25,345 research outputs found

    3D Object Comparison Based on Shape Descriptors

    Get PDF
    No abstract availabl

    3D keypoint detectors and descriptors for 3D objects recognition with TOF camera

    No full text
    International audienceThe goal of this work is to evaluate 3D keypoints detectors and descriptors, which could be used for quasi real time 3D object recognition. The work presented has three main objectives: extracting descriptors from real depth images, obtaining an accurate degree of invariance and robustness to scale and viewpoints, and maintaining the computation time as low as possible. Using a 3D time-of-flight (ToF) depth camera, we record a sequence for several objects at 3 different distances and from 5 viewpoints. 3D salient points are then extracted using 2 different curvatures-based detectors. For each point, two local surface descriptors are computed by combining the shape index histogram and the normalized histogram of angles between the normal of reference feature point and the normals of its neighbours. A comparison of the two detectors and descriptors was conducted on 4 different objects. Experimentations show that both detectors and descriptors are rather invariant to variations of scale and viewpoint. We also find that the new 3D keypoints detector proposed by us is more stable than a previously proposed Shape Index based detector

    Quasi Spin Images

    Get PDF
    The increasing adoption of 3D capturing equipment, now also found in mobile devices, means that 3D content is increasingly prevalent. Common operations on such data, including 3D object recognition and retrieval, are based on the measurement of similarity between 3D objects. A common way to measure object similarity is through local shape descriptors, which aim to do part-to-part matching by describing portions of an object's shape. The Spin Image is one of the local descriptors most suitable for use in scenes with high degrees of clutter and occlusion but its practical use has been hampered by high computational demands. The rise in processing power of the GPU represents an opportunity to significantly improve the generation and comparison performance of descriptors, such as the Spin Image, thereby increasing the practical applicability of methods making use of it. In this paper we introduce a GPU-based Quasi Spin Image (QSI) algorithm, a variation of the original Spin Image, and show that a speedup of an order of magnitude relative to a reference CPU implementation can be achieved in terms of the image generation rate. In addition, the QSI is noise free, can be computed consistently, and a preliminary evaluation shows it correlates well relative to the original Spin Image

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Deep Shape Matching

    Full text link
    We cast shape matching as metric learning with convolutional networks. We break the end-to-end process of image representation into two parts. Firstly, well established efficient methods are chosen to turn the images into edge maps. Secondly, the network is trained with edge maps of landmark images, which are automatically obtained by a structure-from-motion pipeline. The learned representation is evaluated on a range of different tasks, providing improvements on challenging cases of domain generalization, generic sketch-based image retrieval or its fine-grained counterpart. In contrast to other methods that learn a different model per task, object category, or domain, we use the same network throughout all our experiments, achieving state-of-the-art results in multiple benchmarks.Comment: ECCV 201
    corecore