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Abstract
The increasing adoption of 3D capturing equipment, now also found in
mobile devices, means that 3D content is increasingly prevalent. Common
operations on such data, including 3D object recognition and retrieval, are
based on the measurement of similarity between 3D objects. A common way
to measure object similarity is through local shape descriptors, which aim
to do part-to-part matching by describing portions of an object’s shape. The
Spin Image is one of the local descriptors most suitable for use in scenes
with high degrees of clutter and occlusion but its practical use has been
hampered by high computational demands. The rise in processing power
of the GPU represents an opportunity to significantly improve the generation
and comparison performance of descriptors, such as the Spin Image, thereby
increasing the practical applicability of methods making use of it. In this
paper we introduce a GPU-based Quasi Spin Image (QSI) algorithm, a
variation of the original Spin Image, and show that a speedup of an order
of magnitude relative to a reference CPU implementation can be achieved in
terms of the image generation rate. In addition, the QSI is noise free, can be
computed consistently, and a preliminary evaluation shows it correlates well
relative to the original Spin Image.

1 Introduction
Local shape descriptors are essential for measuring the similarity of 3D objects, and are at
the heart of operations such as 3D object retrieval and recognition. These operations are
essential as 3D object collections grow in size. A classic descriptor, the spin image (SI),
is advantageous for many object classes in terms of accuracy and has thus been employed
in many applications. In fact the SI has been considered to be the de facto benchmark for
the evaluation of local surface features [1] [2], and has been listed among the descriptors
most robust to clutter, varying mesh resolution, and clutter [3]. Unfortunately, the SI is
hampered by high computational demands, thus restricting its applicability.

Graphics Processing Units (GPUs) have in recent years seen increased use in many
applications, and have shifted from processors aimed primarily at accelerating rendering
procedures to extremely high-throughput co-processors (also referred to as General
Purpose GPUs, or GPGPUs). The highly parallel and throughput oriented architecture of
GPUs has allowed for a number of techniques to be significantly accelerated, increasing
their utility. For instance, deep learning has seen performance increases by a factor of 50
or more [4]. The fields of game physics, computational biophysics [5] and medical image
processing [6] [7] are also good examples.
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Effective utilisation of GPU compute resources in part requires designing an algorithm
with the hardware in mind. For instance, groups of threads should ensure their memory
requests exhibit high spatial locality to minimise wasted memory bandwidth, as well as
minimise thread divergence.

One observation which can be made regarding local shape descriptors is that their
implementations are consistently written for the CPU. Moreover, descriptors produced by
local descriptor generation algorithms are generally independent of one another, and have
similar or identical generation processes [3] [8]. The characteristics of their computation
are well aligned with the workloads GPUs have been designed for, i.e. similar operations
over many data items that require high throughput.

Meanwhile, previous work within the fields of symmetry detection and 3D object
retrieval has primarily focused on improving the accuracy of local shape descriptors for
3D object similarity evaluation.

This paper shows the potential of utilising the GPU for generating local mesh
descriptors. We use the spin image as an example to show that designing local shape
descriptors with the GPU in mind can greatly benefit execution times. This in turn allows
for greater practical use of these methods. To this end, we propose the Quasi Spin Image
(QSI) descriptor, a descriptor similar to the SI, which has the following advantages:

• The QSI exhibits properties favourable to execution on the GPU.

• The QSI is noise-free.

• The QSI consistently produces the same image, given the same input model and
parameters.

The contributions of this paper include:

• The novel QSI local shape descriptor.

• A GPU implementation of the QSI with good memory, memory bandwidth, and
performance characteristics.

• A GPU implementation of the original SI descriptor, along with a detailed execution
performance evaluation against the QSI on a recent benchmark.

The remainder of this paper is organised as follows: In Section 2 we outline the
original spin image descriptor and some other related work. In Section 3 we introduce the
novel quasi spin image descriptor. We finally evaluate the proposed method in Section 4.

2 Background
The spin image is a local histogram descriptor initially proposed by Johnson et al. [9].
It is either created from a point cloud or from a uniformly sampled triangle mesh. Its
generation conceptually involves rotating a square plane around a given vertex (referred
to as the spin vertex) directed along a given normal vector (referred to as the spin normal)
for one revolution. The plane is divided into an equal number of bins along the horizontal
and vertical axes, and its physical size is referred to as the support radius. When rotated,
each bin forms a torus-like volume as shown in Figure 1. The spin image is conceptually
constructed by measuring the total area of the input mesh intersecting each of these torus-
like volumes. The spin vertex and spin normal combined define a line, referred to as the
central axis.



In order to generate a single image, five parameters must be given: the spin vertex
(which usually lies on the surface of the sample model), the spin normal (usually the
surface normal at the location of the spin vertex), the image width in bins (pixels), the
support radius Sr, and the support angle.
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Figure 1: Spin image computation: the volume captured by rotating a spin image bin around
the central axis. Sv and Sn are the spin vertex and the spin normal respectively. The dashed line
represents the central axis.

Accurately calculating the area of a mesh intersecting the aforementioned torus-like
volume (shown in Figure 1) for each spin image bin is complex, and thus time consuming.
The authors of the original paper instead opted for using uniformly distributed surface
point samples. The idea is that a linear increase in the area intersecting the torus-
like volume implies a linear increase in the number of point samples intersecting it,
thus approximating the computation of area. This approximation can however cause a
reduction in matching performance, as shown by Carmichael et al. [10].

While the spin image descriptor has been shown to perform well in scenes with
significant quantities of clutter [3] [8] [9], and has been used successfully in a number
of applications [11] [12] [13] [14], several alternate forms have been proposed to address
some of its shortcomings or improve its matching performance.

Effective matching of spin images requires setting a support radius parameter [9].
Additionally, comparing spin image pairs requires computing the Pearson correlation
coefficient, which can be computationally costly. Dinh et al. [15] addressed these issues
by proposing a multiscale spin image. Their method generates downsampled spin images
for faster matching or matching at different support radii, albeit not simultaneously.

Another method attempting to simplify the image comparison process, is the spin
image signature method proposed by Assfalg et al. [16]. This method computes a
signature from each spin image, thereby significantly reducing the computation time
necessary to compare two images. However, the spin image generation time was not
addressed.

Finally, Davis et al. and Gerlach et al. showed significant speedups can be achieved
when using the GPU for comparing spin images, reporting speedups of one to two orders
of magnitude compared to a CPU implementation [17] [18]. However, neither of these
show implementations for generating spin images on the GPU.

3 Quasi Spin Images
Motivation
An important observation regarding spin images is that the content of an image is
independent of any other image. This in turn means the generation of spin images can



S
v

S
n

Figure 2: Quasi spin image computation: the circle captured by rotating a spin image bin around
the central axis. Sv and Sn are the spin vertex and the spin normal respectively. The dashed line
represents the central axis.

be run in parallel across a number of threads. Typically, a large number of images
are generated for a particular mesh to increase the probability of finding a matching
pair when comparing them. Moreover, the process of computing individual images is
identical. For these reasons, the generation algorithm exhibits favourable characteristics
for its implementation on GPUs.

Profiling our GPU implementation of the spin image algorithm showed the main
bottleneck to be the large volume of memory transactions required to generate individual
images. This quantity of transactions is mainly caused by two factors.

First, in order to obtain a representative image which accurately portrays the support
volume of the spin image, a significant number of uniformly sampled surface points are
needed to ensure that the produced images can be matched against other images.

Second, in the original SI generation method, point samples are divided over the four
adjacent pixels using bilinear interpolation. On a GPU this causes four reads and four
writes to memory per pixel update.

Therefore, limiting the number of memory transactions necessary per image is the
primary issue which must be addressed for an effective implementation of the spin image
generation algorithm.

CPUs, as opposed to GPUs, are capable of containing an entire spin image in L1
cache. Therefore the effects of the large quantities of transactions on performance are
not as significant. The main reason for this is the good spatial locality of these requests
relative to the size of the cache. In contrast, on a GPU, these transactions generally require
explicit memory transactions, and accesses tend to be spread over a range of cache lines.
This in turn causes both high pressure on the memory bus while simultaneously not fully
utilising the available bandwidth.

Unfortunately, keeping an image in the GPU’s shared memory and only committing
it to memory upon its completion severely limits the number of blocks which can be
active per GPU streaming multiprocessor, significantly reducing performance. Therefore,
the only means to address these problems is to reduce the number of required memory
transactions.

Definition
We thus propose the Quasi Spin Image descriptor (QSI). A QSI is formed by counting
the number of intersections of the model geometry with circles defined by points (pixel
centres) on the QSI plane and the central axis, as shown in Figure 2, as opposed to
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Figure 3: The correspondence between intersection circles and the produced QSI image.

measuring area as done by the SI. This definition effectively yields a stack of layers, each
containing a number of circles with linearly increasing radii. The number of intersections
between each circle and the mesh surface can be represented in an image, as shown in
Figure 3.

While the definition of the QSI deviates from the original SI, the images produced are
similar visually, especially when compared to other descriptors. A visual comparison of
QSI and SI is shown in Figure 6.

The main advantage of QSI relative to the SI is that it requires significantly fewer
memory transactions. This is due to the fact that when generating an SI, projecting an
additional surface on to the image on average requires each affected pixel to be updated
more than once. This is mainly caused by projected point contributions being spread over
neighbouring pixels using bilinear interpolation, as discussed previously. In contrast, the
QSI only requires one additional update per rasterised pixel.

Additionally, since the number of intersections between a circle and a triangle mesh
is an integer value, the values of individual QSI pixels can be computed consistently and
are free of noise. This is in contrast to the SI method which uses a (uniformly sampled)
point cloud as input instead, which is inherently noisy.

The QSI requires the same parameters as the SI, most important of which are the spin
vertex Sv and spin normal Sn. The only difference is that since the QSI uses a triangle
mesh as input directly, no uniform mesh sampling is needed. A sample count does not
therefore need to be set. The separation between layers and the separation between radii
of circles within layers is defined by a single constant value computed from the support
radius and the image width.

4 Results
We evaluated the QSI and SI GPU implementations with two distinct experiments:

• Execution times of GPU implementations of QSI and SI generation algorithms
compared to a reference CPU implementation.

• The similarity between the correlations computed over different SI and QSI.

Each of these experiments are described in detail below.

QSI / SI Generation Execution Times on GPU and CPU
The performance of the SI and QSI generation implementations were tested by applying
them on training models from the SHREC17 dataset [19]. Each algorithm was executed
10 times per model in the dataset, and the execution times were subsequently averaged.



For each implementation, only the time spent on computing the images themselves
was measured. The time requirements for loading, partitioning, and uniform surface
sampling (in case of the original SI method) were not included in the execution time
measurements. These processing steps only represent a minor or negligible portion of the
total execution time.

A reference single-threaded implementation, part of the command line tools from
Point Cloud Library, was used as a CPU baseline to compare against [20]. To the best of
our knowledge, this implementation is the fastest one available today.

For both the SI and QSI method, one spin image was generated per vertex/surface
normal present in the model. This is a means of keeping the number of generated images
per model consistent between the two methods and is identical to the approach used in the
original spin image paper by Johnson et al. [9].

A noteworthy issue is that the SHREC17 benchmark does not guarantee the models to
be at similar scale, while at the same time different models may exhibit different features
at different scales.

Both SI and QSI require a support radius parameter to be set. In the original paper
by Johnson et al. this radius was calculated by assuming that the optimal bin size (the
physical width of a spin image bin/SI pixel) was equivalent to the mesh resolution, arguing
that most features present in the model would be at this scale. However, we do not
consider this argument to be valid anymore given the wide variety in mesh resolution
across models available today.

We instead choose the support radius in such a way that the image covers as much
of the model as possible, while simultaneously ensuring high-level features within the
model remain visible on the images themselves. To this effect we use a support radius
that creates images based on the scale of the model, rather than using a constant support
radius. To achieve this, we first compute the axis-aligned bounding box of the model.
We subsequently determine the length of the side of a cube whose volume is equal to
the volume of this bounding box. The length of the side p of this cube is used as the
“support diameter”, which is halved to produce the support radius. Equation 1 computes
the support radius Sr, in a manner that satisfies the above requirements:

Sr =
3√BBox.x ·BBox.y ·BBox.z

2
(1)

The original SI algorithm also requires a sample count parameter to be given. We set
this number equal to three times the model’s triangle count, uniformly distributed across
the model. For many models, this was the minimum number of samples needed to produce
an image of satisfactory quality.

The image size was set to 64x64 bins for the GPU tests (both SI and QSI). For stability
reasons, the image size of the reference CPU implementation was set to 8x8 pixels. Here
it should be noted that we could not detect a measurable performance difference between
using 8x8 and 64x64 pixels, most likely because both image sizes are able to fit in the
CPU’s L1 cache.

The results of the SI and QSI generation times on the GPU are shown in Figure 4
along with the reference CPU implementation.

The average speedup of GPU QSI compared to GPU SI calculated over the models in
the SHREC17 training set was 3.44.

The trend lines in Figure 4 show that when generating 200,000 images, the GPU QSI
implementation outperforms the reference CPU one by approximately a factor of 35.
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Figure 4: A comparison of the execution times of the proposed and reference implementations.

It’s also worth noting that in “A Comprehensive Review of Local Feature Descriptors”
by Quo et al. a performance evaluation is listed of an SI generation method implemented
in MATLAB. For a model of 100,000 points, they measured an execution time of
approximately 750ms in order to generate a single image. Our GPU implementation
of the SI method, for models of an equivalent number of points, generates images
at approximately 4700 images per second. This implies our GPU implementation is
approximately 3500 times faster.

Correlation Between QSI and SI
It is interesting to investigate how QSI relates to the original SI. To this effect we used the
models of the SHREC14 benchmark [21] [22] 1.

The devised experiment analyses one model in the benchmark at a time. For each
vertex/normal pair in the model, an image is generated using each method, resulting in two
images per vertex/normal. The original SI method compared images by calculating the
Pearson correlation coefficient. To estimate the similarity of QSI to SI, we thus estimate
the Pearson correlation coefficient for the image pair generated by each method for the
same vertex/normal. We compared the correlation values of image pairs generated by
each method for each unique vertex/normal. We subsequently calculated the Pearson
correlation coefficient over the resulting sequence of correlations. This yields a single
correlation value representing the overall similarity of correlations calculated for each
method for that model.

The resulting values for the entire benchmark are shown in Figure 5. The graph shows
that 42.4% of the models have a correlation coefficient over 0.9, and 74.5% have 0.8 or
higher.

Figure 6 shows a visual comparison of images generated by both methods. The
images were generated from a Utah teapot and a Chrystalline structure. The following
observations can be made from these Figures. First, since both methods generate images
in cylindrical coordinate space, the produced shapes are similar. Second, an additive
response can be observed in images generated by both methods, where specific parts of

1The SHREC17 benchmark was not used here as a number of models in the set did not contain normals.
Properly defined models are crucial to good matching performance.



Figure 5: The correlation between the calculated correlations of SI and QSI for each model in the
SHREC14 benchmark.

the model appear superimposed on the image. An example of this is the teapot handle
visible on the top row of Figure 6b. Both the original SI and QSI methods exhibit this
behaviour, due to the inherent greater area intersected by a bin and greater number of
surface intersections encountered, respectively. Third, despite the fact that 1,000,000
point samples were used for both objects using the SI method, a level of noise is still
visibly present. The images from our method are, apart from some single-pixel rounding
errors, free of noise. Moreover, given the same input model and settings, the generated
images of QSI are deterministic. Finally, the original SI method exhibits responses from
surfaces orthogonal to the spin image plane, as in these cases greater numbers of point
samples project to similar cylindrical coordinates. This is particularly visible on the
images of the chrystalline structure (Figure 6c).

5 Implementation Details
All testing took place on a system with an Intel Core i7-5820K processor and an NVidia
Quadro P5000 graphics card. The GPU algorithms have been implemented using CUDA
9.0.

QSI Implementation
In order to cull geometry wherever possible as well as simplifying work division, we used
a voxel space subdivision (we also used this in the SI implementation).

We cull flat triangles before rasterising them, as these are prone to cause rounding
errors during the intersection test.

Finally, our implementation stores the values of individual bins in unsigned short
variables, which proved more than adequate for the tested benchmark.

Model Scaling
When computing the QSI, one needs to convert from model space to QSI pixel space; this
operation requires a division for all pixel updates in the case of SI and most pixel updates



(a) (b)

(c) (d)

Figure 6: A visual comparison between the original SI (Figures 6a and 6c) and proposed QSI
method (Figures 6b and 6d). All grayscale values have been logarithmically scaled for clarity.

in the case of QSI, which is expensive. Instead, at pre-processing time the model is scaled
so that one distance unit is equivalent to the physical size of a pixel/bin on the spin image
plane.

6 Conclusion
It was shown that the workload characteristics of the generation of local shape descriptors,
such as spin images, are suitable for GPU implementation (as they consist of similar
operations that must be performed over multiple data items) and can thus offer significant
speedups over conventional CPU implementations. Moreover, targeted alterations to the
local descriptor creation algorithm, such as QSI, can further improve the utilisation of the
GPU hardware.

The quasi spin image local shape descriptor introduced in this paper is not only better
capable of exploiting the available GPU resources, but also offers a number of other
advantages. A reference GPU implementation of the original spin image algorithm is
also given.

The GPU implementation for the generation of SI images was shown to outperform
a reference CPU implementation by an order of magnitude, bringing the possibility of
real-time applications within reach. Moreover, our GPU QSI implementation further
outperforms the GPU SI implementation on average by over a factor of 3.

The source code for our implementations of SI and GSI are being made publicly
available as part of this paper to serve the research community in benchmarking and
further developing GPU based descriptors.

7 Future Work
While the generation efficiency, noise-free, and consistent generation properties of
the QSI have been shown in this paper, a more complete numerical analysis of its
matching capabilities using a recent benchmark should be done. As Figure 5 shows
that correlations between similarity values produced when comparing images using each
method are similar, and can therefore be expected to produce similar results in a matching



performance experiment.
Moreover, since the largest deviations in pixel intensities between the QSI and SI

occur on pixels intersecting surfaces near orthogonal to the SI plane, means performing
an analysis including the support angle could yield closer matching performance between
the two methods.

Additionally, since the QSI is noise free (as opposed to the spin image), it may be
worth investigating other means for measuring image similarity, potentially improving its
matching capabilities.
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