[83], lines [23], or shape parts [50]. However, the general idea is similar: to chose
a small subset of features, such that the complexity of solving the given problem
can be decreased while keeping the performance at a similar level. The whole
idea stems from the fact that many features do not contain any new information,
so sparser sets of features can be used.

There are two approaches of evaluating the saliency with respect to a given
feature. One of them is to measure their performance on the task they were
intended to work for. The saliency here is identified with the best retrieval
power performed on some training database [49,83,132].

The other approach is to connect feature saliency with geometric properties
of the shape. A lot of work is based curvature related measures. [84] define
mesh saliency in a scale-dependent manner using a center-surround operator on
Gaussian-weighted mean curvatures. In [55] salient points are selected according
to the uniqueness of their descriptor values; the descriptors are the volumes of
the intersection of a ball at given points with the shape, calculated at different
ball radii. Work of [50] performs an extraction of the salient geometric regions.
Basic regions are constructed through fitting a quadric. Then they are merged
as long as the saliency measure is increasing. This measure is combined from
the curvature and area of the regions together with the variance of the curvature
and number of the curvature local extrema. Authors aim to match shape parts,
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which are numerically or topologically dissimilar, but approximate similar re-
gions. Our approach might be seen as orthogonal to theirs (see fig. 6.1). We
are more interested in general shape more than the local surface details. Many
methods which rely on the distinctiveness and variability of curvature measures
fail when a surface does not vary too much because of the lack of characteristic
feature points. In some shape parts, like tubular regions, there might be no
points of distinctive curvature characteristics, but those points together form
an interesting part.

[40, 142] take the maxima of the Heat Kernel Signatures taken at a spe-
cific timescale. The most persistent are chosen, using the persistent homology
method, when the filtration is given by the ADF function at a given scale. [142]
picks the maxima points at high timescale and chooses the most salient ones
as the base feature points for finding correspondences. [40] also uses the idea
of the of the heat kernel signatures, but a small timescale is used, and then at
the most persistent points, the heat kernel signatures are evaluated to form a
feature vector used further for shape retrieval. Although persistence diagrams
are stable [35], the location of the persistence points themselves might change
drastically due to a ’winner takes all’ scheme: if two maxima are to be merged
the smaller one always dies even if it is just slightly smaller than the winner.
A more accurate approach with provably stable results was presented by [137]
in the field of segmentations. Instead of cancellation merging of the maxima
influence areas occurs. Here, again, we have a situation where the calculations
are performed at a given timescale. Our approach is similar in this manner
that rather to taking specific maxima points of a function, parts of a surface,
which belongs to the same topological areas with respect to heat kernel related
function, are used. In our case the Reeb Graph Edges are taken, which allows
us to extend analysis to more than sphere-like topologies.

6.2.2 Skeletons and Segmentations

Our work is related to skeletonization and segmentation but we do not perform
a segmentation which partitions the into disjoint regions, as our regions can
overlap. Also, it cannot be considered as a hierarchical segmentation - overlap-
ping is not limited to inclusion, but features of one scale can cross the borders
of features of other. We think that segmentation is not required for the partial
shape retrieval applications and it is too constrained as it does not allow to have
overlapping regions.

The work on segmentations of Golovinsky et al [59] and later by Chen et al [33]
suggest that very often there is more than one good solution to the segmentation
problem both when considering the placement of the cuts between different parts
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Figure 6.1: Starting level sets of the most edges with the highest total length
are shown. The color indicates the best scale, which ranges from coarse (green)
to fine (black). Note that the division in our method is not always done along
the highest curvature but rather due to the general structure of the mesh.

the decision if some parts should be treated as separate.

Some multilevel skeletonization methods aim to extract features at many scales.
The skeletonization method related to the medial axis transform was done by
[56]. Anther approach [54] was to create the skeleton by integrating together
Reeb Graph of ADFs computed at several scales. It starts from the level of the
coarse timescale and inserts new edges into the skeleton if the mesh occupied
by them was not taken by any edge, and if the edge length was big enough.

Like in the case of segmentations, one skeleton might not be enough to describe
the shape when it contains multilevel information. A sticking out knee or a hump
of armadillo or camel can be seen as an example of ambiguity situation that
sometimes happens. The decision whether it should have its own representation
in the skeleton or not is usually made by a skeletonization algorithm, and very
often depends on the protrusion’s size or its position within other shape parts.
So, in one case the hump is created, and in another case, which has just a
slightly smaller hump, it is not. Also details which are usually not included in
the skeleton might be of interest for many shape retrieval methods.
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6.3 Background

In this section we briefly describe the main concepts of the methods we build
on: Reeb Graphs and the diffusion process on a manifold. More details can be
found in the related literature.

6.3.1 Diffusion Kernel

Given a manifold Ω, the diffusion kernel K(x, y, t) : Ω×Ω×R+ → R+, or heat
kernel, is a fundamental solution to the heat equation:

(∆x + ∂t)u(x; t) = 0

It can be evaluated [124, page 32] in the terms of Laplace Beltrami Operator
eigensolutions as:

K(x, y, t) =

∞∑
i=0

e−λitφi(x)φi(y)

The kernel indicates how much heat from point y is seen at point x after time
t of the diffusion process. [143] and [54] propose to take y = x which leads to a
function defined on the Ω×R+ domain and describes how much heat from point
x remains at the same point after time t. [143, equation 4] fixed the point x and
defined the R+ → R+ function to be the Heat Kernel Signature at a given point
x while [54, equation 1] fixed the time value t and defined the Ω → R+ as the
Auto Diffusion Function at a given time t, which was further analyzed through
Reeb Graphs.

In order to be able to compare the diffusion values for shapes with different sizes,
and to be able to compare the values across different times, normalization is
necessary. We divide the function values by the heat trace at a given point [143]
which is equivalent to the integral of the value over the whole surface. To
get scale invariance, division of the time parameter by the first eigenvalue is
used [54]. So, for Reeb Graph computations, we use the normalized values of
the Auto Diffusion Function:

ˆADF t(x) =
ADF t(x)∫
Ω
ADF t(x)

=
K(x, x, t

λ1
)∑∞

i=0 e
−t λiλ1
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6.3.2 Reeb Graphs

Given a manifold Ω and a Morse function f : Ω → R, the Reeb Graph [19]
is a quotient space of Ω × R defined by the equivalence relation (p, f(p)) ∼
(q, f(q)) ⇔ f(p) = f(q) and p and q are in the same connected component of
f−1(f(p)). Reeb Graphs trace the evolution of the function level sets defined
on a manifold. Nodes of the Reeb Graph correspond to the critical points of the
functions, and edges represent connections between them.

Many times we refer to the Reeb edge length and what we mean by this term
is the difference of the function values evaluated at the endpoints of the edge.

6.4 Matching Sequence Continuously Parametrized
Reeb Graphs

6.4.1 Reeb Graph Matching

It is important to remember that a Reeb Graph is more than a simple skeleton,
as all points of the surface can be identified with a Reeb Graph structure. This
means that given two Reeb Graphs of the same shape, we can identify two edges
of a Reeb Graph through a vertex. This kind of identification casts a vote on the
correspondence of those edges. If we have more than φ > 50% of votes from the
first edge to the second and vice versa, we establish a correspondence between
them. Threshold φ being more than 50% guarantees that we have bijection
between edges with an established correspondence.

The voting approach is suitable if the function that generates the compared
Reeb Graphs does not change too much. We can assume that this happens when
we sample the time parameter densely enough. To assume further correctness,
which might be violated by plateau regions [137], edges with too small length
are automatically set as unmatched.

We do not consider false negatives to be a problem. If there are edges which in
reality are corresponding and remain unmatched by our voting process, it means
that they change too much with the parameter. This usually happens with edges
of a small edge length. The sensitivity of the edge tracer can be controlled by
specifying the density of sampling the time and by the φ parameter.

False positives - edges which cover the same part of the shape but are not corre-
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Figure 6.2: ˆADF t = 0.05, 0.5, 5 and Reeb Graphs with positions of the nodes
placed at the centers of the corresponding level sets. Stripes indicate the level
sets of the function and their density shows how much the function changes on
the mesh.

sponding topologically - may happen if we do not sample the time scale with a
proper density. In order to deal with such situations we check the graph’s con-
sistency after each matching (see also [62]). First, we remove from the skeletons
all edges which were not matched in the voting stage. While removing edges, we
merge their endpoints so the connectivity of the graph is kept. The result is two
skeletons with a correspondence between their edges. Then a test is performed
which checks if adjacent edges from one graph are mapped to adjacent edges of
the other graph (edges to both endpoints incoming and outgoing from both end-
points). If the result of the test is negative, we construct an intermediate Reeb
Graph, and perform recursive attempts to find the mappings until all interme-
diate graphs are consistent. Then the final matching is done by composition of
the intermediate maps.

6.4.2 Evolution Track

We sample the time parameter in a logarithmic scale and establish the cor-
respondence between the incident Reeb Graphs obtained by ˆADF t functions
computed at the sequence of time values. We identify the edges which were
matched across the timescales and we call such identified set of edges as the
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diffusion-evolving Reeb edges.

For our application we collect information about the ˆADF t values at the end-
points of the edge at each time step. If a greater level of distinction is needed,
there is also possibility to include other types of statistics [110] about the part
of a surface identified with the edge. Also, some additional information can be
provided - for example whether the edge has a sink or a source at one of its
endpoints.

6.5 Discovering the Best Scale

When looking at the plots of the normalized Auto Diffusion Functions and their
Reeb Graphs, we can see that at some time values the features of one scale are
more distinctive while on other scale they disappear. When tracking the Reeb
Graph through time, one can identify the time value at which the length of the
edge reaches its maximum.

Definition 6.1 best scale of a diffusion-evolving Reeb edge is the time at
which it reaches a maximum length.

Definition 6.2 total edge length of an edge is the length of a diffusion-
evolving Reeb edge at its best scale.

Definition 6.3 best scale region of the mesh is the surface corresponding to
the diffusion-evolving Reeb edge at its best scale.

Usually, one can detect a huge number of best scale regions for a given shape,
which is a consequence of many evolving edges (see figure 6.2). Some of them
are not very informative when it comes to the description of the shape. With
respect to the diffusion-evolving Reeb edges there are two types of importance
measures of the edge which can also be seen as the edge ’persistence’ - one is
the lifetime of a given edge and the second one is the total edge length.

Definition 6.4 The (θ, σ)-salient shape regions of the shape are the best
scale regions of the diffusion-evolving edges of the shape with lifespan between
tb and td such that td

tb
> θ and total edge lengths > σ
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6.6 Experiments

For each shape we are to analyze we perform a tracking. The initial time is
t = 0.01 and we take the new time value by multiplying the recent by 1.1 until
we have t = 10, which results in 73 time samples. For all of them we calculate

ˆADF t like in [54] and extract the Reeb Graphs. The matching procedure is
performed between consecutive time steps with φ = 0.56 and for all matched
scales we compute the best scale, total edge length and the best scale region.
Then we can filter out the edges by using thresholds θ = 1/2 and σ = 0.01

Figure 6.3 shows 20 most best scale regions corresponding to the diffusion evolv-
ing Reeb edges which have the highest total length. From these examples we
can see that the total edge length can intuitively be identified as the protrusion
level of a region while the best scale as the feature size with respect to the shape
size.

We have also plotted (fig. 6.4) the values of: best scale and total edge length for
5 different classes of shapes. From the plot we can see that some of the points
formed clusters. Moreover we can see that some of the parts share similarities
across the classes - for example teddies and armadillos in area (2,40), women
and armadillos (4,25) or dogs and horses (5,20). We can also see from this plot
that there is a tendency that the diffusion-evolving edges with the highest total
edge lengths have also a long lifespan.

Finally to demonstrate the usability for partial shape retrieval, in our last ex-
periment we have calculated the descriptors for around 50 shapes. Then we
collected all of the subparts in the database and queried according to the prox-
imity in total edge lenght vs best area space.

The best timescale (BS) was coded as an index of a sample (ranging from 0 to
73). To combine it with total edge length (TEL) we computed the distance as
follows:

d(i, j) =
√

(TELi − TELj)2 + α(BSi −BSj)2

We set α = 64. Some examples of salient region queries are shown in figures
6.5, 6.6 and 6.7.

6.7 Conclusions and Future Work

In this article we have presented how to match the Reeb Graphs of continuously
parametrized functions. We introduced a method which is able to extract the
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salient shape regions at their best scale by tracking evolution of the Reeb Graph
while changing the time parameter for the Auto Diffusion Function. We have
shown that similar regions can be retrieved by searching for the evolving edges
with similar values of total edge length and the best scale.

We think that the results are promising. Still, a lot of further work can be done
to expand the method. The matching procedure relies on common sense heuris-
tics, it would be good to have more theoretical guarantees about its correctness.
The births and deaths of diffusion-evolving Reeb edges resembles the barcode
descriptor proposed by Carlsson et al [27]. They can also be plotted as a per-
sistence diagram with birth and death times as coordinates, however diagrams
are far from being stable. We believe that finding a topological structure whose
elements can be matched across continuously changing parameter with a stable
persistent diagram would be a great achievement.

In this work, we only treated the edges as independent parts. It is also possible
to add second order information: the parent-child relationships between the
evolving edges, which can be inherited from the relationships taken at a given
Reeb edge. Also more advanced relationships which were not possible for the
Graphs can be considered, for example up whether two edges which correspond
to different scales are located at the same places of the mesh. This kind of
enhancement results in something much more general than a skeleton.
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Figure 6.3: 20 best scale regions having the highest total edge lengths for homer,
camel, elk and torso. The color indicates the scale of the space which changes
from red (t = 10) to the yellow (t = 10).
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Figure 6.4: Best scale and edge length of evolving Reeb edges taken from the
shapes of 6 women(red), 4 armadillos(blue), 4 dogs (cyan), 5 horses(green), 3
teddies(magenta). The clusters can be identified with corresponding body parts
and area they cover with the variability of the proportions. The size of the
bubble indicates the lifespan of an edge. Time sampling is done from t = 0.01
(0 on the scale axis) and then multiplied by 1.1 until it reaches 10 (72 on the
scale axis).
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Figure 6.5: Retrieval of regions similar to horse’s leg from a set of the salient
regions of 67 shapes (’ant1’ ’bird1’ ’bird2’ ’bird3’ ’bird4’ ’bird5’ ’bird6’ ’bull’
’camel’ ’child1’ ’child2’ ’child3’ ’cow1’ ’cow2’ ’cup1’ ’cup2’ ’cup3’ ’cup4’ ’dar1’
’dar2’ ’dar3’ ’dar4’ ’dog1’ ’dog2’ ’dog3’ ’dog4’ ’doll’ ’donkey’ ’duck’ ’elk’ ’fish1’
’fish2’ ’giraffe’ ’homer’ ’horse1’ ’horse2’ ’horse3’ ’horse4’ ’horse5’ ’man1’ ’man2’
’pig1’ ’pig2’ ’plane1’ ’plane2’ ’plane3’ ’plane4’ ’plane5’ ’plane6’ ’sci1’ ’sci2’ ’sci3’
’small’ ’spider1’ ’teddy1’ ’teddy2’ ’teddy3’ ’teddy4’ ’teddy5’ ’teddy6’ ’torso1’
’woman1’ ’woman2’ ’woman3’ ’woman4’ ’woman5’ ’woman6’)

Figure 6.6: Retrieval of regions similar to woman’s head like shapes from a set
of the salient regions of 67 shapes

Figure 6.7: Retrieval of regions similar to plane’s wing from a set of the salient
regions of 67 shapes
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7.1 Introduction

It seems that great shifts in how human beings use technology often create a
push for changes to the way we divide work between human beings and technol-
ogy. Chemical film has all but disappeared and almost everybody takes digital
photos which they proceed to put online for easy sharing with friends and fam-
ily. Together with a number of other trends which have contributed to the vast
amount of online and locally stored digital photos, this has made automatic
recognition of people in images an important research topic - in spite of the
fact that recognition is one of the tasks generally left to human beings, since
we excel at recognition. We believe that recognition of the style of a 3D object
is something that is also likely to be increasingly useful in the foreseeable fu-
ture. Optical scanning methodologies make the generation of 3D content more
feasible than previously, and it is easy to envision digital artists wanting to com-
pile content for a 3D scene or composite object being in need of a method for
searching for an object not just of a specific function but also a specific style.

The scope broadens further if we look beyond man made objects. It seems clear
that, say, the various limbs of a specific human being have some commonality
that separate them from those of another person. Thus, one could argue that an
individual represents a style. Style in the context of biological variation is some-
thing that we explore in the work presented here. Specifically, we investigate
whether we can define a style class for the teeth of a person.

Unfortunately, style is subtle and we do not hope to be able to automatically
extract a description of style from 3D objects. Furthermore, we avoid using
explicit ways of describing style. Recognizing the style of an object based on
some textual or otherwise encoded information might be a feasible approach in
some cases such as, for instance, recognizing to which order a given classical
greek column belongs. But, relying on explicit information about a given style
would require us either to solve the above problem of automatically extracting
style information from shapes or to rely on human beings to encode style - a
task that we believe would be both tedious and difficult.

Instead, we rely on examples in the work presented here. This requires that
we have example (training) objects for each style. It also requires that we have
an orthogonal class of functions, since, as we discuss below, the function of the
object (what it is) clearly also has a profound impact on shape. Thus, our work
can be summed up as example based classification of digital 3D shapes in both
style and function categories.
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7.1.1 Understanding style

Human beings excel at the task of recognizing objects, and, in fact, we are
also very good at detecting the style of an object. However, an operational
description of style that would allow a computer to detect the style of an object
seems to be elusive, at least in general. On the other hand, it is encouraging
that humans seem to be able to intuitively recognize the style of an object, and
this is why we believe that it is feasible to attack the problem using statistical
methods. Our hypothesis is that by using statistics of shape descriptors, we can
compute properties of shapes and then train a classifier to discriminate between
styles based on these descriptors.

But, there are two significant obstacles that need to be recognized and dealt
with before proceeding.

1. Style is not a purely local or global effect. If only we could say to which
parts of an object’s geometry style has an influence, designing descriptors
would be much easier. Unfortunately, that does not seem to be possible.
If we think of style as being akin to a gene, the effect on the object’s
phenotype (metaphorically speaking) could be to the proportions of its
parts, whether its edges and corners are sharp or rounded, whether smooth
parts are curved or flat, whether it is embellished or not, or whether
the surface is smooth or rough. Thus, we cannot simply use local shape
descriptors and assume that these capture all the style information.

2. Perhaps a bigger problem is the fact that style is by no means the only
thing that determines the shape of an object. Conversely, the function of
the object would normally be the biggest contributing factor. By func-
tion we understand what the object is recognized as, i.e. the noun one
would generally associate with the object, e.g. car, table, chair, tooth.
Using a signal processing metaphor, the style is a, sometimes faint, signal
superimposed on the stronger function signal.

From the first obstacle, we conclude that we need to use a broad range of
descriptors in most cases and that we need to use descriptors which describe both
local and global properties of shapes. From the second obstacle, we conclude
that we cannot hope, in general, to achieve style discrimination if we do not
take function into account. On a very abstract level, our approach is to first
gain the ability to compute distances between pairs of objects in "descriptor
space". This is a more general approach than always requiring that we have
shape descriptors as, say, a multidimensional vector because we can sometimes
compute a meaningful distance between two shapes directly (e.g. warping one to
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s0f0 s1f0 s0f1 s1f1 s0f2 s1f2

s0f0 0 0.3 2.2 2.4 3.5 3.7

s1f0 0.3 0 2.3 2.2 3.8 3.6

s0f1 2.2 2.3 0 0.2 4.0 4.4

s1f1 2.4 2.2 0.2 0 4.3 3.8

s0f2 3.5 3.8 4.0 4.3 0 0.4

s1f2 3.7 3.6 4.4 3.8 0.4 0

Figure 7.1: A matrix of exemplar distances between the shapes. Objects with
the same function are much closer than the ones sharing the same style

the other) but not easily fix a set of coordinates for the two shapes in descriptor
space. Given a set of objects where some objects share style and others function,
a matrix of such distances might look as illustrated in Figure 7.1.

In this example style is indeed a fainter signal than function, and if we naively
assume that the object with minimal distance to the knobby circle is another
knobby object we are disappointed. As we see in Figure 7.2 it is the plain circle
that is closest and then the knobby cube.

style s0 s1 s0 s1

distance 0.2 2.2 2.4 3.8

Figure 7.2: Style classification with a naive approach if we forget totally about
the function and take into account only style. The shape would be classified to
s0, as those shapes seem to be closer than shapes having other styles.

Of course, this example is completely contrived and the distances made up.
However, it corresponds well with our experience as our results will show, and
if we do take function into account, we fare much better. Say, we have a query
object of a given function and say we exclude objects of the same function,
then for a group of objects that all share a common function (different from the
function of the query object) the object(s) in that group which has the same
style as the query object are likely to be closer to the query object than the
objects which have a different style – in addition to having a different function.
At least this is our hypothesis which is illustrated in Figure 7.3.
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f0

style s1 s0

distance 2.2 2.4

f2

style s1 s0

distance 3.8 4.3

Figure 7.3: Because we grouped shapes to have the same function the difference
in the distances is mostly caused by the style effect so the query shape is classified
correctly as having the style s1.

In summary, our hypothetical model is that

Shape = Function + Style + Noise (7.1)

where addition should be construed as a more abstract composition operator. In
the formula above, we readily admit that function probably has the greater in-
fluence. Taking that into account, we believe that we can approach the daunting
task of creating a statistical model for style.

7.1.2 Related Work

Style and function separation in the context of man made three dimensional
shapes was recently mentioned by Xu et al. [159], where the style of an object
is defined by the proportions (anisotropic scaling) of its parts. It seems to be a
very intuitive and reasonable approach but this does not exhaust the subject.

In many shape processing articles, even if the problem of style is not addressed
in an explicit way there are situations where the space of given shapes is broken
down into two different independent classification systems. In the deformation
transfer [141] different kinds of animals can take similar poses, in which case it
is quite easy to localize them, as the type of animal is described by an intrinsic
metric of the shape surface, and the pose is its embedding in three dimensional
space. The idea of geometric texture [4] fits within this framework as it aims to
separate overall shape from its geometric details. Application of example based
priors for surface reconstruction [52, 116] can also be seen as imposing style to
the object.
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In the image processing field, Hertzmann et al. [60] presented a method that,
when given three images: one with style A and function , one with style B
and function , and another one with style A and function , creates an image
with style B and function . The same concept has also been explored by this
group in the field of curve styles [61]. Other related problems can be found when
dealing with images of fonts, separating lighting conditions from the scene and
distinguishing between a spoken language and the accent. All those three cases
were examined through bilinear models by Tenenbaum et al. [147].

Tenenbaum’s framework requires establishing one to one correspondences both
for the style and for the function - for example fonts are compared through
corresponding pixels of their bitmaps. In general, for different types of shapes
obtaining such correspondences can be difficult. Similar corespondances need
to be established across the styles for Hertzman’s work. Our approach does
not require any correspondence finding, which is usually costly and sometimes
outright impossible, like in the problem of registering a table to a chair [57].

In general, if the feature space is available, many well established statistical
methods can be used for metric learning. For example Linear Discriminant
Analysis [96], which modifies the feature space such that, for a given training
set containing objects from different classes, the inter class variance is maxi-
mized and intra class variance minimized. A similar approach was also used
by [157] which makes it possible to define similarity and dissimilarity relation-
ships between selected pairs of objects. In a similar manner, Giorgi et al. [57]
customize a way of combining a set of distances between shapes so that user
defined similarity is captured. In this work the metric is modified in order to
reflect the user defined constraints of nearby or far away shapes. The final met-
ric is taken as a maximum distance from distances given by all of the metrics,
however, the particular metrics are scaled according to a similarity feedback
provided by the user.

For the task of finding the replacement of an object from the one of the most
similar style, a similarity measure needs to be established. As an input to the
algorithm we have many hypothetic distance measures, but we do not know
which one is the most suitable - having such information is indeed equivalent to
solving the initial problem. We asses the relevance of a specific shape descriptor
indirectly as a consistency requirement: dissimilarity or similarity between the
styles should be reflected in a similar way for different functions. A similar
methodology, based on indirect consistency, can be found in [162]. The aim is
to remove incorrect mappings between different views of a scene. The quality
of these mappings is assessed by analyzing the mapping loops which they form.
An inconsistent loop indicates that at least one of the mappings that belong to
it is wrong, while a consistent loop means that all mappings are likely correct.
Having evaluated the correctness of many loops the bad mappings are spotted
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through loopy belief propagation. A similar approach is performed by [106] in
the space of shape maps.

7.1.3 Contributions

We introduce a framework for dealing with style by validating how given de-
scriptors relate to style within the context of a given dataset (section 7.3). As
far as we know there was no general framework for such problem, especially
when no parameter space is available. We also show how we can deal with style
classification, even if we cannot find the descriptors which are purely responsible
for the style, by using additional function information (section 7.2).

We propose a statistical model for style which takes both function and style
into account. Using this model, we can sort objects according to both style and
function provided we have example objects for each style and each function.
Operationally, this allows us to achieve some tasks. For instance, automatic
sorting of chess pieces according to the type of chess and according to the set of
pieces to which it belongs. We also solve the task of finding a tooth model which
can be used for the design of a prosthesis to replace a missing tooth – even if we
do not have a very similar tooth model in the patient’s mouth (section 7.5.3).

The general methods are introduced in sections 7.2 and 7.3. In section 7.4 we
present the descriptors used for our experiments and in section 7.5 we show the
experiments performed on tooth and chess datasets and analyze the obtained
results.

7.2 Style and Function Classification

In this section we will show how information about style and function hidden in
the same metric can be decoupled. The problem is illustrated in figure 7.4. We
assume here that we have a dissimilarity measure that was produced by some
kind of shape descriptor and contains both functional and stylistic information.
One example of such a measure was given in the introduction section (see figure
7.1). Based on this information we want to be able to detect the most likely
style and the most likely function of a query shape. Because we do not have
explicit descriptions of the style or of the function, we assume they are given by
the examples through the training set T .
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Figure 7.4: Diagram shows the task of classifying a shape according to style and
function. Note that in this framework we need example shapes which serve as
definitions of styles and functions and a way to measure the distances between
the shapes.

7.2.1 Likelihoods Computation

In this section we introduce the likelihood of some shape being of given style
and function, which is based on the distances of the unknown shape to shapes
from a training dataset. We want to formulate it in a way that the function
effect is eliminated when assessing the style and the style effect is eliminated
when assessing the function.

We denote the shape of style s and function f as Ssf and the set of shapes of a
function f and style different than s as S−sf .

Our main observation here is that if we have in the training set shapes which
share the same function but have different style, then it is possible that we may
factor the function out as it was shown in figure 7.3.

For example if the distance to a S1
a is smaller than a distance to a S2

a, we may
say that the unknown shape is more likely to be of a style 1 than to be something
else.

The partial likelihood ls=ji (x : k) of unknown shape x to be of style j, when we
have two example shapes of the same function i of which one Sji is of a style j
and another one Ski is of a style k other than j, is equal to:
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shape S0
c S1

c S3
c S3

c

j 0 1 2 3
d(S3

s , S
j
c ) 2.4 2.7 2.1 2.7

ls=j1 (S3
s ) -0.2 -0.9 0.8 -0.9

Figure 7.5: Likelihoods calculated within a training set of circles for a query
object S3

s . The biggest value is reached when the distance is the smallest

ls=ji (x : k) = d(x, Ski )− d(x, Sji ).

In our training dataset T , for a given function i, we may have more than just
one shape not being of a function j so we take the mean plus the minimum of
all of the partial likelihoods:

ls=ji (x) = mean
k∈{−j}:Sik∈T

ls=ji (x : k) + min
k∈{−j}:Sik∈T

ls=ji (x : k).

Note that minimum is equal to the distance to the closest of the known shapes
from function i and style other than j, minus the distance to Sij . If the style j
is the closest of the shapes from that style, then the minimum will be positive,
otherwise it will be negative. The mean value stabilizes the results by taking
into account distance measures of all of the shapes of this function but different
style. So the first term is an average distance of the unknown shape to a shape
from the training dataset having a function i and not being the style j minus
the distance to Sij .

The use of differences of the distances instead of the direct use of distances
is caused by the additive model expressed in the equation 7.1. Because the
distance of two shapes is caused both by functional and stylistic differences, we
want to remove the impact of the function by using the difference of distances
to shapes having the same function but different styles.

Such an approach is based on the assumption that the distance to a shape having
different both style and function properties should be greater than the distance
to a shape being different just with respect to style (or function). Graphically
speaking, if we put two shapes of the same style in the same row and two shapes
of the same function in the same column of a table, it means that the distances
computed across the diagonals would always be greater than the ones between
shapes displaced only vertically or horizontally (see fig. 7.6).
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Figure 7.6: Graphical representation of the diagonal property. The distance on
the diagonal should be greater than the vertical and horizontal distances. In
this way even when the inter-style (vertical) distances are much smaller then
the inter-function (horizontal) distances we are still able to capture the stylistic
difference, when we know function labels.

Definition 7.1 The metric d has a diagonal property on the set of shapes
S = {Ssf : f ∈ F, s ∈ S}, if for any j, k ∈ S and a, b ∈ F we have

d(Sja, S
k
b ) ≥ d(Sja, S

j
b )

d(Sja, S
k
b ) ≥ d(Sja, S

k
a)

Lemma 7.2 If d on S has a diagonal property, then for Sjh ∈ S for all k ∈ −j
we have ls=ji (Sjh) ≥ ls=ki (Sjh)

Proof. Let’s denote the mean part of the ls=ji (x) as ls=ji (x)mean and the
minimum part as the ls=ji (x)min. So we have ls=ji (x) = ls=ji (x)mean +ls=ji (x)min.

For the mean part:

ls=ji (x)mean =

∑
m∈−j d(x, Smi )

|i|T − 1
− d(x, Sji )

=

∑
m∈−k d(x, Smi ) + d(x, Ski )− d(x, Sji )

|i|T − 1
− d(x, Sji )

= ls=ki (x)mean +
|i|T
|i|T − 1

(d(x, Ski )− d(x, Sji ))

Where |i|T denotes the number of shapes in the training dataset that have a
function i. By putting x = Sjh, and having d(Sjh, S

k
i ) − d(Sjh, S

j
i ) ≥ 0 from the

diagonal property, we get:

ls=ji (Sjh)mean ≥ ls=ki (Sjh)mean (7.2)
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ls=ji (x)min = min
m∈−j

d(x, Smi )− d(x, Sji )

= min

(
d(x, Ski ), min

m∈−j∩−k
d(x, Smi )

)
− d(x, Sji )

analogically

ls=ki (x)min = min

(
d(x, Sji ), min

m∈−j∩−k
d(x, Smi )

)
− d(x, Ski )

Applying a diagonal property d(Sjh, S
k
i ) ≥ d(Sjh, S

j
i ) and using the fact that

a ≥ b implies min(a, c) ≥ min(b, c) for any c we have:

ls=ji (Sjh)min ≥ ls=ki (Sjh)min (7.3)

And from inequalities 7.3 and 7.2 we have also: ls=ji (Sjh)min ≥ ls=ki (Sjh)min

In order to gather information from all of the training functions, we take the
mean value plus the maximum of all the styles for which in the training set there
is a style j and some shapes not being of style j.

ls=j(x) = max
i:Sij , S

i
−j∈T

ls=ji (x) + mean
i:Sij , S

i
−j∈T

ls=ji (x).

Here, by taking the maximum, we are favoring the function for which the style
j is most likely. The mean is again added to get the distance information from
all known styles.

There might be cases when we do not have enough information in the training
set for establishing likelihoods. This happens when there is no set which has
a training representative for the style j and for some shape which is not of a
function −j. In such a case we set the likelihood to zero.

The whole problem might be inverted and the likelihood computation of "x being
the function i" is done in an analogous manner. Then for a given x the cost of
assigning to it style j and function i is equal to: ls=jf=i(x) = lf=i(x) + ls=j(x).

7.2.2 Exploiting Uniqueness

If the dissimilarity measure on the given dataset has the diagonal property then
the likelihood will never fail to show the style and function of an unknown object.
In many applications this is not the case: for at least some percentage of style
and function pairs the property will be violated. So the correct style or the
correct function will not get the largest likelihood score. If we however address
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Figure 7.7: Diagram shows the task of sorting the query shapes. Each shape
can be assigned only to one label. This constraint makes the task much easier
than when treating all query shapes separately.

the problem not in separate queries but assume that we need to assess the style
and function for a bunch of shapes (figure 7.7) of which we know that there are
no repeating shapes in our query then our results can be much improved.

This approach follows a general concept that a uniqueness constraint makes
the problem much easier. We use the likelihoods as negative costs and solve
the minimum linear assignment problem [25] for the unknown labels and loose
shapes.

7.2.2.1 Multiple Step Assignment

An assignment problem with the costs defined above does not make use of the
information about all of the distances between the shapes. Only information
about the distances to the training shapes is taken into account. It might be
an advantage when we do not want to compute the distances between all of the
shapes, but if we already have computed all of the distances we may want to
include them to make our algorithm better.

If we are able to locate the shapes for which we can expect that the initial
matching went correctly we can add those into the training dataset with the
labels obtained by the initial assignment. We do not have an oracle which
tells which pieces were assigned correctly and which were not. If we had such
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an oracle it would also automatically solve our assignment problem. However
with some additional measures we can assume that there are pieces which were
labeled more reliably than the other ones.

In order to estimate the labeling reliability, we calculate the diagonal cost of the
assignment which we define as the average sum of similarities between all the
shapes having the same style or function labels.

Definition 7.3 Let A(S)ji denotes the shape S which has a function label i
and style label j obtained by an assignment A. Then a diagonal cost of such
assignment is:

dc(A) =

∑
A(S)mk

(∑
A(S)j∈−m

k
d(A(S)mk , A(S)jk) +

∑
A(S)mi∈−k

d(A(S)mk , A(S)mi )
)

∑
A(S)mk

(∑
A(S)j∈−m

k
1 +

∑
A(S)mi∈−k

1
)

For a hypothetical unknown shape we might add it for a moment to the training
set with the labels that we got as the solutions of the initial problem. Then as the
labeling reliability we could calculate what is the diagonal cost when assignment
is solved with the use of this piece. However, we discovered that instead of
calculating diagonal costs directly it is better do the inverse assignment, which
is performed by swapping the unknown data with the known, solving the inverse
problem and then calculating the diagonal cost.

It might happen, for example if we know all the shapes of two styles, which
become fully unknown in the inverse problem (fig. 7.8), that we are not able
to find the inverse solution. In such case we take small subsets of data, by
excluding from the problem all but one of the shapes of the style (function),
which for the inverse problem have the style (function) cost undetermined. We
solve inverse subproblems and take the sum of the diagonal costs for all of the
given subtasks, divided by the number of all elements sharing the style and
the function. The smaller the inverse diagonal cost, the more reliable is the
hypothetical assignment of the unsorted shape to its label.

We also added other sanity checks of the shapes and consider the following
properties:

swapping minimum : swap the hypothetical shape label with all other shape
labels in an initial assignment. If the diagonal cost of some of the swapped
assignments is smaller then the initial one, this piece is unreliably assigned.

perturbation persistence : solve two assignment problems as initial but in-
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Figure 7.8: The inverse problem is made from a solution of a direct problem
by exchanging the known information with the unknown. Because the solution
of the inverse problem is not always unique, we instead solve the subproblems
and then calculate their diagonal cost, which then is used to calculate the final
inverse diagonal cost.

stead of original cost use

ls=jf=10i(x) = 10 ∗ lf=i(x) + ls=j(x)

ls=10j
f=i (x) = lf=i(x) + 10 ∗ ls=j(x).

Then if the chess piece is not assigned to the same label as the initial
problem assignment of this piece is unreliable.

In order to minimize bad choices we always take the piece having minimum
inverse diagonal cost and which is reliable according to the above reliability
criteria. We add it to the training dataset and repeat the assignment and
addition of the most reliable pieces until there is no reliable piece to be added.
Then we use the assignment from the last step as the final assignment.

7.3 Consistency Learning

In this chapter we want to solve a problem which can be seen as a reverse to
the one solved in the previous section. We have an incomplete set of shapes of
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Figure 7.10: The second step of the replacement finding task. User comes with
exapmles of a style and asks for a shape of that style and a function that was not
present in the example shapes. The candidates are selected from the database
and ranked according to estimated similarity to the queried style.

some style and we want to find the missing one. Our task is to search in the
database of available shapes for the one which is most likely to be of a given
style (figure 7.10).
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We assume here that the function is known or can be easily detected. In many
contexts function can be given explicitly: for example the type of a tooth is
usually associated with its position in the mouth. Also, this is a sound ap-
proach when function is much more distinctive and we can determine it easily
by using standard shape retrieval methods, as for example it is not so difficult
to distinguish between a table and a chair.

We treat the ‘style space’ in a continuous way. We expect some styles to be
very close to other styles, such that a shape of a given function can be replaced
with a similar style quite well. This approach is especially suitable in a domain
of shapes with some kind of biological variation.

In the previous section we took a good dissimilarity measure for granted. In
general, we might not know it advance. Instead, we have many proposals of
dissimilarity measures di(, ) which can be obtained through different kinds of
shape descriptors Di.

The task is to choose such a measure di or a combination of measures with
which we can distinguish between different styles. This task is related to metric
learning approaches like LDA [96]. But the aim of LDA would be to have objects
of the same style close and those of different style far away. We also require that
the dissimilarity measures should be consistent across different functions.

We can illustrate the problem with the tooth shapes. Suppose a patient has one
tooth destroyed. In order to be able to reproduce its shape, we want to find
in a database a tooth which is mostly similar to the existing tooth he has. We
have a molar missing but because a premolar is still in the patient’s mouth, we
wish to search in our database for a mouth which has the most similar premolar
to the patient’s. From that mouth we take a molar as a template for our new
tooth. This approach assumes that similarity for premolars induces a similarity
between molars.

The tooth replacement example shows that the consistency requirement is nec-
essary as it aids in many concrete tasks – like searching for the best replacement
for some missing data. Here we do not know directly what ‘close’ means, as we
have many metrics but don’t know which one is a correct. Usually a correct met-
ric combination in such a case can be found by giving example pairs of shapes
which are similar and pairs which are dissimilar [57]. In our case we do not have
such information. Instead we can impose the metric consistency requirement:
the distances between shapes having different styles and function A should be
close to the distances of the shapes of the same styles and function B.
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Figure 7.11: Distances between shapes of the same function and different styles.
5 functions are displayed (columns) and two different descriptors (rows). The
top descriptor has consistency 19.35 and the bottom one has consistency 69.27.
Note that the smaller the consistency measure, the more similar should the plots
of different functions be. Data was taken from calculation for three dimensional
descriptors of the chess pieces.

7.3.1 Consistency

In this section we introduce consistency factors which measure the similarities of
distances between styles across different functions. We also create a final dissim-
ilarity measure from different descriptors with the weights assigned according
to the descriptors’ consistency.

Assume we have a set of training shapes Sji , where i = 1..ni indicates the func-
tion and j = 1..nj the style. We also have kn potential dissimilarity measures
dk(, )

Let us take all distances dk(Si1ja=1..nj
, Si1jb=1..nj ,jb 6=ja) between different shapes of

the function i1. In order to be comparable those distances need to be normalized,
which we do by dividing them by the median of obtained distances. This results
in a

(
nj
2

)
dimensional vector of k-distances between all possible pairs of shapes

with different styles and the function i1, which we will denote v(dk, fi1).

For each pair i1 6= i2 of two different functions we can establish the consistency
score csi1,i2dk

with respect to a distance k and function i1 and i2 as the norm of
difference of distance vectors:

csi1,i2dk
=

√√√√ ∑
l=1..(ni2 )

(v(dk, fi1)l − v(dk, fi2)l)2 (7.4)

In order to calculate the total consistency factor (TCFk) for a dissimilarity
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measure k, we take the sum of the differences for all function pairs. Note that
the smaller TCFk is, the more consistent dk is with respect to style.

We construct the final measure by summing the dissimilarities obtained through
different shape descriptors with weights that promote consistency.

Df (x, y) =
∑
k

e(−2
TCFk

mean(TCF )
) dk(x, y)

σdk
(7.5)

where σdk is the median distance from distances dk(, ) between all training
shapes.

7.3.2 Query Based on Consistency Learning

In the training phase, given the database labeled with styles and functions, we
compute the consistency measures from different descriptors and construct a
final metric according to equation 7.5.

In the user phase, when asking for a specific function q we also provide samples
of the style with shapes labeled by functions: Q1, ..Qn. For each such shape, we
measure the distances between Qi and all the shapes from the database sharing
this function. The distances reflect the similarity of the queried style to known
styles and they might be slightly different if the consistency of the final metric
is not perfect. The measure of similarity of the queried style with styles in the
database is obtained by summing Df for different functions.

Da(s = j,Q) =
∑
i

Df (Sji , Qi)

We take from the database the closest style as the one with the smallest D(s =
j,Q), and take the shape Sjq as a replacement of the unknown shape Qq.

We can also go a step further and not take all Df with the same weights.
Having the final dissimilarity measure we compute consistency scores csi1,i2Df
between different functions. These consistency measures can be used in order to
asses what pairs of functions are better correlated. For example two neighbor
upper molars can be more correlated than a molar and incisor. So if a molar
is missing and we have the neighbor molar and incisor, we should give higher
weight for query of the closest mouth with respect to a molar than with respect
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to an incisor. We could either use only the distances with respect to a function
most correlated with the query function, or use the weights according to the
consistency scores:

Dw(s = j,Q) =
∑
i

e

(
−2

csq,i(Df )

meani(cs
q,i(Df ))

)
Df (Sji , Qi)

Both in the training and user phase we need a dataset, with labeled functions
and styles. This can be the same dataset. The queried style needs to excluded
from the training phase as we do not know what kind of data will be provided
by the user.

7.4 Computing Distances Between Shapes

The methods presented in the previous sections are quite general and are inde-
pendent of the descriptors we use. On the other hand the performance of the
method relies on their choice, as if we use descriptors that are totally unable to
capture similarities then the results we obtain will also be of poor quality. For
example using only global descriptors for a dataset with the style being mostly
expressed in local details would not be a good idea.

Note that in this paper we do not require for the dissimilarity measure produced
by our descriptors to have properties of a metric space.

7.4.1 Curves Comparison with Dynamic Time Warping

In this section we explain how distances between oriented curves can be obtained
through Dynamic Time Warping. This is a good example that there are cases
when we have a way of establishing the dissimilarities between shapes without
a general feature space. On the other hand there is always a way to go from a
feature space with coordinates to a dissimilarity measure, by using one of many
available vector norms. So the use of similarity is more general than the use of
the feature space (see also Giorgi et al. [57]).

The curve X is represented as a polygonal chain xi=0..n. The standard dynamic
time warping problem for two curves A and B is to find a sequence of corre-
spondences between their vertices ai=0..n,bi=0..m, denoted as C = cikjk where
ik ∈ {0..n} and jk ∈ {0..m} and satisfying the conditions of:
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monotonicity if cikjk , ciljl ∈ C and ik ≤ il then jk ≤ jl

continuity for incident correspondences cikjk and cik+1jk+1
we have:

ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1

Classical DTW searches for the correspondence with minimal sum of lengths of
vectors vij = ai − bj whose endpoints are defined as vertices indicated by the
correspondence.

dDTW(A,B) = min
C(A,B)

∑
cikjk

∈C(A,B)

‖vikjk‖

The translation invariant version of Dynamic Time Warping, instead of mini-
mizing the sum of lengths of vij, minimizes the sum of lengths of the difference
of vectors vij for two incident correspondences:

dTIW(A,B) = min
C(A,B)

∑
cikjk

∈C(A,B),k>0

‖vikjk − vik−1jk−1
‖

The discrete version of DTW depends heavily on how the vertices are positioned
on the curve, since for a given vertex the corresponding point must be chosen
from the vertices of the second curve.

We use the method of Efrat et al. [45] and transform the translation invariant
DTW into a continuous setting. In such a case we want to represent as ai any
point on a polygonal chain A and for this purpose we extended linearly the
index i ∈ {0...n} to a domain of real numbers 0 ≤ i ≤ n. This is done using
the interpolation of values known at vertices: ai = (λ − 1)adie + λabic where
λ = i−bic

die−bic . As a result vectors vij = ai − bj are also extended to a two dimen-
sional surface defined as the combinatorial manifold V(A,B) = A⊕−B. After
this modification the translation invariant problem can be defined as finding the
shortest monotonous path P(A,B) on this manifold which connects the end-
points v00 and vnm. The minimized function dCTIW is the length of this path
and this value is used to establish the dissimilarity between the curves.

7.4.2 Three Dimensional Descriptors

Recently there has been a lot of work within the content based shape retrieval
field and a huge amount of different shape descriptors exist [145] and many
new methods are proposed each year. The performance of such methods is
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Figure 7.12: A manifold V (A,B) when comparing two similar curves. Geodesic
between the v00 and vnm is marked with black. Although the embedding of
this manifold is complicated it has a simple square topology

measured through the ability to retrieve objects of the same class as the query
shape, across some given benchmark of shapes (SHREC retrieval contest). As
mentioned by Godil et al. [58] in the field of general shape retrieval, usually
hybrid methods, which combine many shape descriptors, perform better as they
can capture many local and global characteristics.

Our main contribution was not to introduce any kind of a new descriptor which
will perform well within our style-function problem. Instead we propose a
method to asses the usability of existing descriptors, to combine and use them
so that our style function discrimination tasks can be achieved.

Besides our general approach, we briefly present the descriptors which we have
used as input for our methods. We have chosen to use local shape descriptors
which rely on neighborhood at some distance from a given position. This way, by
changing the neighborhood size both local and global features can be captured.
We used three types of such descriptors:

curvatures : minimum and maximum curvature obtained by fitting primitives
through points sampled from the neighborhood area [146] (2x4 descrip-
tors),

covariance : eigenvalues of the covariance matrix of points sampled from the
neighborhood area (3x4 descriptors),

slippage coefficient which are 6 eigenvalues of the slippage covariance ma-
trix [104] of points sampled within the neighborhood area; we have also
included six values being a translational contribution to eigenvectors (12x3
descriptors).

We uniformly sampled the surface of the shapes and computed local descriptors
out of those samples. As neighborhood size we have taken 0.01, 0.04, 0.16 and
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Figure 7.13: Descriptors we use require two levels of sampling. The first level is
to take points uniformly sampled on the whole surface (left). Local descriptors
computed at those points are collected in the form of a histogram. The second
sampling occurs at the level of computing local shape descriptors, when new
sample points are taken within a required distance from the base point (right),
those points are used to establish measures of that surface, such as curvature
which is estimated by fitting primitives into the sampled points.

0.64 of the radius of a bounding sphere of a tooth. For slippage we used 0.01,
0.04 and 0.16.

For each shape we gathered local information coming from any descriptor into a
soft histogram, which means that the values are convolved with a Gaussian ker-
nel of a fixed width before being discretized in a histogram. A smooth histogram
has the advantage that it induces the smoothness property of a descriptor: if a
shape varies smoothly under continuous deformations, the descriptor will also
vary continuously [112].

In order to reduce sampling bias we took 2 samplings of 1000 points each,
and computed a soft histogram for each of them. Histograms from the two
independent samplings were compared. The mean across all training shapes of
their difference was taken in order to estimate the measure error coming from
the different samplings. Then the mean of the 2 histograms is taken. However
in order to compare two histograms for shapes Si and Sj the distance between
two bins is reduced by the previously computed measure error. Then the sum
of those values is taken across all bins as our distance dk(Si, Sj).

Note that besides those descriptors any descriptors which can compute pairwise
distances between shapes can be used here.
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7.5 Results and Applications

7.5.1 Chess Piece Classification

s →
f ↓ 007 008 013 014 024 042 048 107 123

P

R

B

Q

K

Table 7.1: The chess piece dataset. Our dataset has 45 chess pieces, which are
the scans taken from 9 existing chess sets. The function is the type of the chess
piece (pawn, rook, bishop, king, queen) and the style is the set the chess piece
belongs to.

s →
f ↓ 007 008 013 014 024 042 048 107 123
P
R
B
Q
K

Table 7.2: Outline curves of the chess pieces generated from the three dimen-
sional chess pieces displayed in table 7.1.

In order to obtain the first dataset we scanned 9 different chess sets. The type
of the chess set is the style and the function is a chess type. In a standard chess
set we have 6 different functions, however we excluded the knight as this piece
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Figure 7.14: Similarities between the curves. Each block has the same function
or style, the diagonals of blocks are darker which reflects the smaller distance
when the function or the style is the same.

was not rotationally symmetric. This resulted in 5 different functions. Since
there is clear rotational symmetry in the chess pieces, their three dimensional
representation was reduced to the space of plane curves by taking the outline
curve obtained through rotating the chess piece by its rotational symmetry axis
(figure 7.2). In order to eliminate the scaling factor each piece was rescaled to
the same height. Continuous Translation Invariant Dynamic Time Warping was
used in order to establish a similarity metric d(., .) between the curves (figure
7.14).

In the first experiment we have taken one style and one function as training
shapes (refer to section 7.2.2). For the rest of the chess pieces the assignment
problem was solved. Table 7.3 contains the result of such assignment where
for each style and function we have three values: the first indicates how many
test shapes had wrong label, the second how many shapes had wrong function
label and third how many had wrong style label. We have also calculated the
average performance for all styles and functions. The results depend a lot on
the type of the set and function imposed as an example shape. Some of the
sets contain a lot of function information but some others do not. The sets 024
and 008 perform the worst. Also the results for the rooks are always worse than
for other functions. Note that if we provide a given style as the training set it
is used as a definition for the functions and if we give some function it is used
as a definition of style. Sometimes we also had a situation when introducing
a difficult set into the training data improved the results, because then the
labeling of such style was not interfering with the labeling of other styles. So by
putting into the training data a set which has a difficult to distinguish style but
a clear function or putting a difficult to distinguish function but a clear style
distinction usually improved the results.
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P R B Q K mean
007 15 23 8 10 21 15.4
f 8 12 6 7 12 9
s 14 15 4 6 16 11
008 22 24 19 16 24 21
f 18 21 15 10 17 16.2
s 14 18 9 7 11 11.8
013 14 24 6 6 19 13.8
f 7 11 2 2 8 6
s 8 15 4 4 13 8.8
014 20 20 10 9 14 14.6
f 6 11 2 2 6 5.4
s 17 13 8 7 10 11
024 28 27 19 25 28 25.4
f 20 22 15 20 22 19.8
s 16 12 8 12 14 12.4
042 20 24 21 14 18 19.4
f 14 14 13 9 10 12
s 11 16 9 7 12 11
048 16 17 11 10 17 14.2
f 7 6 4 2 8 5.4
s 14 12 8 8 12 10.8
107 17 20 16 12 17 16.4
f 13 12 10 5 9 9.8
s 12 15 11 7 10 11
123 9 24 12 17 18 18
f 13 11 5 9 10 9.6
s 13 21 9 10 10 12.6
mean 19 22.6 13.6 13.2 19.6 17.6
f 11.8 13.3 8 7.3 11.3 10.4
s 13.2 15.2 7.8 7.6 12 11.2

Table 7.3: Mismatches of the single assignment problem with one style and
one function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style. The per-
formance depends on the choice of shapes that were used for the definition of
the style and the function.

It is also interesting to see how the mismatches looked like. For that reason we
have displayed the sorting results for two cases. In table 7.5 we have a situation
that swaps were done within style 008 within pawns and one 3-cycle within
rooks, however in the table 7.6 a more complicated long cycle running through
many styles and functions is present. Note also that some swaps might have a
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P R B Q K mean
007 17 25 6 8 11 13.4
f 8 9 2 2 6 5.4
s 13 19 4 6 5 9.4
008 22 28 23 9 8 18
f 18 22 14 4 7 13
s 13 25 14 6 5 12.6
013 15 21 0 0 19 11
f 8 11 0 0 11 6
s 9 14 0 0 12 7
014 14 12 5 4 17 10.4
f 8 8 0 0 9 5
s 9 9 5 4 11 7.6
024 24 25 18 26 27 24
f 20 18 14 20 20 18.4
s 14 18 7 12 11 12.4
042 22 21 15 17 23 19.6
f 13 14 10 15 13 13
s 14 15 7 2 16 10.8
048 19 19 2 4 12 11.2
f 11 9 2 0 5 5.4
s 14 14 0 4 9 8.2
107 15 14 10 5 11 11
f 6 7 6 0 5 4.8
s 13 13 5 5 8 8.8
123 19 23 9 7 15 14.6
f 11 11 4 2 9 7.4
s 10 18 5 5 10 9.6
mean 18.6 20.9 9.8 8.9 15.9 14.8
f 11.4 12.1 5.8 4.8 9.4 8.7
s 12.1 16.1 5.2 4.9 9.7 9.6

Table 7.4: Mismatches of the multiple assignment problem with one style and
one function given. The table contains the general number of pieces with the
mismatched total label, mismatched function and mismatched style. The im-
provement occurs usually for tasks where the single assignment solution didn’t
have too many mismatches, otherwise the performance stays similar to the per-
formance in the case of the one step assignment.
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Table 7.5: Example where queens define the styles and 013 define functions.
We have one 3 cycle within rooks, a swap between pawns and between pieces
from 008 style.

Table 7.6: Example where bishops define the styles and 048 define functions.
Note that mismatched assignments can be explained by geometric similarities
to the training shapes.

very logical explanation - for example very often something else of a style 008
is labeled as a king instead of the K008. This is because 008 pieces have a kind
of collared shape at the top, which might be confused with the upper collared
shape of the training king. Note also that bishop 008 as a training shape has
attracted shapes P024 and K042, this might be due to the fact that all those
three shapes have a rounded barrel shape.

For the multiple step assignment (results: table 7.4, method: refer to section
7.2.2.1) we observe an average improvement of the assignment tasks by approx-
imately 3 chess pieces. Usually if the initial guess is quite good but not perfect
then correctness of the matching may be improved quite well. If there are too
many mismatches the improvement does not occur: as then we also take as reli-
able the matchings which are not correct. Usually it does not make the solution
worse but keeps it at a similar level as it was with the initial problem.

7.5.2 3D Tooth Consistency

A dataset we use for this problems contains teeth shapes (table 7.7) from 6
different mouths. We treat the type of mouth as style and the tooth type as a
function. In order to make the number of styles larger, we assume that the left
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s →
f ↓ A a B b C c D d E e F f

7M

6M

6m

5P

4P

4p

3C

1I

2I

2i

Table 7.7: Tooth dataset

side of a mouth will be treated separately from the right side. This assumption is
correct as long as we don’t use any descriptors related to symmetry orientation.
Thus we have 12 styles which we will label as A,B,C,D,E, F, a, b, c, d, e, f ,
where big letter means one left part of a mouth and small the other one. We
have taken 10 tooth types: 2 upper molars, lower molar, 2 upper premolars,
lower premolar, upper canine, upper incisor, 2 down incisors. They are labeled
and placed in the following order: 7M, 6M, 6m, 5P, 4P, 4p, 3C, 1I, 1i, 2i, where
upper case means the upper tooth.

The descriptors from the section 7.4.2 were used for which the total consistency
factors were computed as mentioned in section 7.3.1 and the final dissimilarity
measure is created from the measures.

In the first experiment we analyze the metric obtained through the consistency
learning process. Because of the size of our dataset we included all of the teeth
data. Figure 7.15 contains the resulting dissimilarity measure. What is worth
noting is that the similarity between corresponding styles coming from symmet-
ric teeth was clear. During our tests we have discovered that the styles d,D
and f, F are very similar and they probably came from the same mouth but are
differently meshed. In order to compare the obtained dissimilarity measure with
the situation without consistency information, we created the other measure as
the average of all available measures (figure 7.16). From the first glance, just
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Figure 7.15: Dissimilarity measures obtained with the consistency weights.
Note similarities between styles coming from the left and right sides of the
mouths (second upper left plot) and low consistency scores (upper right plot)
calculated between similar teeth: for example upper neighbors: 6M,5P,4P or
upper and lower first premolar (4P and 4p) or the incisors (1I and 2i).
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Figure 7.16: Dissimilarity measure obtained with the equal weights. The aver-
age structure of differences between styles seem to be similar to the consistency
customized measure, besides the tendency of styles e, E to become even more
distant than the rest of the shapes. Note however that the consistency scores
are very different than the previous example. Also there are higher differences
between the lower plots when compared to figure 7.15
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when looking at the average distances between styles, the results look very simi-
lar no matter if we use the consistency weights or not. However if we look closer
and analyze the dissimilarities between the classes functionwise we can see the
difference (lower plots of figure 7.15 and figure 7.16). Dissimilarities with con-
sistency weights are more coherent than the average dissimilarities. Also note
that the consistency matrix of the average looks more random (upper right plot
of 7.15 and 7.16), while the one with the weights has more intuitive information:
we can see that the molars are more consistent with each others than incisors,
consistency also grows if we have neighbor teeth.

7.5.3 Replacing a Missing Tooth

In this section we show an application of the consistency based query method
described in section 7.3.2 to a tooth dataset in the tooth replacing scenario.

We start by choosing a training dataset which has several exemplar styles where
each style is complete, which means it contains all functions. Then we use
the training dataset in all phases of computation when training is needed: to
compute the measure error for histogram based descriptors, to compute the total
consistency factors TCFk for given descriptors and finally as a supply to select
the best replacement for a missing shape.

We take some style which was not in the training set, and assume that one shape
of a function i is missing. In order to replace it we choose from the training
database a shape being of function i, which we estimate to be the closest to
the missing one. Because we don’t have the missing shapes we cannot measure
the distances directly. Instead we make an estimation based on the distances
Df (Sjk, Qk) between the shape of the query style and the functions k that we
have and the shapes from the database sharing this function.

In our results we used three strategies of combining Df (Sjk, Qk):

average Da(s = j,Q) distances summed with equal weights (see section 7.3.2),

weighted Dw(s = j,Q) distances summed with weights according to consis-
tency factors (see section 7.3.2),

best direct use of Df (Sjk, Qk) for function k having the smallest consistency
factor cskiDf with the function i of a query object.

Note that the ‘dissimilarity measure’ Df is used in all cases. As previously
mentioned Df is computed as consistency weighted according to the TCF score
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of a given descriptor. What is different here is how we combine the distance if
we have more than one function to be checked. The weighted scheme takes dis-
tances from all functions with weight according to consistency factors evaluated
between the function of an unknown object and the function for which we are
computing the weight.

We have also added ’true’ which is the distance to the shape we assumed is
unknown to the shapes of the same function from the training database. It can
be seen as a ground truth. Note however that the distance Df we use here was
obtained by consistency learning as we don’t have a ground truth distance.

method missing 1 2 3 4 5 6

weighted

average

best (1i)

true

Table 7.8: Replacing missing 1I b shape. For this case the difference between
the candidates chosen by our methods is hard to spot visually. This illustrates
that even if we get styles with different labels than the ground truth, this does
not mean that the alternative choice is bad. The other candidate can also be a
good replacement for the missing object.

method missing 1 2 3 4 5 6

weighted

average

best (5P)

true

Table 7.9: Replacing missing 6M b. Visual inspection indicates that weights
and average strategy seem to choose the most similar tooth - this tooth was also
chosen by the ground truth distance.

The results for different queries are shown in the form of labeled plots of dis-
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tances. We included results obtained with a training dataset cdfACD, and with
queries made for all of the functions of styles a, b, E and F (figures 7.17, 7.18,
7.19 and 7.20 respectively).

From those examples we can see that for our dataset we have some queries
which are very easy as for example a (figure 7.17) and always result in finding
the symmetric counterpart. When searching for F (figure 7.20) there is label
shuffling at the top of the rankings, but all pieces which are assessed to be the
closest come from the very similar styles f, d,D: either from differently meshed
teeth or symmetric counterparts. Thus even though there is a change in the
ranking, any of those candidates will do a good job as a replacement. More
ambiguous are the queries for which we do not have a symmetric counterpart.
As our dataset is not so big this corresponds to the case when we don’t have a
very close replacement. For such cases we see a tendency that for most of the
functions there is a clear solution which is the average replacement that works
- as the style C, but for some of the tooth types other candidates appear as
top on the list: for example A or f when asking for b (figure 7.18) and A or
D when asking for E (figure 7.19). Usually the ambiguous cases are among
incisors - this might be a good hint to treat the front teeth separately from
molars and premolars in order to reach better performance. For the ambiguous
cases sometimes the ’best’ strategy of replacement is a correct one, but it might
also cause overfitting for other cases. The ’average’ and ’weighted’ strategies
have a very similar results. We do not know however if the swaps are a method
failure or if this is also the case when one shape might be as good as the other
one. This can be left to subjective judgment of the user. To illustrate such case,
we have picked two example queries from the figure 7.18: first molar of style
(6M) and first incisor (1I) of style to be shown with the images of the ranked
replacement candidates (table 7.9 and 7.8). For better insight we have added
the front view of incisors. We have also reflected symmetric counterparts of the
second part of the mouth (see dataset description in section 7.5.2) for easier
spotting of the differences.

We also tested how the consistency properties of the dissimilarity measure
change when different subsets of styles were used as the training dataset. We
generated a dissimilarity measure from the training data and evaluated the re-
sults on all of the data. Usually removing only a small number of mouths does
not increase or even slightly decreases the consistency scores. Only when using
3 or 4 mouths, the results seemed to be different. This might come from the fact
that there was always some symmetric tooth left in the set which was able to
set the consistency scores in a correct way. The increase was mostly noticeable
when styles which are close to each other are used as the training set (table
7.10).
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Figure 7.17: Replacing object of a style a, we assume we have all the functions
of style a except one. Training dataset contains cdfACD styles. This is an easy
case as the winner (the shape of the smallest distance), comes from a symmetric
counterpart of the missing style.
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Figure 7.18: Replacing b, we assume we have all the functions of style a except
one. Training dataset contains cdfACD styles. The average replacement style
is C but some exceptions occur especially within the domain of incisors.
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Figure 7.19: Replacing E, we assume we have all the functions of style a except
one. Training dataset contains cdfACD styles. As in the previous case we have
styles C at the top of most rankings with minor exceptions for incisors and
function 5p.
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Figure 7.20: Replacing F , we assume we have all the functions of style a ex-
cept one. Training dataset contains cdfACD styles. Although there are some
differences at the top of the replacement rankings we can see that all the top
candidates come from styles very similar to the query style being f, d or D.
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training TCS training TCS training TCS
all 97.94 EFb 102.088 cEF 98.17

none 117.22 ABd 99.138 ADEFe 97.35
ABCDFaf 95.929 Eef 117.107 cdfACD 99.25

AFade 98.494 DdFf 111.007 deADEF 115.04

Table 7.10: Total consistency factors when using different mouth subsets as
training data. First the descriptors were trained by using training data, than
all the data was used in order to evaluate TCF. One can see the impact of the
choice of training shapes on the quality of the resulting measure. For example
using data from very similar styles results in a measure which does not have
good consistency for other styles.

7.5.4 Chess Pieces Consistency with Comparison To The
Warping Distance

As we have 3D representation of chess pieces at our disposal we have applied 3d
descriptor computation and the consistency framework, to see the performance
of the consistency methods on the chess dataset. We compared the obtained
results with the warping distance obtained when using the outline curves (figures
7.21 and 7.22). Some differences occur, however this might be due to the fact
that when taking an outline curve a lot of information was lost, so the curve
dataset and the style dataset are not totally equivalent. For example the set
008 was very distinguishable in the curve set. However this is not so true for
the 3d set, which might be due to the fact that local details at the base are
very similar to the details at the base of 007 and 107. Also the upper part has
all function characteristic details while when having a curve representation the
most dominant was the Christmas-tree-like middle part.

7.5.5 Empirical Connection Between Consistency Measure
and Dissimilarities Between Styles

As it is much easier to make visual judgments for the dissimilarities between
different chess sets than for teeth, we used the chess set example to show the
experimentally based connection between the consistency score and dissimilarity
measure between different styles. From the 3d images presented in Table 7.1 we
assume that some sets can be seen as having standard shapes: 013, 014, 048,
123, 107, while 007 and 042 have the middle part missing and the upper part
magnified, 008 is unusual but has a base similar to 007 and 024 - the ’babushka
set’ can be treated as an outlier.
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Figure 7.21: Chess piece dissimilarity measure from the 3d descriptors by using
consistency weights. The styles are ordered 007,008,013,014,024,042,048,107,123
and the functions are ordered p,r,b,q,k. Note that 008 is not so distinctive as it
was for the DTW curve measure. The main source of inconsistency comes from
the style 042 which is more similar to the outlier set 024 for pawn, rook and
bishop but has more standard shapes for king and queen.
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Figure 7.22: Curve warping distance displayed in the same form as consistency
based distances. The structure of dissimilarities between styles is similar (with
some exceptions like the style 008) to the structure of the dissimilarity coming
from consistency weighted 3d descriptors but the general dissimilarity looks
slightly different.
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From all of our descriptors we have chosen to plot dissimilarity measures for
those descriptors which have the best (Figure 7.23), and the worst (Figure 7.24)
consistency. We can see that the most consistent descriptor was much better in
capturing our judgments, with having standard sets nearby and the non stan-
dard ’christmass tree’ and ’babushka’ as outliers. The least consistent descriptor
does not preserve the structure of standard chess pieces being close. For example
it treats the set 123 as the most unusual one.

It is worth noting that the TCF value when we used all descriptors combined
was 15.19 while the TCF of the best descriptor was 19.35, and of the worst it
was 69.27. We can clearly see that combining many descriptors (with weights
according to TCF) is better than using just the most consistent descriptor.

Figure 7.23: Average distances between styles for the descriptor with the best
consistency: TCS = 19.35. This descriptor is the histogram of the second
eigenvalue of the slippage matrix at scale 0.16.

Figure 7.24: Average distances between styles for the descriptor with the worst
consistency: TCS=69.27. This descriptor is the histogram of the translational
impact of the last eigenvalue of the slippage matrix at scale 0.01
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7.5.6 Chess Sorting Based on Consistency Measures

In this experiment we sorted the chess pieces with the metric obtained from 3d
descriptors from section 7.5.4. Tables 7.11 and 7.12 contain the results for both
single and multistep assignment. The results are comparable with the sorting
based on consistency measure.

Note that in order to obtain the consistency measures we trained the dataset
with all labels known, then we forgot the labels and remembered only the con-
sistency scores. With dissimilarities computed according to the consistency we
try to solve the reverse problem - finding the labels back. The sorting and con-
sistency are two different problems, for the consistency we optimize something
else - so one does not have a guarantee how well the sorting task will work with
the dissimilarity measure obtained by using consistency scores. However, trying
to retrieve the labels is an interesting test which measures if consistency based
dissimilarity measures are able to store the style and function information that
was provided in the training labels. From the sorting results we can see that
at least we are not worse than curve matching distance and that the multilevel
step outperformed the DTW based distance.

7.5.7 Descriptors

The consistency measure process can be see as a black box where we throw
the data with a bunch of descriptors and we obtain the consistency customized
measure as an output. However it is very interesting to look closer and study
the consistency weights in order to see which descriptors had higher impact.
For this reason we displayed the style consistency weights for chess and tooth
datasets. For both datasets we also exchanged the style and function labels and
obtained function consistency weights. All those weights are displayed in figure
7.25. From this plot we see that different descriptors are distinctive for different
datasets. Note that for the tooth dataset we have higher weights for smaller
scale, for the medium scale the weights get smaller and for bigger scale they grow
slightly again. This might be due to the fact that we have organic shapes where
their local roughness has importance, but also in the higher scale the general
shape counts especially when it comes to determine a function. For the chess
pieces the global properties seem to be the more important than the local ones,
as for man made objects the global structure of the shape has much importance
(such as the existence of big flat or rounded regions or the proportions of such
regions).

We can also observe that within one dataset if a descriptor has a high impact on
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P R B Q K mean
007 24 17 12 9 20 16.4
f 16 10 4 6 8 8.8
s 23 15 12 8 18 15.2
008 21 23 20 15 24 20.6
f 9 7 10 8 7 8.2
s 21 23 19 15 23 20.2
013 19 16 16 3 16 14
f 12 7 6 2 8 7
s 18 16 16 3 14 13.4
014 11 13 12 5 10 10.2
f 5 7 2 4 6 4.8
s 11 13 12 5 10 10.2
024 25 22 17 12 20 19.2
f 10 11 9 6 10 9.2
s 25 21 16 12 19 18.6
042 22 23 10 9 17 16.2
f 14 13 4 2 6 7.8
s 21 22 10 9 16 15.6
048 13 17 16 14 17 15.4
f 9 9 7 8 7 8
s 12 17 16 14 16 15
107 16 13 12 9 15 13
f 11 10 7 7 4 7.8
s 15 13 12 9 15 12.8
123 26 17 19 19 19 20
f 15 11 3 11 6 9.2
s 25 16 19 19 19 19.6
mean 19.67 17.89 14.89 10.56 17.56 16.11
f 11.22 9.44 5.78 6 6.89 7.87
s 19 17.33 14.67 10.44 16.67 15.62

Table 7.11: Mismatches of the single assignment problem with one style and
one function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style. Results
are comparable with the DTW sorting results presented in table 7.3.
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P R B Q K mean
007 25 19 0 0 26 14
f 15 12 0 0 15 8.4
s 25 17 0 0 25 13.4
008 10 17 14 4 26 14.2
f 4 9 8 4 12 7.4
s 10 16 14 3 26 13.8
013 16 13 0 5 12 9.2
f 8 2 0 5 4 3.8
s 16 13 0 5 12 9.2
014 15 15 0 5 13 9.6
f 6 5 0 5 3 3.8
s 15 15 0 5 13 9.6
024 22 22 0 5 24 14.6
f 14 11 0 5 11 8.2
s 22 20 0 4 22 13.6
042 21 19 0 0 14 10.8
f 12 13 0 0 5 6
s 19 18 0 0 14 10.2
048 17 15 5 3 18 11.6
f 10 7 2 3 9 6.2
s 16 14 5 2 17 10.8
107 17 23 0 6 13 11.8
f 10 16 0 5 6 7.4
s 16 22 0 6 13 11.4
123 18 21 6 2 20 13.4
f 10 9 2 2 11 6.8
s 18 19 6 2 17 12.4
mean 17.89 18.22 2.78 3.33 18.44 12.13
f 9.89 9.33 1.33 3.22 8.44 6.44
s 17.44 17.11 2.78 3 17.67 11.6

Table 7.12: Mismatches of the single assignment problem with one style and
one function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style. The results
are by approximately 2 pieces better than the DTW distance results presented
in table 7.4.
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Figure 7.25: Consistency weights used to create the style and function consistent
descriptors for tooth and chess datasets. Note that there is larger difference
of weights between the datasets than between styles and functions within one
dataset.

style (or function) consistency it very often has higher impact on function (or
style) of that dataset. This indicates that in such cases we can find descriptors
which are appropriate for style and function classification for a given dataset
but those descriptors are not purely responsible for style or function but are
distinctive for both.

7.6 Discussions

In this paper we presented a general framework, which avoids defining style
related features explicitly. Instead we introduced a method of finding valuable
style related descriptors by applying consistency criteria to the example dataset.
We have also shown that even without pointing out the descriptors containing
pure style related properties, some practical tasks can be achieved by factoring
out the main property of an object, its function. Therefore we do not claim to
have discovered a single descriptor or a set of descriptors which are responsible
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for style or for function. But we claim that if we have descriptors which at
least contain some of the style information, and possibly other stuff, we can
still perform well in at least some of the tasks related to the object that have
both style and the function. We also confirm the need for treating shapes in
broader context than just one shape [106,112] and its geometric descriptors, by
analyzing whole sets of shapes from the specific domain.
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We address the problem of analysis the families of shapes which
can be classified according to two categories: the main one corre-
sponding usually to the coarse shape which we call the function and
the more subtle one which we call the style. The style and the func-
tion both contribute to the overall shape which makes the general
analysis and retrieval of such shapes more challenging. Also there
is no single way of defining the style as this depends much on the
context of the family of shapes used for the analysis. That is why
the definition needs to be given through the examples.

The straight forward way of finding the shape descriptors ’re-
sponsible’ for a given category would be to use well known statisti-
cal methods and find through them such descriptors with which we
are able to classify shapes according to a given category. When a
function is dominating this approach might not suffice - we might
be unable to find a set descriptors which are independent of a given
function. We show how to decouple the effect of the style from that
of the function by considering the shapes of the same function but
different styles. We also propose a metric coanalysis approach: if two
styles are similar this similarity should be reflected across different
functions.

We show the usability of our methods first on the example of a
number of chess sets which our method helps sort. Next, we investi-
gate the problem of finding a replacement for a missing tooth given
a database of teeth.

A.1 Introduction

While digital shapes are starting to have a number of medical applications, for
instance related to hearing aid production and dental work, the use of digital
shapes does not necessarily lead to complete automation. Typically, certain
procedures are still left to human operators. However, it is an important goal to
be able to help the human operator as much as possible. The particular scenario
which we address in this paper is the selection of tooth shapes which can serve
as the starting point for digital models of crowns.

There is a lot of work in the shape analysis and especially shape retrieval com-
munity with a task of finding the most similar shape to a query one. However,
many shapes might be classified not only according to a single category, e.g. as
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being a table or a chair, which we will call the function, but also according to
the style: A table and a chair of the same style share common geometric prop-
erties which are different from the overall shape. The style or the function both
interact and contribute to the overall shape of the object. It is not always easy
to separate them and point out geometric elements responsible for a function or
a style.

The general distinction between the specific shape properties, which tells which
ones are responsible for the style and which for the function, is not possible as
this depends on a context. That is why we define the style and function through
examples.

A.1.1 Existing Work Related to Style Function Recogni-
tion

Style and function separation in the context of man made three dimensional
shapes was recently mentioned by Xu et al. [159], where the style of an object
is defined by the proportions (anisotropic scaling) of its parts. It seems to be
very intuitive and reasonable approach but this does not exhaust the subject.
The style might be hidden in details, repetitions of some patterns or some other
types of deformation as well. Very often it is hard to define it mathematically
although the human brains usually do not have problems in recognizing it.

In many shape processing articles, even if the problem of style is not addressed
in an explicit way there are situations where the space of given shapes is broken
into two different independent classification systems. In the deformation transfer
[141] different kinds of animals can take similar poses in which case it is quite
easy to localize them, as the type of animal is described by an intrinsic metric of
the shape surface, and the pose is its embedding in three dimensional space. The
idea of geometric texture [4] fits within this framework as it aims to separate
overall shape from its geometric details. Application of example based priors for
surface reconstruction [52,116] can also be seen as imposing style of the object.

In image processing field Hertzmann et al. [60] presented a method that given
three images, an image with style A and function , an image with style B
and function , an image with style A and function , created an image with
style B and function . The same concept was also explored by this group
in the field of curve styles [61]. Other related problems can be present when
dealing with images of fonts, separating lightning conditions from the scene and
distinguishing between the spok languageen and the accent - all of those three
cases were examined through bilinear models by Tenenbaum et al. [147].
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Tenenbaum’s framework requires establishing one to one correspondences of the
parts both for the style and with the function - for example fonts are compared
through pixels of a bitmap: in general for different types of shapes obtaining
such correspondences is usually hard to achieve. Similar corespondances need
to be established across the styles for Hertzman’s work. Our approach does not
require any correspondence finding, which usually is a costly task and sometimes
it is not possible as for example in the the task of registeringae table to a Instea
d we do shape comparisons through the shape descriptors. There is a lot of
current work on content based shape retrieval and different descriptors might
capture different properties of the shape. Each andduce a dferent notion of
simitheir larity bet. So a good approach is to extract many different shape
descriptors and combine them in a proper way.

A.1.2 Metric Learning

If the feature space is available, many well established statistical methods can
be used such as Linear Discriminant Analysis [96] which modifies the feature
space so that, for a given training set containing objects from different classes,
it maximizes intra class variance and minimizes within class variance. Simi-
lar approach was also used by [157] which gives the possibility of defining the
similarity and dissimilarity relationships between selected pairs of objects.

As mentioned by Giorgi et al. [57] for the case of shapes there are many useful
shape descriptors like skeletons, trees, weighted point sets, which do not provide
multidimensional feature space. Still with such descriptors there is usually a way
of establishing a notion of similarities between different shapes which results in
some kind of pseudodistance.

Giorgi et al. [57] customize a set of distances between of a shape so that user
defined similarity is captured. In this work the metric is modified in order to
reflect the user defined constraints of nearby or far away shapes. Our work
also build a distance through composimaximum distance from distances given
by all of the metrics, however the particular metrics are scaled according to a
similarity feedback provided by the user.

The approach of combining different metrics relies on the fact that at least there
exists a set of shape descriptors which can capture the similarity imposed by
virtue of shared stylistic or functional properties. For function, which usually is
easier do distinguish such an approach would be very suitable. However when a
style needs to be extracted it might not be enough and not even single descriptor
might exist which is purely responsible just for the style.
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One of our main observations concerning this problem is that knowing what is
the function of an object enhances the possibilities for style recognition. For
many descriptors information on style is coupled with information on function.
In general, when the distance between two shapes is small, it might be both due
to similarity in the style and similarity in the function. The retrieval of style
related information can be achieved when providing a set of shapes sharing the
function and having different styles.

The requirement of recognizing the object of the same function or the same
style as being close is not enough in such case. We also want our dissimilarity
measures between shapes to be consistent across different functions. This re-
quirement stems from the fact that we want to be able to find the most similar
styles and most similar functions. However, for our style-function task case we
do not have a direct input which indicates which styles are similar and which
are not. Instead we have some notions of similarities which are induced by dif-
ferent shape descriptors and there is a need to chose the ones which are relevant.
This relevance is not defined directly by indicating the shapes which should be
treated as similar but indirectly as a consistency requirement: dissimilarity or
similarity between the styles should be reflected in a similar way for different
functions.

Similar indirect consistency approach methodology can be found in [162] which
removes incorrect mappings of sets of different views. The assessment of the
quality view mappings is done through analyzing them in broader context of
the consistent mapping loops. If the loop is inconsistent it means that one of
the mappings that belongs to it is wrong and the consistent loop means that
mappings are likely to be correct. Having evaluated the correctness of many
loops the bad mappings are spotted through a loopy belief propagation.

A.1.3 Contribution

This paper focuses on an issue, which we think has many application areas,
but was not very much explored yet: the analysis and classification of shapes
according to more than one category, when categories may be coupled together
which in our case is the style and the function.

We propose here a general methodology which can be applied in order to deal
with the style-function determination problem. Because the style and the func-
tion strongly depend on the context, defining it by providing example shapes
seems to be the most general approach.

We show the method for decoupling the effect of the style from that of the
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function. By having as a training dataset the shapes of the same function and
different styles, we can factor out the function and determine the most likely
style of an unknown shape as the closest shape from the set. In an analogous
way by using the shapes of the same style but different functions the unknown
function may be retrieved.

We realize that the key to success is to find a good metric between the shapes:
metric which can capture both stylistic and functional features. Using the ex-
ample of chess pieces we show what are the desired properties of such a metric
(section A.2) and how to decouple the style from the function when only one
metric is available.

We also show how to find an appropriate metric by combining the metrics ob-
tained through different shape descriptors (section A.3). Novel in our case is
that we do not only use standard similarity notions but also explore the metric
consistency approach. The problem is illustrated with the example for a tooth
dataset.

After the example of chess pieces, we focus on teeth as an example medical
application. Note that our framework is fairly generic. It could be applied to
any type of biological surface which exhibits variation due to both style and
function.

A.2 Decoupling Metric

In this section we will show how an information about style and function hidden
in the same metric can be decoupled. This is illustrated by the example of style
- function classification based on the chess pieces. Since the chess pieces are
rotationally symmetric, their three dimensional representation can be reduced to
the space of plane curves by taking the outline curve obtained through rotating
the chess piece by the rotational symmetry axis. The Translation Invariant
Dynamic Time Warping [45] is used in order to establish a similarity metric
d(., .) between the objects.

A.2.1 Likelihoods Computation

In our setup the proximity of two shapes can be affected by two factors: the
similarity of the style and the similarity of the function. Also dissimilarity with
respect to one factor, which usually is a style might be more subtle than the
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s →
f ↓ 007 008 013 014 024 042 048 107 123
P
R
B
Q
K

Table A.1: The outline curves of the chess pieces. Our dataset has 45 chess
pieces, which are the scans taken from 9 existing chess sets. The function is the
type of the chess piece (pawn, rook, bishop, king, queen) and the style is the set
the chess piece belongs to.

Figure A.1: Similarities between the curves. Each block has the same function
or style, the diagonals of blocks are darker which reflects the smaller distance
when the function or the style is the same.

other one. However if we have in the training set pieces which share the same
style (or function) but have different function (style), then it is possible that
we may factor the style (function) out. Instead of taking absolute distances one
may use the relative distance information: the difference of the distances. For
example if the distance to a king is smaller than a distance to a bishop of the
same style we may say that the unknown shape is more likely to be the king
than to be something else and that will affect the sign of the distance difference.

The partial likelihood of unknown shape x to be a function K, when we have
two example shapes of the same style Si of which one (denoted as KSi) is of a
function K and other one NSi is of a function other than K, is equal to:

lSi,Nf (x,K) = d(NSi, x)− d(KSi, x).

In our training dataset TSi, for a given style Si, we may have more then just
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one shape not being of a function K so we take the mean plus the minimum of
all of the partial likelihoods:

lSif (x,K) = mean
K 6=NSi∈TSi

lSi,Nf (x,K) + min
K 6=NSi∈TSi

lSi,Nf (x,K).

Note that minimum is equal to the distance to the closest of the known shapes
from style Si other than KSi, minus the distance to KSi. If the function K
is the closest of the shapes from that style, then the minimum will be positive
otherwise it will be negative. The mean value stabilizes the results by taking
into account distance measures of all of the shapes of this style.

In order to gather the information from all of the training styles we take the
mean value plus the maximum of all the styles, for which in a training set there
is a function K and some shapes not being of function K.

lf (x,K) = max
Si∈S,KSi∈TSi,
K 6=NSi∈TSi

lSif (x,K) + mean
Si∈S,KSi∈TSi,
K 6=NSi∈TSi

lSif (x,K).

Here by taking the maximum we are favoring the style for which the K function
is most likely. The mean is again added to get the distance information from
all known styles.

There might be cases when we do not have enough information in the training
set for establishing likelihoods. This happens when there is no set which has a
training representative for the function K and for some shape which is not of a
function K. In such a case we set the likelihood to zero.

The likelihood computation of "x being the style i" is done in an analogous
manner. Then for a given x the cost of assigning to it style j and function i is
equal to: l(x, Fi, Sj) = lf (x, Fi) + ls(x, Sj).

A.2.2 Chess Classification Example with the Assignment
Problem

We use the likelihoods as negative costs and solve the minimum linear assign-
ment problem for the unknown labels and loose chess pieces.

Table A.2 contains the results of the assignment problem if the training dataset
is one set and one function, and we are searching for other chess pieces. The
results depend a lot on the type of the set and function imposed as an example
shape. Some of the sets contain a lot style and function information but some
other do not. The sets 024 and 008 are performing the worst also the results for
the rooks is always worse than for other functions.
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P R B Q K mean
123 9 24 12 17 18 18
f 13 11 5 9 10 9.6
s 13 21 9 10 10 12.6
107 17 20 16 12 17 16.4
f 13 12 10 5 9 9.8
s 12 15 11 7 10 11
014 20 20 10 9 14 14.6
f 6 11 2 2 6 5.4
s 17 13 8 7 10 11
024 28 27 19 25 28 25.4
f 20 22 15 20 22 19.8
s 16 12 8 12 14 12.4
013 14 24 6 6 19 13.8
f 7 11 2 2 8 6
s 8 15 4 4 13 8.8
048 16 17 11 10 17 14.2
f 7 6 4 2 8 5.4
s 14 12 8 8 12 10.8
008 22 24 19 16 24 21
f 18 21 15 10 17 16.2
s 14 18 9 7 11 11.8
042 20 24 21 14 18 19.4
f 14 14 13 9 10 12
s 11 16 9 7 12 11
007 15 23 8 10 21 15.4
f 8 12 6 7 12 9
s 14 15 4 6 16 11
mean 19 22.56 13.56 13.22 19.56 17.58
f 11.78 13.33 8 7.33 11.33 10.36
s 13.22 15.22 7.78 7.56 12 11.16

Table A.2: Mismatches of the single assignment problem with one style and
one function given. The table contains the general number of pieces with mis-
matched total label, mismatched function and the mismatched style.
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A.2.3 Multiple Step Assignment

An assignment problem with the costs defined above does not make use of the
information about all of the distances between the shapes. If we are able to
locate the chess pieces of which we can expect that the initial matching went
correctly we can add those into a training dataset with the labels obtained by
the initial assignment. In order to estimate the labeling reliability, we calculate
the diagonal cost of the assignment which we define as the average sum of
similarities between all the pieces having the same style or function labels. For a
hypothetical unknown chess piece we might add it for a moment to the training
set and calculate what is the diagonal cost when assignment is solved with
the use of this piece. We discovered that instead of calculating diagonal costs
directly it is better do the inverse assignment, which is performed by swapping
the unknown data with the known and then calculating the diagonal cost. Then
the smaller the inverse diagonal cost is the more reliable is the hypothetical
assignment of the unknown chess piece to its label.

In order to minimize bad choices we always take the piece having minimum in-
verse diagonal cost and is reliable according to the additional reliability criteria.
We add it to the initial dataset and repeat the assignment and the most reliable
pieces addition until there is no reliable piece to be added. Then we use the
assignment from the last step as the final assignment.

In the results (table A.3) we observe an average improvement of the assignment
tasks by approximately 3 chess pieces. Usually if initial guess is quite good but
not perfect then correctness of the matching may be improved quite well. If
there are too many mismatches the improvement does not occur: as then we
also take as reliable the matchings which are not correct. Usually it does not
make the solution worse but keeps it at a similar level as it was with the initial
problem.

A.3 Finding the Good Metric

The case of chess pieces was special problem as we were able to reduce the
shape information to the space of the curves and had a way of establishing
similarity between those curves by using Translation Invariant Dynamic Time
Warping. In general for three dimensional shapes we do not know a good metric
in advance, instead we have many propositions of metrics di(, ) which can be
obtained through different kinds of shape descriptors Di.
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P R B Q K mean
123 19 23 9 7 15 14.6
f 11 11 4 2 9 7.4
s 10 18 5 5 10 9.6
107 15 14 10 5 11 11
f 6 7 6 0 5 4.8
s 13 13 5 5 8 8.8
014 14 12 5 4 17 10.4
f 8 8 0 0 9 5
s 9 9 5 4 11 7.6
024 24 25 18 26 27 24
f 20 18 14 20 20 18.4
s 14 18 7 12 11 12.4
013 15 21 0 0 19 11
f 8 11 0 0 11 6
s 9 14 0 0 12 7
048 19 19 2 4 12 11.2
f 11 9 2 0 5 5.4
s 14 14 0 4 9 8.2
008 22 28 23 9 8 18
f 18 22 14 4 7 13
s 13 25 14 6 5 12.6
042 22 21 15 17 23 19.6
f 13 14 10 15 13 13
s 14 15 7 2 16 10.8
007 17 25 6 8 11 13.4
f 8 9 2 2 6 5.4
s 13 19 4 6 5 9.4
mean 18.56 20.89 9.78 8.89 15.89 14.8
f 11.44 12.11 5.78 4.78 9.44 8.71
s 12.11 16.11 5.22 4.89 9.67 9.6

Table A.3: Mismatches of the multiple assignment problem with one style and
one function given. The table contains the general number of pieces with the
mismatched total label, mismatched function and mismatched style.
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The task is to choose such a metric di or some combinations of metrics with
which we can distinguish between different styles. As mentioned in the introduc-
tion it is not enough to be able for the objects of the same style to be close but
also the dissimilarity measures should be consistent across different functions
and we don’t know which one will work best for specific problem.

This requirement can be illustrated with the problem of tooth shapes. Suppose
a patient has one tooth destroyed. In order to be able to reproduce its shape,
we want to find from a database a tooth which is mostly similar to the existing
tooth he has. We have a molar missing but because a premolar is still in the
patient’s mouth, we wish to search in our database for a mouth which has the
most similar premolar to the patient’s. From that mouth we take a molar as a
template for our new tooth. This approach assumes that similarity for premolars
induces a similarity between molars.

This case shows that the metric consistency requirement is necessary as it aids
in many concrete tasks - like searching for the closest to missing data. Here
we do not know directly what ’close’ means, as we have many metric but don’t
know which one is a correct. Usually a correct metric combination in such a
case can be found by giving example pairs of shapes which are similar and which
are dissimilar [57]. In our case we do not have such information. Instead we
can impose the metric consistency requirement: the distances between shapes
having different styles and function A should be close to the distances of the
shapes of the same styles and function B.

A.3.1 Metric Consistency

Assume we have a set of training shapes Fi=1..niSj=1..nj , where i indicates the
function and j style. We also have a kn potential distances dk(, )

Let us take all distances dk(Fi1Sja=1..nj , Fi1Sjb=1..nj ,jb 6=ja) between different
shapes of the function i1. In order to be comparable those distances need to
be normalized which we do by dividing them by the median from obtained
distances. This results in a

(
nj
2

)
dimensional vector of k-distances between

shapes with function i1 which we will denote v(dk, fi1).

For each pair i1 6= i2 of two different functions we can establish the consistency
score csi1,i2dk

with respect to a distance k and function i1 and i2 as a norm of
difference of distance vectors:

csi1,i2dk
=

√√√√ ∑
l=1..(ni2 )

(v(dk, fi1)l − v(dk, fi2)l)2
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Figure A.2: Front view of molar, premolar and incisor from 3 different mouths

In order to calculate total consistency factor (TCFk) for a distance measure k
sum of the differences for all function pairs is taken. Note that smaller TCFk
is the more consistent is dk with respect to style.

We construct the final metrics by summing the metric obtained through different
shape descriptors with weights that promote consistency.

Df (, ) =
∑
k

e(−2
TCFk

mean(TCF )
) dk(, )

σdk

where σdk median distance from distances dk(, ) between all training shapes.

From the final metrics we can also compute consistency scores csi1,i2Df
. This

consistency measures can be used in order to asses what kind of tooth types
are better correlated. For example two neighbor upper molars can be more
correlated than molar and incisor. So if a molar is missing and we have the
neighbor molar and incisor, we should give higher weight for query of closest
mouth with respect to a molar than with respect to incisor. We can also compute
mean distances between styles by summing v(Df , fj) for all function types j.

A.3.2 The Tooth Problem

In the teeth analysis task we take a type of a mouth as style and a tooth type
as function. An example dataset we use for this problems contains teeth shapes
(figure A.2) from 6 different mouths. In order to make number of styles larger,
we assume that the left side of a mouth will be treated separately from the right
part. Thus we have 12 styles which we will label as A,B,C,D,E,F,a,b,c,d,e,f,
where big letter means one left part of a mouth and small the other one. We
have taken 10 tooth types 2 upper molars, lower molar, 2 upper premolars, lower
premolar, upper canine, upper incisor, 2 down incisors. They are labeled and
placed in the following order: 7M,6M,6m,5P,4P,4p,3C,1I,1i,2i, where upper case
means respectively upper tooth.

In order to get independence of meshing we uniformly sampled the surface of
teeth and computed descriptors out of those samples. We used local shape
descriptors which rely on neighborhood at some distance from a given position.
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Figure A.3: Left: final metric Df obtained with teeth database (indices grouped
with respect to teeth type). Center: csi,j for different teeth types, the aver-
age distance between the styles, and the multidimensional scaling plot for the
avarage distances. Right: metrics between different styles when a function is
fixed, obtained form final metric with the training styles AFade.

As neighborhood size we have taken 0.01 0.04 0.16 and 0.64 of the radius of a
bounding sphere of a tooth. For slippage we used 0.01 0.04 and 0.16. In Total we
had: 2x4 descriptors for main curvatures obtained by fitting primitives [146], 3x4
eigenvalues of covariance matrix of points sampled from the neighborhood area
and 12x3 slippage coefficients [104] which are 6 eigenvalues of slippage covariance
matrix and 6 is a translational contribution to its eigenvectors. We took 2
samples for 1000 points, for which soft histograms were computed. Histograms
from two independent sampling were compared. The mean across all training
shapes, of their difference was taken in order to estimate the measure error
coming from different samplings. Then the mean of the 2 sample histogram is
taken. However in order to compare two histograms for shapes Si and Sj the
distance between two bins is reduced by the previously computed measure error.
Then the sum of those values is taken across all bins as our distance dk(Si, Sj).

Then the total consistency factors are computed as mentioned in the previous
section and the final metric is computed. Figure A.3 contains the resulting
metric, where all of the available teeth were used. It is worth mentioning that
the consistency score for a resulting metric is smaller than the scores from any
particular metrics. Note that the styles that come from the same mouth (left
or right part) are being found as close. Also note that neighbor teeth tend to
have more consistent scores. This information might be used when searching
for a missing tooth. Let us consider the case when AFade styles were taken as
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training TCS training TCS training TCS
DdFf 111.007 EFb 102.088 cEF 98.17
Eef 117.107 ABd 99.138 ADEFe 97.35
all 97.94 AFade 98.494

none 117.22 ABCDFaf 95.929

Table A.4: Total consistency factors when using different mouth subsets as
training data.

training styles and a metric T was created. Then a patient comes with mouth
of style C and with missing 4P . We have scans of his 4p, 5P and 1i and we have
cs4P,4p
T = 1.6391, cs4P,5P

T = 1.5819 and cs4P,1i
T = 1.7543, so we use tooth 5P

as it has the best consistency. We use v(T, f5P ) instead of unknown v(T, f4P )
in order to evaluate proximity between teeth (5th and 6th plot on the Right of
figure A.3). We evaluate distances between C and AFade among teeth of type
5P and the mouths sorted with respect to distance will be FdaAE if we checked
the ground truth we have dFaEA. Despite the swaps which was a result of a
very close similarity values of dF and EA we can see that in general dissimilar
teeth remain dissimilar.

We also tested on how the consistency properties of metric change when different
subset of styles was used as training dataset. We generated metric from this
information and evaluated the results on all of the data.

Usually removing only small number of mouths did not increase or even slightly
decrease the consistency scores. Only when using 3 or 4 mouths, the results
seemed be different. This might come from the fact that there was always some
symmetric tooth left in the set which was able to set the consistency scores in
a correct way. The increase was mostly noticeable when styles which are close
to each other are used as training set (table A.4).

A.4 Conclusion

In this article we presented methods of working with shapes that can be classified
into having two categories: style and function. One of them decouples style
and function when they are incorporated into the same metric. The second
finds a metric as a combination from existing ones when a consistency between
different function types is needed. Those methods were illustrated by the chess
and tooth datasets. We are aware that for a further analysis and development
of our methods more data will be needed but we think the results obtained so
far are promising.
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