540 research outputs found

    Self-navigation with compressed sensing for 2D translational motion correction in free-breathing coronary MRI:a feasibility study

    Get PDF
    PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted

    CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions

    Get PDF
    Cardiac CINE magnetic resonance imaging is the gold-standard for the assessment of cardiac function. Imaging accelerations have shown to enable 3D CINE with left ventricular (LV) coverage in a single breath-hold. However, 3D imaging remains limited to anisotropic resolution and long reconstruction times. Recently deep learning has shown promising results for computationally efficient reconstructions of highly accelerated 2D CINE imaging. In this work, we propose a novel 4D (3D + time) deep learning-based reconstruction network, termed 4D CINENet, for prospectively undersampled 3D Cartesian CINE imaging. CINENet is based on (3 + 1)D complex-valued spatio-temporal convolutions and multi-coil data processing. We trained and evaluated the proposed CINENet on in-house acquired 3D CINE data of 20 healthy subjects and 15 patients with suspected cardiovascular disease. The proposed CINENet network outperforms iterative reconstructions in visual image quality and contrast (+ 67% improvement). We found good agreement in LV function (bias ± 95% confidence) in terms of end-systolic volume (0 ± 3.3 ml), end-diastolic volume (- 0.4 ± 2.0 ml) and ejection fraction (0.1 ± 3.2%) compared to clinical gold-standard 2D CINE, enabling single breath-hold isotropic 3D CINE in less than 10 s scan and ~ 5 s reconstruction time

    Motion-Corrected Simultaneous Cardiac PET-MR Imaging

    Get PDF

    Aggregated motion estimation for real-time MRI reconstruction

    Full text link
    Real-time magnetic resonance imaging (MRI) methods generally shorten the measuring time by acquiring less data than needed according to the sampling theorem. In order to obtain a proper image from such undersampled data, the reconstruction is commonly defined as the solution of an inverse problem, which is regularized by a priori assumptions about the object. While practical realizations have hitherto been surprisingly successful, strong assumptions about the continuity of image features may affect the temporal fidelity of the estimated images. Here we propose a novel approach for the reconstruction of serial real-time MRI data which integrates the deformations between nearby frames into the data consistency term. The method is not required to be affine or rigid and does not need additional measurements. Moreover, it handles multi-channel MRI data by simultaneously determining the image and its coil sensitivity profiles in a nonlinear formulation which also adapts to non-Cartesian (e.g., radial) sampling schemes. Experimental results of a motion phantom with controlled speed and in vivo measurements of rapid tongue movements demonstrate image improvements in preserving temporal fidelity and removing residual artifacts.Comment: This is a preliminary technical report. A polished version is published by Magnetic Resonance in Medicine. Magnetic Resonance in Medicine 201

    Accelerated Cardiovascular Magnetic Resonance Imaging Using Radial Acquisition with Compressed Sensing

    Get PDF
    Magnetic resonance imaging (MRI) is a medical imaging technique that can visualize internal organs for examination and diagnosis. It is non-invasive and ionizing radiation-free, and provides good contrast between different soft tissues. One of the drawbacks of MRI is its lengthy acquisition time. Significant research has been done in order to accelerate the MRI data acquisition and reduce the scan time. Compressed sensing (CS) has been recently proposed for accelerating MRI acquisition time. Compressed sensing recovers the desired image from undersampled MRI dataset by exploiting the sparsity of MR image in transform domain. In this thesis, we propose CS reconstruction methods in various cardiovascular MRI applications for accelerated imaging. We consider 3D whole-heart coronary MRI. Isotropic 3D radial trajectories allow undersampling of k-space in all three dimensions, enabling accelerated acquisition of volumetric data. Our CS based approach provides further acceleration by removing undersampling artifacts and improving image quality. However, the underlying heavy computational overhead of this method is also a limiting factor which depreciates the applicability of CS. A parallelized implementation of an iterative CS reconstruction for 3D radial acquisitions using a graphics processing unit is presented to reduce the reconstruction time. The efficacy of CS is also investigated in cardiac cine MRI. Cardiac function is usually assessed using segmented cine acquisition with multiple breath-holds (BHs). Subjects are given resting periods between adjacent BHs, where no data is acquired, resulting in low acquisition efficiency. We propose an accelerated radial acquisition for BH cine imaging which utilizes the resting period to acquire additional free-breathing (FB) data without increasing scan time. The difference image between BH and FB acquisitions is used as the sparsity regularization of the CS reconstruction. Compressed sensing can be used as a respiratory motion correction technique in FB whole-heart MRI. Respiratory motion causes aliasing artifacts and blurring on the resulting image. To obtain motion-free images, a respiratory navigator is often used to track the heart position, but the scan efficiency is reduced to 30-50% resulting in a prolonged scan. We propose a CS reconstruction to correct respiratory motion by using an undersampled dataset which only contains motion-free k-space lines whereas the motion-corrupted lines are excluded from the reconstruction.Engineering and Applied Science

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Steady-state anatomical and quantitative magnetic resonance imaging of the heart using RF-frequencymodulated techniques

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the United States and Europe and generates healthcare costs of hundreds of billions of dollars annually. Conventional methods of diagnosing CVD are often invasive and carry risks for the patient. For example, the gold standard for diagnosing coronary artery disease, a major class of CVD, is x-ray coronary angiography, which has the disadvantages of being invasive, being expensive, using ionizing radiation, and having a ris k of complications. Conversely, coronary MR angiography (MRA) does not use ionizing radiation, can effectively visualize tissues without the need for exogenous contrast agents, and benefits from an adaptable temporal resolution. However, the acquisition time of cardiac MRI is far longer than the temporal scales of cardiac and respiratory motion, necessitating some method of compensating for this motion. The free-running framework is a novel development in our lab, benefitting from advances over the past three decades, that attempts to address disadvantages of previous cardiac MRI approaches: it provides fully self-gated 5D cardiac MRI with a simplified workflow, improved ease-of-use, reduced operator dependence, and automatic patient-specific motion detection. Free-running imaging increases the amount of information available to the clinician and is flexible enough to be translated to different app lications within cardiac MRI. Moreover, the self-gating of the free-running framework decoupled the acquisition from the motion compensation and thereby opened up cardiac MRI to the wider class of steady-state-based techniques utilizing balanced steady-state free precession (bSSFP) sequences, which have the benefits of practical simplicity and high signal-to-noise ratio. The focus of this thesis was therefore on the application of steady- state techniques to cardiac MRI. The first part addressed the long acquisition time of the current free-running framework and focused on anatomical coronary imaging. The published protocol of the free- running framework used an interrupted bSSFP acquisition where CHESS fat saturation modules were inserted to provide blood-fat contrast, as they suppress the signal of fat tissue surrounding the coronary arteries, and were followed by ramp-up pulses to reduce artefacts arising from the return to steady-state. This interrupted acquisition, however, suffered from an interrupted steady-state, reduced time efficiency, and higher specific absorption rate (SAR). Using novel lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses developed in our lab, the first project showed that LIBRE pulses incorporated into an uninterrupted free-running bSSFP sequence could be successfully used for 5D cardiac MRI at 1.5T. The free-running LIBRE approach reduced the acquisition time and SAR relative to the previous interrupted approach while maintaining image quality and vessel conspicuity. Furthermore, this had been the first successful use of a fat-suppressing RF excitation pulse in an uninterrupted bSSFP sequence for cardiac imaging, demonstrating that uninterrupted bSSFP can be used for cardiac MRI and addressing the problem of clinical sequence availability. Inspired by the feasibility of uninterrupted bSSFP for cardiac MRI, the second part investigated the potential of PLANET, a novel 3D multiparametric mapping technique, for free-running 5D myocardial mapping. PLANET utilizes a phase-cycled bSSFP acquisition and a direct ellipse-fitting algorithm to calculate T1 and T2 relaxation times, which suggested that it could be readily integrated into the free-running framework without interrupting the steady-state. After initially calibrating the acquisition, the possibility of accelerating the static PLANET acquisition was explored prior to applying it to the moving heart. It was shown that PLANET accuracy and precision could be maintained with two-fold acceleration with a 3D Cartesian spiral trajectory, suggesting that PLANET for myocardial mapping with the free-running 5D radial acquisition is feasible. Further work should investigate optimizing the reconstruction scheme, improving the coil sensitivity estimate, and examining the use of the radial trajectory with a view to implementing free-running 5D myocardial T1 and T2 mapping. This thesis presents two approaches utilizing RF-frequency-modulated steady-state techniques for cardiac MRI. The first approach involved the novel application of an uninterrupted bSSFP acquisition with off-resonant RF excitation for anatomical coronary imaging. The second approach investigated the use of phase-cycled bSSFP for free-running 5D myocardial T1 and T2 mapping. Both methods addressed the challenge of clinical availability of sequences in cardiac MRI, by showing that a common and simple sequence like bSSFP can be used for acquisition while the steps of motion compensation and reconstruction can be handled offline, and thus have the potential to improve adoption of cardiac MRI. -- Les maladies cardiovasculaires (MCV) reprĂ©sentent la principale cause de dĂ©cĂšs aux États-Unis et en Europe et gĂ©nĂšrent des coĂ»ts de santĂ© de plusieurs centaines de milliards de dollars par an. Les mĂ©thodes conventionnelles de diagnostic des MCV sont souvent invasives et comportent des risques pour le patient. Par exemple, la mĂ©thode de rĂ©fĂ©rence pour le diagnostic de la maladie coronarienne, une catĂ©gorie majeure de MCV, est la coronarographie par rayons X qui a comme inconvĂ©nients son caractĂšre invasif, son coĂ»t, l’utilisation de rayonnements ionisants et le risque de complications. A l’inverse, l'angiographie coronarienne par rĂ©sonance magnĂ©tique (ARM) n'utilise pas de rayonnements ionisants, permet de visualiser efficacement les tissus sans avoir recours Ă  des agents de contraste exogĂšnes et bĂ©nĂ©ficie d'une rĂ©solution temporelle ajustable. Cependant, le temps d'acquisition en IRM cardiaque est bien plus long que les Ă©chelles temporelles des mouvements cardiaques et respiratoires en jeu, ce qui rend la compensation de ces mouvements indispensable. Le cadre dit de « free -running » est un nouveau dĂ©veloppement de notre laboratoire qui bĂ©nĂ©ficie des progrĂšs rĂ©alisĂ©s au cours des trois derniĂšres dĂ©cennies et tente de remĂ©dier aux inconvĂ©nients des approches prĂ©cĂ©dentes pour l'IRM cardiaque : il fournit une IRM cardiaque en cinq dimensions (5D) complĂštement « self-gated » , c’est-Ă -dire capable de dĂ©tecter les mouvements cardiaques et respiratoires, forte d’une implĂ©mentation simplifiĂ©e, d’une plus grande facilitĂ© d'utilisation, d’une dĂ©pendance rĂ©duite vis-Ă -vis de l'opĂ©rateur et d’une dĂ©tection automatique des mouvements spĂ©cifiques du patient. L'imagerie « free- running » augmente la quantitĂ© d'informations Ă  disposition du clinicien et est suffisamment flexible pour ĂȘtre appliquĂ©e Ă  diffĂ©rents domaines de l'IRM cardiaque. De plus, le « self-gating » du cadre « free-running » a dĂ©couplĂ© l'acquisition de la compensation de mouvement et a ainsi ouvert l'IRM cardiaque Ă  la classe plus large des techniques basĂ©es sur l'Ă©tat stationnaire utilisant des sĂ©quences de prĂ©cession libre Ă©quilibrĂ©e en Ă©tat stationnaire (bSSFP), qui se distinguent par leur simplicitĂ© d’utilisation et leur rapport signal sur bruit Ă©levĂ©. Le thĂšme de cette thĂšse est donc l'application des techniques basĂ©es sur l'Ă©tat stationnaire Ă  l'IRM cardiaque. La premiĂšre partie porte sur le long temps d'acquisition de l'actuel cadre « free-running» et se concentre sur l'imagerie anatomique coronaire. Le protocole publiĂ© utilise une acquisition bSSFP interrompue oĂč des modules de saturation de graisse (CHESS) sont insĂ©rĂ©s de façon Ă  fournir un contraste sang-graisse puisqu’ils suppriment le signal du tissu graisseux entourant les artĂšres coronaires, et sont suivis par des impulsions en rampe pour rĂ©duire les artefacts rĂ©sultant du retour Ă  l'Ă©tat stable. Cette acquisition interrompue souffre cependant d'un Ă©tat d'Ă©quilibre interrompu, d'une efficacitĂ© temporelle rĂ©duite et d'un dĂ©bit d'absorption spĂ©cifique (DAS) plus Ă©levĂ©. En utilisant les nouvelles impulsions d'excitation radiofrĂ©quence (RF) binomiales hors -rĂ©sonance insensibles aux lipides (LIBRE) dĂ©veloppĂ©es dans notre laboratoi re, ce premier projet montre que les impulsions LIBRE incorporĂ©es dans une sĂ©quence bSSFP ininterrompue et « free-running » peuvent ĂȘtre utilisĂ©es avec succĂšs pour l'IRM cardiaque 5D Ă  1,5 T. L'approche « free-running LIBRE » permet de rĂ©duire le temps d'acquisition et le DAS par rapport Ă  l'approche interrompue prĂ©cĂ©dente, tout en maintenant la perceptibilitĂ© des artĂšres coronariennes. En outre, il s'agit de la premiĂšre utilisation rĂ©ussie d'une impulsion d'excitation RF supprimant la graisse dans une sĂ©quence bSSFP ininterrompue pour l'imagerie cardiaque, ce qui dĂ©montre le potentiel d’utilisation de la sĂ©quence bSSFP ininterrompue pour l'IRM cardiaque et rĂ©sout le problĂšme de la disponibilitĂ© de la sĂ©quence en clinique. InspirĂ©e par la faisabilitĂ© d’utilisation de la sĂ©quence bSSFP ininterrompue pour l'IRM cardiaque, la deuxiĂšme partie Ă©tudie le potentiel de PLANET, une nouvelle technique de cartographie 3D multiparamĂ©trique, pour la cartographie 5D du myocarde via l’imagerie « free-running ». PLANET utilise une acquisition bSSFP Ă  cycle de phase et un algorithme d'ajustement d'ellipse direct pour calculer les temps de relaxation T1 et T2, ce qui suggĂšre que cette mĂ©thode pourrait ĂȘtre facilement intĂ©grĂ©e au cadre « free - running » sans interruption de l’état d'Ă©quilibre. AprĂšs calibration de l'acquisition, nous explorons la possibilitĂ© d'accĂ©lĂ©rer l'acquisition statique de PLANET pour l'appliquer au cƓur. Nous dĂ©montrons que l'exactitude et la prĂ©cision de PLANET peuvent ĂȘtre maintenues pour une accĂ©lĂ©ration double avec une trajectoire 3D cartĂ©sienne en spirale, ce qui suggĂšre que PLANET est rĂ©alisable pour la cartographie du myocarde avec une acquisition radiale 5D « free-running ». D'autres travaux devraient porter sur l'optimisation du schĂ©ma de reconstruction, l'amĂ©lioration de l'estimation de la sensibilitĂ© de l’antenne et l'examen de l'utilisation de la trajectoire radiale en vue de la mise en Ɠuvre de la cartographie 5D « free-running » T1 et T2 du myocarde. Cette thĂšse prĂ©sente deux approches utilisant des techniques de modulation de frĂ©quence radio en Ă©tat stationnaire pour l'IRM cardiaque. La premiĂšre approche implique l'application nouvelle d'une acquisition bSSFP ininterrompue avec une excitation RF hors rĂ©sonance pour l'imagerie anatomique coronaire. La seconde approche porte sur l'utilisation d’une sĂ©quence bSSFP Ă  cycle de phase pour la cartographie 5D T1 et T2 du myocarde. Ces deux mĂ©thodes permettent de rĂ©pondre au dĂ©fi posĂ© par la disponibilitĂ© des sĂ©quences en IRM cardiaque en montrant qu'une sĂ©quence commune et simple comme la bSSFP peut ĂȘtre utilisĂ©e pour l'acquisition, tandis que les Ă©tapes de compensation du mouvement et de reconstruction peuvent ĂȘtre traitĂ©es hors ligne. Ainsi, ces mĂ©thodes ont le potentiel de favoriser l'adoption de l'IRM cardiaque
    • 

    corecore