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Sodann möchte ich mich bei meinen alten und neuen Kollegen bedanken. Ihr
hattet einen großen Anteil daran, dass ich mich wirklich zu jeder Zeit sehr wohl
gefühlt habe in dieser Arbeitsgruppe. Neben der fachlichen Unterstützung und
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Xiaoqing und Zhengguo und natürlich die ganze Arbeitsgruppe!
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1
I N T R O D U C T I O N

In 1973 Paul Lauterbur published an essay entitled Image Formation by Induced Local
Interactions: Examples Employing Nuclear Magnetic Resonance [1], which did not only
earn him the shared Nobel Prize in Medicine or Physiology 2003 but also laid the
foundation for one of today’s most powerful and valuable imaging modalities in
hospitals and clinics worldwide: Magnetic Resonance Imaging (MRI). In the only one
page long manuscript Lauterbur introduced the concept of image formation using
magnetic field gradients. Sir Peter Mansfield, who shared the Nobel prize with
Lauterbur, further developed and formalized the mathematical concept of spatial
encoding using gradient fields, paving the way for MRI to become a clinically
useful modality [2–4]. While the first human thorax Magnetic Resonance (MR) image
was published by Damadian et al. in 1977 [5], the Aberdeen group around John
Mallard was the first to built a practical human MRI scanner in the early 1980’s [2].
The first step towards cardiac MRI was done in 1981, when Hawkes et al. obtained
an MR image of a human heart [6]. However, commercially available MRI systems
were not provided by vendors until 1985, which marks the start of the triumph of
clinically applied MRI.

MRI’s great popularity and value stems from being a non-invasive imaging tech-
nique, which can generate not only structural anatomic images but also offers a
variety of additional insights, such as flow or diffusion information in multiple di-
mensions. Compared to techniques like Computed Tomography (CT), MRI possesses
a superior and furthermore adjustable soft-tissue contrast. For its versatile appli-
cations MRI has become an almost indispensable tool in today’s clinical practice.
While brain and spine scans make up more than half of all clinically performed
MRI studies, cardiac MRI examinations account for only one percent [7]. This fig-
ure, however, should not hide the key role that this modality plays in the detection
and characterization of myocardial diseases through its diagnostic and prognos-
tic power [8]. Among others, the field of application of cardiac MRI spans the
assessment of myocardial ischemia and tissue characterization, coronary artery,
vascular and inflammatory heart disease, as well as hypertrophic cardiomyopathy
[9]. Furthermore, it is the gold standard method for cardiac structure and function
assessment [10].

Apart from the great value that this modality adds to our healthcare, MRI in gen-
eral - and cardiac MRI in particular - has faced one major limitation from the very
beginning of its conception: it is slow! Consequently, the quest for speed has moti-
vated engineers and scientists ever since. Besides significant improvements in hard-
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ware components, such as superconducting magnets, magnetic field gradient coils
and radio-frequency (RF) coils, new pulse sequences and novel image reconstruction
techniques have been conceived to accelerate MRI scans [11]. One early milestone
was set in 1986 by Haase et al. by introducing the Fast Low-Angle Shot (FLASH)
sequence [12]. Their proposed combination of RF pulses and magnetic field gra-
dients allowed for the acquisition of entire images in just a few seconds, while
being robust towards static magnetic field homogeneities and chemical shift arti-
facts. The FLASH sequence became one of the most widely used pulse sequences
and was implemented by all major vendors. Another substantial game changer
was the invention of parallel imaging, i.e. the use of multiple receive coils for signal
acquisition as pioneered by Sodickson et al. in 1997, which can accelerate the ac-
quisition time by a factor of two or more [13]. The latest landmark for rapid MRI
was set by Lustig et al. [14] and Block et al. [15] with the introduction of compressed
sensing and iterative image reconstruction to the field of MRI. Compressed sensing
enables image reconstruction from signals acquired at sub-Nyquist sampling rates,
thus cutting down the required scan time even further.

Although cardiac MRI could clearly profit from those general technical advances,
it has always occupied a special role amidst MRI applications for the great chal-
lenges posed by cardiac and respiratory motion. In the early years of MRI, data
acquisition was not fast enough to temporally resolve the cardiac cycle. Therefore,
a clever idea borrowed from CT [16] was adopted, which even today remains the
clinical standard: the use of the electrocardiogram (ECG) for gated scanning [17, 18].
By constantly monitoring the electrical excitation of the heart, individual heart
phases can be detected and the data acquisition corresponding to each heart phase
can be distributed over multiple heartbeats. This allows for the generation of a sin-
gle, spatially and temporally well resolved synthetic heartbeat from various actual
ones. This technique is known by the term CINE MRI. Nevertheless, in the decade
after the first MR image of a human heart, only minor improvements in the qual-
ity of cardiac MRI exams could be achieved due to the degradation by respiratory
motion [11]. Consequently, cardiac MRI could not keep pace with the advances in
image quality and clinical applicability that MRI soon brought to other regions of
the body.

The most intuitive way to eliminate respiratory motion artifacts is the demand
for breath-holds. This, however, was only feasible for standard hardware when
segmented data acquisition was introduced in 1991 [19], which cut down the scan
time for one CINE heartbeat - and likewise the required breath-hold time - by
a factor of 8 to about 16 seconds. Other techniques avoid the need for breath-
holds by tracking the respiratory motion using external devices [20] or specialized
sequences with navigator echoes [21].

Even today, about 30 years after its original conception, ECG gating in combina-
tion with breath-holds or external respiratory monitoring is the clinical standard
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in cardiac MRI at mosts facilities. This being said, the approach comes with var-
ious limitations that have been apparent early on. Patient preparation and the
proper positioning of ECG leads is essential to obtain a suitable ECG signal, but
can be cumbersome and laborious. Moreover, RF pulses, fast switching gradients
and the magneto-hydrodynamic effect lead to signal distortions, which can cause
mis-triggering, particularly at higher magnetic field strengths [22–25]. In extreme
cases, ECG leads may even cause burn injuries [26]. Moreover, for sick patients and
children repeated breath-holds can be exhausting and in certain cases might even
be infeasible, particularly for babies or non-compliant individuals. The placement
of respiratory belts or pneumatic pads costs time, can be error-prone and is not
always applicable [27]. Finally, the interleaved acquisition of additional navigator
echoes can destroy the steady-state condition in respective sequences and prolongs
the measurement time. These drawbacks, the perceived potential and the impact
that cardiac MRI - even in its early stages - had manifested in hospitals worldwide,
have spurred further technical developments [28].

An alternative to CINE MRI is real-time imaging, which completely avoids the
dependency on patient compliance and external devices. In real-time imaging, spe-
cialized acquisition and reconstruction techniques are utilized to resolve the full
cardiac dynamics of each heartbeat, rendering respiratory and cardiac gating ob-
solete. Some techniques even allow for on-the-fly reconstructions, which - without
significant time-lag - make the images directly available on the scanner [29–31]. De-
spite its relatively recent success, the idea of real-time imaging is not new but goes
back to the very beginning of MRI, when Ordidge et al. used Echo-Planar Imag-
ing (EPI) to generate a dynamic MRI movie of a rabbit heart [32]. Nevertheless,
due to its low spatio-temporal resolution and its high demands on the hardware
it was not until the turn of the century when real-time imaging started to play
a more and more important role in MRI research. With novel reconstruction ap-
proaches exploiting temporal correlations, the steadily increasing computational
power and the latest generation of hardware, a variety of different real-time MRI
techniques have been developed over the past two decades [33–38]. Still, most of
those approaches are computationally expensive and therefore do not allow for an
on-the-fly reconstruction. This is not only desirable in a clinical setting but also a
requirement e.g. for interventional cardiac MRI, which came up in the early 2000’s
[39]. In this respect, the Regularized Nonlinear Inversion (NLINV) approach proved
great potential soon after its conception [40–46]. NLINV does not only yield suit-
able results even from highly undersampled data but also dispenses with the need
for auto-calibration (AC) scans by intrinsically generating accurate coil sensitivity
maps - a crucial requirement for parallel imaging. However, the fact that real-time
NLINV is limited to the imaging of a single-slice at a time hinders its broader use
in clinical applications.
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A peculiarity of real-time NLINV is the employed radial sampling, i.e. the acqui-
sition of spatial frequencies on a non-Cartesian grid. In contrast, Cartesian imaging
always has been and still is the most commonly used acquisition strategy in clin-
ically applied MRI, mainly due to its robustness towards system imperfections
and straight-forward image reconstruction. However, non-Cartesian imaging has
proved to be particularly beneficial in terms of the temporal resolution [32]. In
the beginning of the 1990’s more and more researchers started to appreciate the
benefits of radial imaging, although already Lauterbur utilized this sampling strat-
egy for the very first MR image [1]. Radial acquisitions provide a number of in-
trinsic properties beneficial for the demands of fast MRI [47]. They are not only
relatively robust towards motion artifacts but also render the spatial resolution
largely independent from the number of views, which - besides the less disturbing
undersampling artifacts - allows for higher acceleration factors [11, 48]. However,
radially sampled data demand a more advanced reconstruction [49] and the ac-
quisitions are significantly more prone to system imperfections, such as gradient
delays, which need to be corrected for to avoid the related streaking artifacts [50].

Still, radial acquisitions are ideally suited for another strategy that has been
developed to tackle the problem of motion in cardiac MRI: Self-gating. Self-gated
MRI determines the cardiac and respiratory motion directly from the acquired data
itself and therefore can be considered an alternative to classical CINE MRI, refrain-
ing from the use of any external devices or breath-holds. The idea of self-gating
underlies the notion that cardiac and respiratory motion constitute major contribu-
tions to the acquired signal, which makes it possible to extract those motion signals
by frequent sampling of the energetically dominant low spatial frequencies. This
is naturally the case for radial imaging. The idea of self-gating is already quite old
[51] and has been improved and refined over the past thirty years [52–57]. Still, it
has never proved to be robust enough to prevail in clinical practice.

outline of this thesis Following an introduction to the basics of MR signal
generation and image reconstruction in Chapter 2, we will tackle several of the pre-
viously mentioned limitations of current methods used in cardiac MRI. In particu-
lar, we will take advantage of (multi-)spatial and (multi-)temporal correlations for
the goal of fast and robust multi-dimensional MRI. To this end, a reliable correction
of system imperfections is mandatory, which will be the focus of Chapter 3, where
we will introduce Radial Spoke Intersections for Gradient Delay Estimation (RING), a
simple, fast and powerful method for the auto-calibrated estimation of gradient de-
lays in radial imaging, which enables the elimination of streaking artifacts caused
by system imperfections [58, 59]. We will demonstrate the functionality of RING
on numerical simulations, phantom and in vivo experiments. As gradient delays
depend on the orientation and location of the imaging plane, gradient delay esti-
mates must be updated if the slice position changes. Since RING requires only a
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very small number of radial spokes, it allows for a frame-by-frame gradient delay
estimation and thus constitutes a valuable asset e.g. for interactive real-time MRI
experiments, as we will show in Chapter 4.

In Chapter 5, we will extend the NLINV algorithm for the joint reconstruc-
tion of multiple slices using the method of Simultaneous Multi-Slice (SMS) [40–
42, 60–63]. Like this, enhanced spatial frequency information can be used in ad-
dition to in-plane correlations to improve the image quality of each slice. This
combination of techniques, dubbed SMS-NLINV, allows for the reconstruction of
highly undersampled data, as we will demonstrate on phantom and in vivo mea-
surements. Moreover, SMS-NLINV intrinsically guarantees time-consistency for all
slices, which is favorable for the study of dynamic processes. In particular, the ad-
ditional integration of temporal regularization shown in Chapter 6 allows for real-
time cardiac SMS imaging. Furthermore, SMS-NLINV does not only yield image
information but also provides excellent auto-calibrated coil sensitivity maps, which
will be employed for parallel imaging and compressed sensing reconstructions in
Chapter 7.

The main topics of Chapter 7 will be the development of a novel dimensionality-
reduction and self-gating approach called Singular Spectrum Analysis for Advanced
Reduction of Dimensionality (SSA-FARY) [64, 65], which renders breath-holds and
additional hardware for the detection of cardiac and respiratory motion signals
in gated cardiac MRI obsolete. SSA-FARY borrows ideas from Singular Spectrum
Analysis (SSA) and can be considered a Principle Component Analysis (PCA) on a
time-delayed embedding. It intrinsically features data-denoising and band-pass fil-
tering, which makes it a powerful tool to robustly detect and separate cardiac and
respiratory motion signals. Additionally, it provides a natural solution to bin the
data into the respective cardiac and respiratory states. In combination with an ad-
vanced image reconstruction pipeline based on parallel imaging and compressed
sensing, we will demonstrate the feasibility of fast and robust multi-dimensional
MRI with high spatial and temporal resolution for single-slice, SMS and volumetric
Stack-of-Stars (SOS) experiments.

Finally, Chapter 8 will summarize the findings and provide an outlook towards
future work.
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2
M R I T H E O RY

2.1 fundamental principles of mri

In this section we will give a brief introduction on the fundamental principles of
MRI. An in-depth study of the underlying physics and all relevant mechanisms is
beyond the scope of this thesis and has been described extensively in the literature.
Therefore, the interested reader is referred to the introductory textbooks [66–71],
which also serve as general references for this section. The structure of this section
is inspired by [63].

2.1.1 The Nuclear Spin

MRI is based on the interaction of atomic nuclei with an external magnetic field,
an effect which is commonly known as Nuclear Magnetic Resonance (NMR). Atomic
nuclei are composed of protons and neutrons, which can both be classified as spin-
1/2 fermions. The spin is a relativistic quantum phenomenon, which is described
by the quantum number s. According to the Pauli principle, only atoms with un-
even nucleon number or with both an uneven number of protons and neutrons
have a non-zero spin: 1H (s = 1/2) , 13C (s = 1/2), 14N (s = 1), 17O (s = 5/2) [72,
73]. In the context of MRI the 1H-isotope is of particular interest as it constitutes a
building block for water and fat molecules, which occur abundantly in the human
body.

Quantum mechanics defines the spin by means of the spin operator

Ŝ = (Ŝx , Ŝy , Ŝz ), (2.1)

which satisfies the eigen-relations

Ŝ2 |χ〉 = h̄2s(s + 1)|χ〉, (2.2)

Ŝz |χ〉 = h̄sz |χ〉, sz = −s,−s + 1, ..., s − 1, s, (2.3)

where h̄ is the reduced Planck constant and |χ〉 represents a spin state in a two-
dimensional complex Hilbert space. As a spin-1/2 particle the 1H nucleus can
occupy two eigenstates given by |↑〉 (spin-up, sz = +1/2) and |↓〉 (spin-down, sz =
−1/2). Any spin state can therefore be composed by a superposition of these two
basis functions,

|χ〉 = c↑ |↑〉 + c↓ |↓〉 , (2.4)

7
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where c↑ and c↓ are complex numbers [70].
The spin shares many similarities with the classical angular momentum and,

according to the quantum mechanical correspondence principle, induces the mag-
netic moment

µ̂ = γ Ŝ. (2.5)

The gyromagnetic ratio γ is characteristic for each particle and takes the value
γ/2π = 42.5774 MHz T−1 for 1H-isotopes [74].

2.1.2 The Nuclear Zeeman Effect

The energy of a spin in a constant and homogeneous external magnetic field, which
for MRI is by convention defined to be parallel to the z-axis of the coordinate
system,

B0 = B0ez , (2.6)

is described by the Hamiltonian

Ĥ = −µ̂ ·B0

Eq.(2.5)(2.6)
= −γB0Ŝz . (2.7)

Since this operator is time-independent, the eigenvalue equation of Ĥ coincides
with the time-independent Schrödinger equation and the eigenvectors of Ĥ are
given by those of Ŝz , which for spin-1/2 particles yields

E↑ |↑〉 = Ĥ |↑〉 Eq.(2.3)(2.7)
= −h̄

2

γB0 |↑〉 , (2.8)

E↓ |↓〉 = Ĥ |↓〉 Eq.(2.3)(2.7)
= +

h̄

2

γB0 |↓〉 . (2.9)

This shows that the energy levels E↑ and E↓ of the corresponding eigenstates split
up due to the coupling of the spin with the external magnetic field strength B0.
This phenomenon is frequently referred to as the nuclear Zeeman effect. The corre-
sponding energy difference is given by

∆E = h̄γB0 = h̄ω0, (2.10)

where
ω0 := γB0 (2.11)

is called Larmor frequency [75].
Using the quantum mechanical density operator formalism, the time evolution

of the magnetic moment’s expectation value in a potentially time-varying external
magnetic field B(t) can shown to be determined by [76]

d
dt
〈µ̂〉 = γ 〈µ̂〉 ×B(t). (2.12)

8
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Hence, the expectation value of a spin’s magnetic moment 〈µ̂〉 evolves according
to the classical equation for the precession of a magnetic moment in an external
magnetic field. For B(t) = B0 the precession frequency is given by the Larmor
frequency ω0 = γB0 (Equation (2.11)) which is likewise related to the transition
energy ∆E = h̄ω0 (Equation (2.10)) between the two Zeeman states |↑〉 and |↓〉.

2.1.3 Bulk Magnetization

In MRI we are not interested in the behavior of individual spins but in the property
of the aggregate ensemble of spins inside a voxel. We therefore introduce the mag-
netization operator m̂ as the integral of the magnetic moment operator µ̂weighted
by the proton density ρ(r) at position r inside a voxel volume V,

m̂ =

∫
V ρ(r)µ̂d3r

V . (2.13)

At room temperature, the Fermi-Dirac statistics for fermions approach the Boltz-
mann distribution which determines the population of the energy states to be

P↑ =
e−E↑/kBTK

e−E↑/kBTK + e−E↓/kBTK
, (2.14)

P↓ =
e−E↓/kBTK

e−E↑/kBTK + e−E↓/kBTK
, (2.15)

with the Boltzmann constant kB and temperature TK [77]. Interestingly, for 1H nu-
clei at TK = 293 K and an external magnetic field strength of B0 = 3 T, which are
common conditions in a clinical setting, the lower energy state |↑〉 is only slightly
more populated by a relative fraction of

∆N

N
= P↑ − P↓ ≈ 10

−5, (2.16)

with N being the total number of spins. In the thermodynamic equilibrium, this
disparity in the occupation of states effects a non-vanishing value for the magneti-
zation, which points in the direction of the external magnetic field and is given by
[68, 76]

〈m̂〉eq = ρV
h̄2γ 2B0

4kBT
ez := 〈m̂z〉eqez , (2.17)

with the spin density of the voxel

ρV :=

∫
V ρ(r)d3r

V . (2.18)
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2.1.4 Bloch Equation

Measuring the magnetization 〈m̂〉 is the principle goal of all MRI experiments. The
magnetization does not only contain information about the proton spin density
of a voxel, see Equation (2.17), but can also be used to determine specific tissue
properties, such as relaxation times, and to encode e.g. flow or diffusion infor-
mation. However, the magnetization is not accessible to a direction measurement.
Therefore, the fundamental idea of MRI is to tip the magnetization away from its
equilibrium by applying a time-varying magnetic field by means of a resonant RF
pulse

Bω
1
(t) = B1(t)

©­­«
cos(ωt)
− sin(ωt)

0

ª®®¬ . (2.19)

This principle is also know as spin excitation in the literature. The RF pulse pos-
sesses two main parameters: The carrier frequency ω and the envelope function
B1(t), which will be discussed in more detail later.

In general, the evolution of the magnetization 〈m̂〉 = (〈m̂x 〉, 〈m̂y 〉, 〈m̂z〉)T in an
external magnetic field is governed by the Bloch Equation [78]

d
dt
〈m̂〉 = γ 〈m̂〉 ×B(t) +

©­­«
− 1

T2

〈m̂x 〉
− 1

T2

〈m̂y 〉
1

T1

(〈m̂z〉eq − 〈m̂z〉)

ª®®¬ , (2.20)

where 〈m̂z〉eq is defined by Equation (2.17) and B(t) is the total external magnetic
field. The Bloch Equation extends the dynamical behavior given in Equation (2.12)
by a phenomenological term, which accounts for relaxation effects quantified by
the T1 and T2 relaxation constants. T1 models the spin-lattice relaxation and charac-
terizes the time for 〈m̂z〉 to recover the equilibrium value 〈m̂z〉eq after excitation. T2

accounts for spin-spin relaxation and quantifies the decay of the transverse magne-
tization 〈m̂xy 〉, which is commonly represented in the complex plain by

〈m̂xy 〉 := 〈m̂x 〉 + i〈m̂y 〉. (2.21)

Solving the Bloch Equation leads to two important findings. First, a resonant RF
pulse Bω

1
(t) tips the magnetization vector 〈m̂〉 away from its longitudinal equilib-

rium, which yields a non-zero transverse component 〈m̂xy 〉. Second, for external
fields with vanishing transverse components, i.e. Bx = 0 and By = 0, the Bloch
Equation implies the solution

〈m̂z〉(r, t) = 〈m̂z〉eq +
(
〈m̂z〉(r, 0) − 〈m̂z (r)〉eq

)
e−t/T1(r), (2.22)

〈m̂xy 〉(r, t) = 〈m̂xy 〉(r, 0)e−t/T2(r)e−i
∫ t

0
γ Bz (r,τ )dτ . (2.23)
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For the constant field B(t) = B0 = B0ez the integral in Equation (2.23) yields∫ t

0

γBz (r,τ )dτ =
∫ t

0

γB0dτ = γB0t
Eq.(2.11)
= ω0t . (2.24)

Hence, the coupling of the transverse magnetization 〈m̂xy 〉 with B0 causes a pre-
cession of 〈m̂xy 〉 with Larmor frequency ω0 around the z-axis until 〈m̂xy 〉 vanishes
through relaxation. It is a physical principle that a precessing magnetization emits
an electro-magnetic wave, which is the signal acquired in MRI experiments.

2.1.5 Conclusion

MRI is a highly complex process based on the manipulation of a quantum mechan-
ical system using external magnetic fields. Still, the key idea behind MRI exper-
iments can be summarized in three simple steps: (I) A strong external magnetic
field induces a bias in the originally isotropic nuclear spin distribution of tissue,
which results in a net magnetization. (II) This magnetization can be tipped away
from its equilibrium into the transverse plane using a resonant RF pulse. (III) The
signal emitted by the precessing transverse magnetization is acquired and contains
tissue specific information.

2.2 the pulsed nmr experiment

In this section, we will illustrate how the fundamental principles of MRI are ex-
ploited in practical experiments to generate images. We will start off with the
description of MRI hardware components. After introducing the concept of slice
excitation, we will expound on the ideas of spatial encoding and k-space sam-
pling, which naturally suggests the underlying idea behind image reconstruction
in MRI [79].

2.2.1 The MRI System

A modern MRI system consists of six major elements: (I) A main magnet coil to
create a strong external magnetic field which is supposed to be as homogeneous
as possible. (II) Gradient coils for all three axis which enable the spatial encoding
of the signal. (III) A transmit- and receive RF system for spin excitation and signal
acquisition. (IV) Shielding, to reduce the outreach of the external magnetic field.
(V) A shimming system to ensure the uniformity of the external magnetic field.
(VI) A computer to control data acquisition and image reconstruction. A schematic
of elements (I)-(III) is depicted in Figure 2.1.
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Figure 2.1.: Schematic of the MRI coil system. The main magnetic coil creates the
external magnetic field. The x , y and z gradient coils enable the spatial encoding of
the signal. The RF transmitter and receiver are used for spin excitation and signal
acquisition. The graphic is adapted from [80].

2.2.2 Slice-Selective Excitation

In MRI experiments we desire a spatially resolved image of a specific Region of
Interest (ROI). To avoid disturbing signals from other parts of the body, it is possible
to excite only spins from a certain predefined region by making use of the spectral
nature of spin excitation. One of the most common approaches is the slice-selective
excitation.

As we can learn from Equation (2.11), the Larmor frequency of spins, or similarly
of the bulk magnetization vector, depends on the strength of the external magnetic
field. The magnetization vector can be tipped away from its equilibrium when a
resonant RF pulse is applied. The simple yet powerful idea which enables selective
excitation is to modulate the resonance frequency of the magnetization vector us-
ing an additional linear magnetic field gradient G. This allows for the excitation of
a subset region by applying an RF pulse with accordingly band-limited frequency
spectrum.

The magnetic field gradient

G := Ges (2.25)

yields an additional magnetic field

Bs(r) = (G · r)ez (2.26)

12
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which points in z-direction and whose strength depends on the spatial position
r. In combination with the constant external magnetic field B0 the total magnetic
field is in good approximation1 given by

B(r) = B0 +Bs(r)
Eq.(2.6)(2.26)
= (B0 +G · r)ez := B(r)ez . (2.27)

Accordingly, the Larmor frequency ωL becomes spatially dependent,

ωL(r)
Eq.(2.11)
= γB(r) Eq.(2.27)(2.11)

= ω0 +γG · r. (2.28)

Hence, the magnetic field gradient G introduces a linear frequency variation

∆ωL = γG∆s (2.29)

along a distance ∆s in direction of es.
Let the desired slice of thickness ∆s be perpendicular to es and let rc denote the

center of the slice. Then, the Larmor frequency at the slice center is given by

ωL(rc)
Eq.(2.28)
= ω0 +γG · rc := ωc. (2.30)

The magnetization inside this slice can be excited exclusively using an RF pulse
Bω

1
(t) (Equation (2.19)) with carrier frequency ω = ωc and frequency bandwidth

∆ωL.
With the definition of the shifted Larmor frequency

Ω(r) := ωL(r) −ωc (2.31)

the excitation profile for small flip angles2 is given by [81]

θ (r) ≈ γ
����∫ ∞

−∞
B1(τ )eiΩ(r)τdτ

���� . (2.32)

Here, the polar flip angle θ describes the degree to which the magnetization vector
is tipped away from the z-axis into the transverse plane. Equation (2.32) states that
the excitation profile can be approximated by the Fourier transform of the RF pulse
envelope B1(t). Hence, to accomplish a rectangular excitation profile of bandwidth
∆ωL the pulse envelope should be of type

B∆ωL
1,sinc(t) = sinc

(
∆ωL

2

t

)
. (2.33)

1 An inhomogeneous static magnetic field cannot have a varying field strength along a single axis
only, but requires so called concomitant fields along the remaining axis to fulfill the Maxwell equa-
tions. However, these additional components are small and can be neglected for high magnetic field
strengths in the order of several Tesla, which is the case in the setting of this thesis [81]. Still, in
low-field MRI the concomitant fields should be accounted for as they can lead to artifacts [82].

2 This approximation holds well for flip angles up to θ = 30
◦ and is still acceptable for flip angles

smaller than θ = 90
◦.
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For practical reasons, the RF pulse duration is restricted to a finite duration TRF.
To avoid strong side-lobes and to ensure a reasonable excitation profile, functions
such as the Hann windowWH(t) are commonly used to apodize the sinc-pulse [81],

B∆ωL
1
(t) =WH(t)B∆ωL

1,sinc(t) =
1

2

(
1 + cos

(
2πt

TRF

))
sinc

(
∆ωL

2

t

)
. (2.34)

Figure 2.2 illustrates the effect of RF pulse truncation and apodization. While
an infinite sinc pulse possesses a rectangular frequency domain representation,
the Fourier transform of a cropped sinc pulse shows severe side-lobes. These side-
lobes can significantly be reduced by apodizing the sinc function [63].

Figure 2.2.: Illustration of the effect of RF pulse truncation and apodization in time
and frequency domain. (Top) Infinite sinc, truncated sinc and Hann-windowed sinc
RF pulse envelopes in time domain. The vertical lines imply the finite pulse duration.
(Bottom) Real part of the Fourier transformed (F ) RF pulses in frequency domain,
where the shift according to the carrier frequency is implicitly assumed.
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To comply with the general notation in MRI literature and without loss of gen-
erality, we choose the slice-selection gradient to apply along the z-axis. To simplify
further discussions, we introduce the notation

B∆ωL ,ωc
1

(t) Eq. (2.19)(2.34)
= B∆ωL

1
(t)

©­­«
cos(ωct)
− sin(ωct)

0

ª®®¬ := Brf(zc ,∆z) (2.35)

for an RF pulse, which - with a particular choice of the slice-selection gradient, the
bandwidth ∆ωL and the carrier frequency ωc - excites a slice of thickness ∆z with
center position zc . Note that this convention evokes a vanishing z-component, for
which Equation (2.35) can also be expressed using a complex-valued shorthand
notation

B∆ωL ,ωc
1,xy (t) := B∆ωL ,ωc

1,x (t) + iB∆ωL ,ωc
1,y (t) = B∆ωL

1
(t)e−iωc t . (2.36)

A schematic illustration of the quantities involved in slice-selection is depicted in
Figure 2.3.

55

Figure 2.3.: Schematic illustration of the quantities involved in slice-selection: Center
of slice (zc), slice thickness (∆z), Larmor frequency at the center of slice (ωc), Larmor
frequency variation inside of the slice (∆ωL), magnitude of the magnetic field induced
by the slice-selection gradient (|Bs |).

2.2.3 Spatial Encoding

Magnetic field gradients do not only enable slice-selective excitation but can also
be utilized for spatial encoding. Given the external magnetic field with applied
magnetic field gradient (Equation (2.27)) the evolution of the transverse magneti-
zation 〈m̂xy 〉 according to the Bloch Equation (2.20) is given by Equation (2.23) and
reads

〈m̂xy 〉(r, t) = 〈m̂xy 〉(r, 0)e−t/T2(r)e−i(ω0t+φ(r,t )). (2.37)
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The phase term φ(r, t) is determined by the time course of the magnetic field gra-
dient

φ(r, t) := r ·
∫ t

0

γG(τ )dτ := r · k(t), (2.38)

with the k-space trajectory defined by

k(t) :=
∫ t

0

γG(τ )dτ . (2.39)

In MRI experiments, magnetization of the entire excited region V contributes to
the total acquired signal S , which can be modeled by the integral∫

V
〈m̂xy 〉(r, t)dr. (2.40)

Omitting the carrier frequency term e−iω0t , which is removed by quadrature de-
modulation in practice, and the relaxation term e−t/T2 , which is negligibly small for
our applications, we yield the signal equation

S(k) Eq.(2.37)(2.38)
=

∫
V
〈m̂xy 〉(r, 0)e−ir ·k(t )dr. (2.41)

Equation (2.41) suggests a Fourier relation between the transverse magnetization
〈m̂xy 〉 in image domain and the acquired signal S in k-space, i.e. the spatial fre-
quency domain. The Fourier relation Equation (2.41) is not only the basis for image
reconstruction in MRI, which will be covered in more detail in Section 2.3.1, but
furthermore imposes an important sampling requirement on the data acquisition.

In MRI experiments it is not possible to acquire the signal continuously, thus
only discrete samples of a finite area of k-space can be obtained. The Nyquist sam-
pling theorem states that a discretely sampled signal with sampling interval ∆k is
replicated in its Fourier conjugate domain at intervals 1/∆k. To prevent aliasing,
often called wrap-around-, infold- or overlapping-artifacts, the sampling interval
∆k should be chosen such that it fulfills the Nyquist condition

∆k ≤ 1

FOV
, (2.42)

with a Field of View (FOV) larger than the extend of the imaged object. Likewise,
the spatial resolution of the reconstructed image is given by

∆x :=
FOV
N

Eq.(2.42)
=

1

N∆k
, (2.43)

with N being the number of acquired samples [81]. An acquisition is called fully
sampled, if the Nyquist condition is fulfilled. To spare acquisition time, it is gener-
ally desirable to perform undersampled acquisitions, i.e. to acquire less data then
demanded by the Nyquist condition. In Section 2.3.1 we will present the concepts
of parallel imaging and compressed sensing which circumvent the Nyquist condition
and allow for suitable reconstructions even for high undersampling factors.
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2.2.4 k-space Trajectory

Closely related to the sampling requirement discussed in the previous section is
the k-space trajectory (Equation (2.39)), which constitutes an important concept
for the design of MRI experiments. Its specific choice can have a strong impact on
the resulting image quality. In general, the k-space should efficiently be covered
by the trajectory, such that sufficient spatial frequency information is acquired to
fulfill the Nyquist condition stated in Equation (2.42), which then allows for proper
image reconstruction. The most common trajectories are depicted in Figure 2.4.

(c)   Cartesian

(a)   EPI (b)   Spiral

(d)   Radial

kx

ky

kx

ky

kx

ky

kx

ky

Figure 2.4.: Schematic of popular k-space trajectories: (a) EPI, (b) Spiral, (c) Cartesian,
(d) Radial. The little arrow-heads point in the read-out direction, the dashed lines
denote the trajectory course where no data is acquired. A schematic of the gradients
used to acquire the red spoke highlighted in (d) can be found in Figure 2.5.

Very long trajectories, that aim to cover the entire k-space within a single exci-
tation as in EPI Figure 2.4a or spiral imaging Figure 2.4b are very efficient and
therefore allow for a high temporal resolution [32, 83]. However, for long read-out

17



mri theory

times relaxation effects can non longer be neglected and off-resonances caused by
field inhomogeneities can lead to image blurring and distortions [84].

To avoid this problem, the k-space signal can be acquired using multiple shorter
read-out lines, which is achieved by applying a sequence of RF excitations, also
called shots, and read-out gradients. The by far most common strategy is the Carte-
sian trajectory Figure 2.4c. Here, a single line is acquired per shot while a phase
encoding determines the line’s offset from the k-space center. In each shot the
trajectory traverses k-space in the same read-out direction, which makes this ap-
proach resilient towards system imperfections such as gradient delays [85]. Fur-
thermore, the data is naturally sampled on a rectilinear (Cartesian) grid, which
enables efficient image reconstruction using the Fast Fourier Transform (FFT). How-
ever, samples in phase encoding direction are temporally far apart, which makes
Cartesian trajectories sensitive to motion artifacts such as ghosting [86].

An interesting alternative to Cartesian imaging is the radial trajectory shown in
Figure 2.4d. Here, the read-out lines cross the center of k-space and are referred to
as spokes. Each spoke captures an equal amount of low and high spatial frequencies,
which constitutes a consistent sampling. The redundant information contained in
the intrinsically oversampled k-space center induces an averaging effect, which
can balance errors and inconsistencies from individual spokes and makes radial
imaging robust to motion artifacts [87]. The frequently sampled k-space center can
additionally be used to detect motion, which can be exploited for self-gating as will
be explained in Section 2.5.3. Moreover, radial imaging can provide a satisfactory
image quality even for a very little number of acquired spokes, since streaking arti-
facts evoked by k-space undersampling are less disturbing compared to Cartesian
trajectories, where omitted lines lead to reduced resolution or corrupting aliasing
artifacts. Nevertheless, one of the major drawbacks of radial imaging is its aptness
to system imperfections, which will be further discussed in Section 2.3.3. A de-
tailed examination of the advantages and disadvantages of radial imaging can be
found in [88].

Typically for all trajectories, the MRI system internally doubles the sampling rate
of the receiver to reduce the sampling distance ∆k on the k-space lines. For radial
trajectories, this approach naturally increases the FOV in both spatial directions by
a factor of two, which contributes to the fulfillment of the Nyquist condition Equa-
tion (2.42) and prevents aliasing artifacts. In contrast, for Cartesian imaging only
the read-out direction benefits from this so called read-out oversampling, while the
reduction of the sampling distance in phase encoding direction requires additional
line scans [88].
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2.2.5 Gradient-Echo Sequences

The time course of k(t) is given by Equation (2.39) and therefore is ruled by the
switching of external magnetic field gradients G. Additional gradients and an RF
pulse are required for slice-selective excitation as well as the generation of specific
tissue contrasts. The succession of pulses and gradients is commonly visualized
in a pulse diagram, which serves as a blueprint for the acquisition of a k-space
line. In an actual pulse sequence, such a unit is repeatedly executed while gra-
dient strengths and pulse characteristics may vary to achieve the desired k-space
trajectory and to induce a certain contrast.

Figure 2.5.: Pulse diagram for a radial FLASH (a) and a radial balanced Steady-State
Free Precession (bSSFP) (b) sequence. The RF pulse (A) and gradient (B1) are used for
slice-selection and the rewinder-gradient B2 compensates for the corresponding de-
phasing. Gradients (C1) and (D1) guide the k-space trajectory out of the k-space center.
Read-out gradients (C2) and (D2) make the trajectory traverse the k-space through its
center. During the flat-top time of the read-out gradients, the signal is acquired (E).
In (b), the gradients (B3), (C3) and (D3) balance the zeroth gradient moment of each
axis to zero. The red lines highlight the gradient strength used to acquire a radial
spoke, which is schematically depicted in Figure 2.4d. Without loss of generality and
to follow the general notation of MRI literature, the slice-selective gradient is applied
along the z-axis. To save time, the gradients (B2), (C1) and (D1) are commonly played
simultaneously.

For fast imaging, so called gradient-echo sequences - as opposed to spin-echo se-
quences, which will not be covered here - are the method of choice, with the FLASH
sequence being one of the most popular [12]. Figure 2.5 shows the pulse diagram
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of a single-slice FLASH sequence with radial read-out. Strategies for multi-slice
and volumetric imaging will be covered in Section 2.5.1. Slice-selective excitation
is achieved by the joint activation of an RF pulse (A) and a gradient pulse (B1),
see Section 2.2.2. The rewinder gradient (B2) compensates for the phase evolution
caused by the slice-selection gradient (B1). The radial trajectory for spatial encod-
ing is accomplished by the simultaneous activation of in-plane read-out gradients:
The dephasing gradients (C1) and (D1) guide the trajectory out of the k-space center.
The actual data acquisition (E), during which the trajectory traverses the k-space
on a straight line through the k-space center, happens exclusively during the flat-
top time of the read-out gradients (C2) and (D2). Additional spoiler gradients can
be activated after the acquisition of a line to dephase residual transverse magne-
tization, which prevents signal interference with future read-outs [89]. However,
the use of a randomized phase for the RF excitation pulse was shown to have a
similar effect [90]. This renders spoiler gradients obsolete and thus allows for a
shorter Repetition Time (TR), which defines the time span between the start of two
consecutive pulse units. For further acceleration, the gradients (B2), (C1) and (D1)
are commonly played simultaneously.

Instead of destroying residual transverse magnetization by RF or gradient spoil-
ing, the bSSFP sequence makes use of additional gradients (B3), (C3) and (D3) to
rephase the transverse magnetization [91]. These balancing gradients effect a van-
ishing zeroth gradient moment on all axis. A peculiarity of the bSSFP sequence is
the fact that the Echo Time (TE), i.e. the time span between the center of the RF pulse
(A) and the center of acquisition (E), must be half as long as the TR. In combination
with a phase variation of π in each RF pulse, effective magnetization rephasing can
be achieved [89]. This rephasing of the gradients yields a higher Signal-to-Noise Ra-
tio (SNR) for the bSSFP compared to the FLASH sequence. Therefore and because
of the superior blood to myocardium contrast, the bSSFP sequence is a particularly
popular choice for cardiac MRI [11, 92]. However, the bSSFP is prone to system
imperfections and, as a result of off-resonances, images often suffer from banding
artifacts, which become more severe for higher magnetic field strengths [89]. More-
over, it demands a relatively high flip angle θ & 35

◦ which can be problematic due
to Specific Absorption Rate (SAR) limitations, especially for large volume excitations
or long measurement times. In contrast, the FLASH sequence uses much smaller
flip angles θ . 20

◦ and enables shorter TRs for dispensing with rephasing gradi-
ents. It is less prone to system imperfections and still provides a reasonable blood
to myocardium contrast at 3 T field strength for single-slice imaging [42]. Never-
theless, the FLASH sequence is not suitable for volumetric measurements, as we
will discuss in Section 2.5.1.
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2.2.6 Conclusion

The concepts of slice-selective excitation, spatial encoding and the k-space formal-
ism are crucial for the understanding of any MRI experiment. In combination with
a gradient-echo sequence, rudimentary MRI image generation and reconstruction
can be performed. However, fast and robust multi-dimensional cardiac MRI de-
mands for more advanced concepts.

2.3 concepts of modern image reconstruction and data cor-
rection

In this chapter, we will outline the concepts of parallel imaging and compressed
sensing, which allow for a significant reduction of scan time. Moreover, we will
describe the basics of non-Cartesian image reconstruction and outline the problem
of gradient delays for radial imaging.

2.3.1 Parallel Imaging and Compressed Sensing

The fundamental idea of image reconstruction in MRI originates from signal equa-
tion (2.41) which formalizes the Fourier relation between the acquired k-space
signal and the actual image information. Here, we will present key concepts in
modern MRI image reconstruction by extending this signal equation to include
multiple receive channels and by introducing the concept compressed sensing.

parallel imaging To accelerate MRI scans and to improve the SNR, phased
array coils are commonly utilized for parallel or simultaneous data acquisition,
which coined the term parallel imaging [93, 94]. A phased array coil consists of
various receive channels, each being sensitive to a certain spatial region, which can
be modeled by a complex sensitivity map c(r). A schematic to illustrate the concept
of parallel imaging is provided in Figure 2.6.

Modifying Equation (2.41) accordingly yields the signal equation for coil j

S j (k) =
∫
V
c j (r)〈m̂xy 〉(r, 0)e−ir ·k(t )dr. (2.44)

If the data is available on a fully sampled Cartesian grid, the coil images 〈m̂xy 〉j :=
c j 〈m̂xy 〉 can efficiently be recovered by applying the FFT on each channel individu-
ally. One strategy to combine the resulting coil images is to calculate the Root-Sum-
of-Squares (RSS),

〈m̂xy 〉RSS :=

√√√ Nc∑
j=1

��〈m̂xy 〉j
��2. (2.45)
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Coil 
Image

Coil 
Sensitivity

Phased 
Array Coils

Figure 2.6.: Schematic illustration of the concept of parallel imaging. The actual object
information is sensed by various phased array coils (indicated by the red rectangles).
Each coil possesses a certain sensitivity, which covers only a portion of the object.
Consequently, each coil observes only part of the object, which is indicated by the
coil images. The additional information from multiple coils can be used to improve
the SNR and to accelerate the data acquisition. The color in the images represents the
complex phase.

However, a more accurate coil combination can be obtained using the Minimum-
Variance Unbiased Estimator (MVUE), which assumes equally distributed and inde-
pendent Gaussian white noise [95],

〈m̂xy 〉MVUE :=
1∑Nc

j=1
|c j |2

Nc∑
j=1

cHj 〈m̂xy 〉j , (2.46)

where H denotes the Hermitian adjoint. For the latter approach, explicit knowl-
edge of the coil sensitivity maps c j for each coil is required. The estimation of coil
sensitivities is often referred to as coil calibration.

The Eigenvector-based Iterative Self-Consistent Parallel Imaging Reconstruction (ES-
PIRiT) method has proved to be one of the most powerful methods to determine
accurate coil sensitivity maps and is widely used in the field of MRI [96]. ESPIRiT
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exploits local correlations in k-space to formulate a sub-space constraint on the
sensitivity maps, which can then be recovered using a Singular Value Decomposition
(SVD). To operate, it requires a fully sampled calibration region in the center of
k-space with samples on a rectilinear grid. Therefore, non-Cartesian data must be
gridded in a pre-processing step before they can be processed with ESPIRiT.

Another method to obtain high-quality coil sensitivity maps is NLINV which
treats Equation (2.47) as a nonlinear inverse problem [40, 41]. In Chapter 5 we
augment this algorithm to SMS-NLINV, which enables image reconstruction and
coil calibration of multiple simultaneously acquired slices for Cartesian and non-
Cartesian trajectories. In Chapter 7 we use this technique in combination with
Extended Nonlinear Inversion inspired by ESPIRiT (ENLIVE) [97] for high quality coil
calibration of SMS and volumetric SOS measurements in self-gated cardiac MRI.

While the calculation of the MVUE in Equation (2.46) is seldomly used in prac-
tice, coil sensitivities play a crucial role when fast scan times are desired and thus
only undersampled data is acquired. In fact, missing k-space data can be com-
pensated by using the complementary spatial information contained in the receive
coils, which allows for a significant increase in scan time [13, 93, 94]. To formal-
ize this concept, image reconstruction in MRI is commonly posed as an inverse
problem.

inverse problem formulation Signal equation (2.44) can be reformulated
using the operator-based vector notation

y = Fx +n, (2.47)

with the forward operator
F := PFC. (2.48)

Here, y = (y1, . . . ,yNc )T is the vector of acquired discrete k-space samples for all Nc

coils. P is the projection onto a certain k-space trajectory, F is the Fourier transform
andC is the coil sensitivity operator, which multiplies the vector of coil sensitivities
c = (c1, . . . , cNc ) with the image content x = 〈m̂xy 〉. We have furthermore included
the term n, which describes the channel-wise corruption by complex Gaussian
white noise [67]. For further considerations we assume noise in the channels to be
uncorrelated and of equal variance. This assumption does not always hold true
in actual phased array coils, but can be achieved using a pre-whitening step [98].
Note that the variables x and y can generally represent image content and data of
multi-dimensional acquisitions.

For unknown coil sensitivities c, Equation (2.47) poses a linear inverse problem,
where y is the measured variable and x is to be determined. Equation (2.47) can
also be considered a nonlinear inverse problem if both x and c are treated as
unknowns. This case will be covered in detail in Chapter 5. In this section, we will
focus on the linear formulation.
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In practical MRI experiments Equation (2.47) will not possess a solution, e.g. due
to the inconsistencies introduced by noise. Thus, a solution can be defined as the
vector x, which minimizes the least-squares error | |Fx − y | |2L2 . However, infinitely
many vectors x will satisfy this condition if the kernel of F consists of more ele-
ments than just the zero vector, ker(F ) ⊃ {0}. Therefore, the solution is typically
defined as the vector x? with minimum L2 norm | |x? | |2L2 which fulfills

x? = argmin
x

| |Fx − y | |2L2 . (2.49)

The direct formula for this x? is given by the Moore-Penrose pseudo-inverse [99–
101],

x? = F †y, F † := lim
λ→0

(FH F + λI )−1FH , (2.50)

with identity matrix I .

regularization and compressed sensing To allow for a numerically sta-
ble solution of badly conditioned linear systems, prior knowledge can be incorpo-
rated by introducing regularization terms in the cost function

x? = argmin
x

| |Fx − y | |2L2 +

NR∑
i=1

Ri (x), (2.51)

with NR the total number of regularization terms and Ri (x) different convex penalty
functions.

The simplest case made up of one quadratic penalty term R(x) = λ | |Γx| |2L2 is
called Tikhonov regularization, or to be more precise, Tikhonov-Phillips regular-
ization [102],

x? = argmin
x

| |Fx − y | |2L2 + λ | |Γx| |2L2 , (2.52)

with Γ a suitably chosen transform matrix. Equation (2.52) has the closed form
solution3

x? = F †Γy, F †Γ = (F
H F + λΓH Γ)−1FH . (2.53)

Intuitively, Equation (2.52) seeks for a solution x which provides a compromise
between minimizing the data fidelity term | |Fx − y | |2L2 and keeping | |Γx| |2L2 of rea-
sonable size. The Lagrange parameter λ tunes the influence of the penalty term
and is generally chosen heuristically [15, 103].

Another popular approach for regularization is the use of the L1 norm,

x? = argmin
x

| |Fx − y | |2L2 + λ | |Γx| |L1 . (2.54)

3 Note that in the limit of λ → 0 Equation (2.53) recovers the Moore-Penrose pseudo-inverse Equa-
tion (2.50).
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Compared to the L2 norm, which - for its quadratic nature - penalizes large values
in particular, the L1 norm penalizes small values much stronger. This promotes
sparse solutions, especially when the information content of the image vector x
can be localized in few non-vanishing components by a sparsifying transform Γ,
while keeping the noise distributed over all pixels. The concept of sparsity had
successfully been utilized for data compression [104] before its virtue for data ac-
quisition was realized and the term compressed sensing was coined [14, 15, 105]. In
fact, the concept of compressed sensing can be utilized to recover artifact-free im-
ages even for sub-Nyquist undersampling schemes. These undersampling schemes
should provide sufficient incoherence to generate noise-like undersampling arti-
facts, which can then be removed in a sparse domain using the L1 norm.

Two of the most popular sparsifying transforms in the field of MRI are the
wavelet transform and the finite-differences transform. Medical images are known
to be naturally sparse in the wavelet domain, for which the wavelet transform
is mainly used to sparsify the spatial dimensions [15]. On the other hand, time-
resolved medical image series often contain temporally piecewise constant regions
with occasional rapid intensity variations. Therefore, the finite-differences trans-
form Γ := D, with

| |Dx| |L1 :=
Nt−1∑
i=1

|xi+1 −xi | (2.55)

can be applied to penalizes the sum of absolute variations over all frames Nt in the
temporal domain [15, 103]. Accordingly, Equation (2.55) is commonly referred to
as the Total Variation (TV) of x.

As opposed to Tikhonov-Phillips regularization, no general and convenient closed
form solution for minimization problems with L1 penalties exists. Moreover, solv-
ing inverse problems using a direct matrix inversion poses large demands on mem-
ory and computational power and suffers from limited flexibility as it does not
allow for the use of arbitrary non-Cartesian sampling schemes. To overcome these
limitations, matrix-free operator-based iterative methods can be utilized.

iterative optimization algorithms Many successful iterative optimiza-
tion algorithms have been proposed to solve regularized inverse problems of differ-
ent kinds, e.g. [106–109]. A detailed discussion of the mathematical requirements
and convergence properties of these methods is beyond the scope of this thesis.
Instead, we will focus on the intuitive understanding of the two algorithms rele-
vant for the experiments of this work: The Conjugate Gradient (CG) method and the
Alternating Direction Method of Multipliers (ADMM).

The CG method developed by Hestenes and Stiefel [109] is used to solve linear
inverse problems of type

y = Ax, (2.56)
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where A is a symmetric, positive definite matrix. To fulfill this requirement, the
Tikhonov-Phillips-regularized minimization problem of Equation (2.52) can be trans-
formed into the equivalent Gauss normal equation

(FH F + λΓH Γ)x = FHy. (2.57)

The CG method was first introduced in the context of MRI image reconstruction
by [110]. It is inspired by the gradient descent algorithm [103], but enforces the
search directions di to be A-orthogonal, i.e. 0 = dTj Adi for all i, j. It can be shown
that the solution xn for iteration step n is element of a Krylov subspace Kn =

x0 + span{r0,Ar0, . . . ,An−1r0} with r0 the initial residual r0 = y − Ax0. This xn
minimizes the distance | |xn − x̄| |A to the exact solution x̄ in the norm defined by
| |x| |A =

√
xHAx. The great benefit of this concept compared to the gradient decent

approach is, that each descent direction is visited only once, which leads to faster
convergence. More details on the algorithm can be found in [111].

The ADMM can be viewed as blend of augmented Lagrangian and dual decom-
position methods. It was originally conceived in the 1970s [112, 113] and exten-
sively reviewed in [108]. Though not providing the fastest convergence rates, the
ADMM is still extremely popular and widely used for its ability to cope with an
arbitrary amount of convex penalty functions. This is achieved by splitting the min-
imization into smaller, local subproblems, which are then coordinated to find the
actual solution to the global problem. The algorithm can be applied to problems of
type

minimize f (x) +д(z)
subject to Ax + Bz = q,

(2.58)

where, simply put, f and д are convex functions, x, z and q vectors and A, B
matrices. The corresponding augmented Lagrangian is given by

Lρ (x, z,v) = f (x) +д(z) + vT (Ax + Bz − q) + (ρ/2)| |Ax + Bz − q | |2L2 , (2.59)

The ADMM minimizes Lρ in an alternating fashion with respect to either x or z,
while keeping the other variables fixed.

xn+1 := argmin
x

Lρ (x, zn ,vn),

zn+1 := argmin
z

Lρ (xn+1, z,vn),

vn+1 := vn + ρ(Axn+1 + Bzn+1 − q).

(2.60)

The update of v balances the individual solutions.
The subproblems for x and z are generally of simpler type and can be written

in terms of proximity operators

proxR,ρ (x̄) := argmin
x

(ρ
2

| |x − x̄| |2L2 + R(x)
)

, (2.61)
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which represent generalized gradient descent operations and are applicable even
for non-smooth cost functions. For common regularization penalties R(x) the prox-
imity operator is available in a computationally efficient form.4

To draw the connection to the minimization problem stated in Equation (2.54),
the functions and variables of Equation (2.60) can be identified as follows:

f (x) := | |Fx − y | |2L2 ,
д(z) := λ | |z | |L1 ,

A := Γ, B := −1, q := 0 ⇒ z = Γx.
(2.62)

2.3.2 Non-Cartesian Image Reconstruction

The Fourier transform is an essential part of the forward operator introduced in
Equation (2.48) of the previous section. Unfortunately, the Discrete Fourier Trans-
form (DFT) for discretely sampled data is a computationally demanding procedure,
which requires O(N 2

data) operations, where Ndata is the total number of samples,
including all spatial and temporal dimensions as well as all coils. Luckily, the com-
putational burden can be significantly reduced by the use of the FFT, which only
requires O(Ndata logNdata) operations [116]. Without the FFT, efficient image recon-
struction would not be feasible even with the latest high-performance computers
- particularly as iterative optimization strategies rely on the repeated execution of
the forward operator and its adjoint.

However, one major limitation of the FFT is the fact that it can only process Carte-
sian data. Hence, a straight forward application to non-Cartesian imaging is not
possible and demands particular attention. Therefore, the Non-Uniform Fast Fourier
Transform (NUFFT) G was conceived [117]. For the sake of comprehensibility, we
will first introduce the steps involved in the adjoint NUFFT GH , which describes
the transformation of non-Cartesian k-space data onto a rectilinear grid in image
domain. Essentially, the adjoint NUFFT combines a k-space interpolation with a
conventional FFT-based reconstruction.

The interpolation of non-Cartesian data onto a rectilinear grid is not trivial and
provides several pitfalls, which can degrade the outcome, since any modification of
the original data can manifest disturbing modulation effects in the corresponding
Fourier domain. We follow [49, 118, 119] for a brief description of the procedure
and use a continuous formulation for the sake of comprehensibility.

4 The solution to proximity operators with L2 norm penalty of type R(x) = | |Mx − b| |2L2
with constant

vector b is given in closed form if M is a unitary operator and can be calculated using the CG
algorithm if M is non-unitary. The solution to proximity operators with L1 norm penalties of type
R(x) = | |Mx− b| |L1 can be obtained by soft-thresholding if M is unitary. If M is non-unitary a solution
can be determined iteratively, e.g. using FISTA [108, 114, 115].
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In a measurement process, the continuous signal S(k) is sampled at Ntot discrete
non-Cartesian locations ki . This sampling can be understood as the multiplication
of the continuous signal S(k) with a sum of Dirac-delta functions,

ζ S(k) :=
Ntot∑
i=1

δ (k − ki )S(k). (2.63)

This signal is then convolved with a convolution kernel K, which yields the inter-
polated signal

Sinterp(k) =
∫
K
K(|k −κ|) · ζ S(κ)dκ, (2.64)

where the integral covers the entire k-space K . The preferred convolution kernel
K would be the sinc function, since the related convolution corresponds to a mul-
tiplication of the compact image space signal with a rect function. Thus, signal
distortion would be avoided [88, 117]. However, the sinc function as convolution
kernel is infeasible due to its infinite support. Therefore, the Kaiser-Bessel kernel
was proposed in [120] as a compact substitute. Next, the convolved signal is sam-
pled onto a rectilinear grid. This sampling can be modeled by the multiplication of
a comb-function III∆k consisting of Dirac-delta functions on a Cartesian grid with
sampling distance ∆k. Subsequently, the inverse FFT F −1

FFT can be performed. Fi-
nally, a roll-off correction is applied by multiplying the inverse Fourier transform
K̃−1 of the kernel, where the tilde denotes Fourier transformed quantities.

In operator notation, the adjoint NUFFT can be expressed by5

GHζ S(k) = K̃−1F −1

FFTIII∆kK∗ ζ S(k)
= K̃−1ĨIIFOV∗ K̃ζ̃ ∗ S̃(x),

(2.65)

where S̃(x) denotes the ideal continuous object in image space. Here, the Fourier
convolution theorem was used to obtain the second line, which provides insights
into the effects of the individual operations, illustrated in Figure 2.7. The sampling
of the continuous signal S(k) corresponds to a convolution of the ideal and con-
tinuous object function S̃(x) (Figure 2.7a) with the Fourier transformed sampling
operator ζ̃ . This effects blurring and furthermore creates pattern-specific side-lobes,
which can extend outside of the actual field of view (Figure 2.7b). The convolution
by the finite interpolation kernel K translates into a multiplication with K̃ in the
Fourier domain, which apodizes the signal (Figure 2.7c) and which is compensated
by the roll-off correction. The multiplication of the comb function III∆k translates
into a convolution with ĨIIFOV. This causes a repetition of K̃ζ̃ ∗ S̃(x) in the image
domain, with replicates located 1/∆k = FOV apart (Figure 2.7d).

To avoid aliasing through the leakage of side-lobes into the actual object, the
sampling is usually performed on a two-fold oversampled grid III∆k/2, yielding

5 Note that with the notation of Equation (2.47) the signal function ζ S(k) is a different representation
of the sampled signal y.

28



2.3 concepts of modern image reconstruction and data correction

Figure 2.7.: Illustration of modulation effects related to the adjoint NUFFT. In image
domain, the continuous object signal S̃(x) (a) is convolved with the Fourier trans-
formed sampling function ζ̃ , which induces blurring and side-lobes (b). The multipli-
cation of the Fourier transformed convolution kernel K̃ apodizes the object (c). The
subsequent convolution with the sampling function ĨIIFOV would create replicates from
which side-lobes (highlighted in red) leak into the actual object (d). Therefore, sam-
pling is performed onto a two-fold oversampled grid to shift the replicates further
apart, which allows the object to be extracted by cropping (red rectangle) (e). The
graphic was inspired by [119].
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the reduced sampling distance ∆k/2. Consequently, the FOV in image domain is
increased by a factor of two. Thus, the aliasing of side-lobes into the replicates
created by convolution with ĨII2FOV are shifted further away from the object and
can be eliminated by cropping the doubled FOV to its original size (Figure 2.7e).

The actual NUFFT G essentially conducts the described procedure in reverse
order and with adjoint operators to map a Cartesian image III∆x S̃(x) onto non-
Cartesian k-space locations:6

GIII∆x S̃(x) = ζK∗ FFFTĨIIFOV∗ K̃III∆x S̃(x) (2.66)

In the inverse problem formulation of MRI image reconstruction, the forward
operator for non-Cartesian imaging FG can easily be adapted from the original def-
inition F (Equation (2.48)) by replacing the Fourier transform F and the projection
operator P with the NUFFT operator G,

FG := GC. (2.67)

For non-Cartesian imaging, iterative optimization of Equation (2.49) requires the
repeated application of the normal operator FHG FG , which essentially concatenates
the NUFFT and its adjoint. Such a composition corresponds to a convolution with a
point-spread function, which can be realized by two FFTs and a multiplication [121].
Like this, the interpolation step can be separated from the iterative optimization,
which enables efficient computation [41].

Note that unlike the Cartesian case, where the appropriately scaled adjoint FFT is
likewise the inverse FFT, the NUFFT is not unitary due to the involved convolution
step. Hence, the adjoint of the NUFFT is not its inverse.

One way to invert the NUFFT operation and thus to obtain an image x from
non-Cartesian data y is to solve the inverse problem Equation (2.49) with forward
operator Equation (2.67). Alternatively, the gridding approach can be employed,
which approximates the inverse NUFFT by combining a density compensation of
the sampled k-space data with an adjoint NUFFT. The necessity of the density
compensation originates from the fact that non-Cartesian data are by definition
not sampled equidistantly, which must be accounted for to avoid image blurring.
Typically, the density compensation function is estimated using a Voronoi diagram
[122]. However, for radial imaging density compensation can be performed using
the Ram-Lak filter [123, 124] which makes up for the higher density of the k-space
center compared to the peripheral regions.

6 Note that with the notation of Equation (2.47) the image function III∆x S̃(x) is a different representa-
tion of the image x on discrete Cartesian samples.
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2.3.3 Gradient Delay Correction

Besides all benefits, non-Cartesian imaging does not only complicate the image
reconstruction, but also poses challenges in the measurement process. So far we
have considered undistorted signal generation and data acquisition, neglecting the
influence of system imperfections and hardware limitations. Indeed, over the years
MRI vendors have improved the quality and standards of their systems consider-
ably, but even the best maintained and calibrated scanners cannot guarantee ideal
conditions. Particularly, the use of fast switching high-amplitude gradients as in
FLASH and bSSFP sequences can cause violations of the idealized assumptions
underlying MR image formation. In this section, we will only focus on hardware-
timing errors and eddy currents, which - if not properly accounted for - can dis-
tinctly corrupt the resulting image quality, particularly for radial imaging. A good
overview of other hardware and non-hardware related MRI artifacts can be found
in [81, 125].

gradient delay theory Faraday’s and Lenz’s law state that any change of
the magnetic flux induces a current in an electric circuit, which creates a magnetic
field that counteracts the change of the magnetic flux. In the context of MRI, these
eddy currents are created by ramping magnetic field gradients up and down. The z-
component Bec

z of the magnetic field strength created by eddy currents is spatially
dependent and can be approximated by a Taylor expansion [81]

Bec
z (r, t) = b0(t) + r · g(t) + . . . . (2.68)

The 0
th order term is often referred to as B0 eddy current, whereas the 1

th or-
der term is called the linear eddy current. Higher order terms can generally be
neglected [81]. The vector g(t) represents eddy-current-induced magnetic field gra-
dients along all three spatial axis.

The magnetic field defined in Equation (2.68) can be interpreted as eddy-current-
induced field homogeneities, which lead to a spatio-temporally dependent phase
accumulation during signal acquisition [126],

Φec(r, t) = γ
∫ t

0

Bec
z (r,τ )dτ ≈ γ

∫ t

0

b0(τ )dτ +
∫ t

0

r · g(τ )dτ . (2.69)

Note that for each acquired line in k-space the strength of the applied gradients
may differ, see Equation (2.39), and consequently the corresponding values for b0(t)
and g(t) may vary, too.

The B0 eddy current contributes a global phase for each acquired k-space line,
while the first-order eddy current causes a spatial linear phase-variation in image
space, which corresponds to a shift in k-space. The B0 eddy current compensa-
tion is mainly required for small-bore high-field MRI systems, which are usually
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employed for animal studies [126]. In contrast, linear eddy currents cause sever
artifacts on most scanners if not properly accounted for. We therefore consider the
effects of linear eddy currents in more detail.

The individual components of g(t) can be modeled by [127, 128]

дi (t) =
∑

j=x ,y ,z

−
(
d

dt
G j (t)

)
∗ Ei j (t) ≈ −

(
d

dt
Gi (t)

)
∗ Eii (t), i = x ,y , z, (2.70)

where Gi (t) is the ith component of an applied magnetic field gradient, ∗ denotes a
convolution and E(t) is the eddy current impulse response. In Equation (2.70) the
cross-terms with i , j can usually be neglected. Note that the eddy currents are
stronger for gradients with steep slopes dGi/dt , which are commonly used for fast
imaging sequences such as bSSFP and FLASH.

It was shown in [127, 128] that the eddy current impulse response can accurately
be represented by a superposition of few decaying multi-exponential functions

E(t) =
{ ∑

n αne
−t/τn t ≥ 0

0 t < 0

(2.71)

of amplitude αn and time-constant τn .
To gain an intuitive understanding of the effect of eddy currents, we consider

a trapezoidal gradient with maximum strength Gmax
i , ramp time Tramp and corre-

sponding slope [81]
d

dt
Gi (t) =

Gmax
i

Tramp
, 0 ≤ t ≤ Tramp (2.72)

where t = 0 signifies the beginning of the ramp. For n = 1 and in combination with
Equations (2.70) and (2.71), we obtain

дi (t) = −
Gmax
i

Tramp
ατ (1 − e−t/τ ), 0 ≤ t ≤ Tramp. (2.73)

For large time-constants τ we can approximate e−t/τ ≈ 1 − t/τ , which yields

дi (t = Tramp) ≈ −Gmax
i α . (2.74)

These kind of eddy current induced magnetic field gradients are - in first order ap-
proximation - time-independent and possess an opposed sign for rising and falling
ramps. Therefore, they can be assumed to partially cancel out one another, partic-
ularly if the flat-top time of the gradient Gi (t) is smaller than the time-constant τ .

For small values of τ we find

дi (t) ≈ −
Gmax
i ατ

Tramp
, (2.75)

32



2.3 concepts of modern image reconstruction and data correction

which yields the net magnetic field gradient

Gnet
i (t) = Gi (t) +дi (t) ≈

Gmax
i · (t − ατ )

Tramp
= Gi (t − ατ ), 0 ≤ t ≤ Tramp. (2.76)

Thus, short linear eddy currents delay the start of an applied gradient waveform
on axis i by the amount ατ . This finding is the foundation for many gradient delay
correction strategies [50, 81, 85, 129] and also constitutes the basis for our study in
Chapter 3.

Additionally to the delays caused by eddy currents, other hardware related ef-
fects such as group delays in the amplifier or in the transmit and receive electronics
can deviate the start of magnetic field gradients [81]. In fact, delays from eddy cur-
rents with short time-constants cannot be distinguished from actual system delays,
for which gradient delays are sometimes referred to as apparent system delays [85].

Various approaches to account for gradient delays using preemphasis hardware
exist and are implemented in current scanner hardware [81, 127, 130–132]. How-
ever, pre-compensation capabilities are limited by the gradient amplifier band-
width [81] for which gradient delays cannot entirely be eliminated.

effect of gradient delays on cartesian and radial imaging For
Cartesian k-space trajectories, sampled line-by-line in a consistent read-out direc-
tion, gradient delays do not impact the resulting image quality. If all lines in k-
space are shifted by the same amount and in the same direction, the magnitude
image of the reconstruction remains uncorrupted and the shift in k-space is, in
accordance with the Fourier shift theorem, translated into a linear phase in image
space. In radial imaging gradient delays induce inconsistent shifts for all acquired
lines due to the varying projection angle. As a result, both the magnitude and the
phase image are affected and artifacts become visible. Figure 2.8 exemplifies this
behavior on a numerical simulation of a Shepp-Logan phantom.

2.3.4 Conclusion

While the use of parallel imaging is nowadays the clinical standard to accelerate
scans, the inverse problem formulation in combination with iterative reconstruc-
tion algorithms in general, and compressed sensing in particular, is a relatively
new trend, which exhibits great potential for further scan time reduction.

The processing of data, which are not sampled on a rectilinear grid can natu-
rally be integrated into the forward operator by means of the NUFFT. However,
non-Cartesian imaging is prone to system imperfections. Gradient delays are par-
ticularly problematic for fast switching sequences and cause image degradation
in radial imaging. Only with the gradient delays properly accounted for, a high
quality image reconstruction is feasible.
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Figure 2.8.: Schematic and numerical simulation to demonstrate the effect of gradi-
ent delays for Cartesian (a) and radial (b) k-space trajectories. The top row shows
schematic reference k-spaces for Cartesian and radial sampling, as well as their shifted
counterparts. The shift direction is highlighted by red arrows. Underneath, reference
images and images affected by gradient delays are depicted for Cartesian and radial
trajectories. For Cartesian line-by-line sampling with consistent read-out direction, gra-
dient delays and their corresponding k-space shifts are translated into a linear phase
in image space and do not corrupt the magnitude image. For radial imaging, the lines
are shifted in different directions, which causes artifacts in the magnitude image.

To account for gradient delay effects, we will introduce in Chapter 3 a novel
and intuitive method to estimate the gradient delays for radial imaging and com-
pare it to the (AC-)Adaptive method [133, 134], which is described in the Ap-
pendix A. In Chapter 5 we will introduce the Iteratively Regularized Gauss-Newton
Method (IRGNM) algorithm, which solves the nonlinear inverse problems by local
linearization. The linearized cost function is then minimized via the CG method.
We will use this approach to reconstruct severely undersampled SMS acquisitions
and to determine coil sensitivity maps. We will make use of the ADMM in Chap-
ter 7 to solve linear inverse problems with combined in-plane wavelet and (spatio-)
temporal TV regularization. This enables the reconstruction of highly undersam-
pled multi-dimensional cardiac MRI acquisitions.
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2.4 conventional methods in cardiac mri

Despite of all progress in data acquisition and image reconstruction, MRI always
has been and still must be considered a slow imaging modality. Consequently, any
kind of motion can lead to artifacts and image degradation. Due to the ubiqui-
tous beating heart and patient respiration, cardiac MRI faces a huge challenge. In
this section, we will introduce the ECG as a means to detect and section the car-
diac motion and present several approaches used in clinical practice to deal with
respiration.

2.4.1 Cardiac Gating using the Electrocardiogram

The ECG is a monitoring device, which uses electrodes to image the heart’s elec-
trical activity. In particular, it detects the QRS complex, i.e. the most characteristic
wave in the electric signal, which is caused by the depolarization of the ventricles.
The QRS complex does not define the actual start of a cardiac cycle, but constitutes
the most stable reference point to detect. The ECG allows for a segmented data
acquisition of one or more phases of the cardiac cycle over multiple heartbeats
[16]. Assuming a periodic heartbeat, this so called gated imaging can be used to
generate results with a high spatial and temporal resolution.

In the context of cardiac MRI, the ECG was used from early on [17, 18]. In princi-
ple, two different gating strategies can be distinguished. For prospective gating, also
know as cardiac triggering, data acquisition begins only after the detection of the
QRS event and a user defined time delay. It is utilized to generate a static image of
a particular phase of the cardiac cycle. For retrospective gating, data is continuously
acquired. The simultaneously recorded ECG signal can be used to reorder or bin
the data into the respective cardiac phases. Retrospective gating is used for CINE
MRI, where the cardiac motion is temporally resolved. ECG-based cardiac gating
is illustrated in Figure 2.9a and Figure 2.9b.

Since the ECG relies on the accurate detection of electric potential differences in
the myocardium, its acquisition in the presence of a huge external magnetic field,
varying magnetic field gradients and repeatedly applied RF pulses is a highly non-
trivial task. While the bandwidth of RF pulses in MRI lies mainly in the megahertz
range and can therefore be filtered out [135], the switching of the gradient fields
happens in the kilohertz-range, which causes an apparent deterioration of the ECG
signal, particularly for fast switching sequences [22]. Another impact on the ECG
signal is induced by the interaction of the static external magnetic field and electri-
cally charged particles and cells in the blood flow. Those cells experience a force
perpendicular to their velocity. This phenomenon, know as magneto-hydrodynamic
effect or Hall effect, can induce additional disturbing electrical fields within blood
vessels [23, 24].
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(a) Gating Strategies
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Prospective Gating

Retrospective Gating
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Figure 2.9.: Illustration of cardiac gating using the ECG. (a) schematically shows
the time-course of an ECG with one QRS complex highlighted in red. Furthermore,
the data acquisition period for prospective and retrospective gating is indicated. For
prospective gating, data acquisition of a specific cardiac phase is performed after each
QRS complex, followed by a user-defined time delay ∆t . For retrospective gating, data
is continuously acquired. According to the ECG signal, each data block is then binned
into its respective cardiac phase and data from various heartbeats are combined for
image reconstruction of the cardiac cycle (b). In (c), an example for successful and
failed cardiac ECG gating is depicted.

36



2.4 conventional methods in cardiac mri

The mentioned effects can induce ECG signal distortions and significantly im-
pact the accuracy and precision of cardiac gating, which then results in artifacts
through inaccurate binning, as Figure 2.9c shows. The impact of the MRI environ-
ment on the ECG signal is in general more severe the higher the field strength [25].
A seldomly used alternative to circumvent this problem is the peripheral pulse trig-
ger [136]. However, the relation between cardiac cycle and peripheral pulse, which
is usually detected using a device placed on the patients finger, is imprecise as it
depends on the stroke volume and the arterial wall stiffness [137].

For more information on the use of ECG in the context of MRI, we refer the
reader to the review article [138].

2.4.2 Respiratory Monitoring and Breath-hold Commands

Not only the beating heart but also respiration can induce motion related artifacts
if not properly accounted for. Human respiration is a complex process which in-
volves a combination of deformation as well as longitudinal and transverse transla-
tion of organs [48, 139]. In fact, proper handling of respiratory motion constituted
one of the major challenges in the early days of cardiac MRI and still is a topic of
active research [11, 140–143].

The most simplistic but still most popular approach to deal with respiratory mo-
tion is to command breath-holds during acquisition. To obtain high-resolution im-
ages with sufficient spatial coverage, a single breath-hold usually does not suffice
for gated acquisitions, thus the volunteer is repeatedly dictated to hold his breath
after expiration for a period of about 8 − 15 seconds. This strategy can eliminate
abdominal motion to a large extend, such that complementary data from various
breath-holds can be acquired and combined. Nevertheless, there is no guarantee
for a consistent heart position in each acquisition period, since the depth of breath-
ing and corresponding breath-holds can be subject to variations. Further obvious
drawbacks of commanding breath-holds are patient discomfort, the delay required
for the patient to recover from a breath-hold and the need for patient compliance,
which is especially problematic for sick patients and children.

Alternatively, respiratory belts or cushions can be utilized to monitor the breath-
ing motion [144]. Such devices are commonly placed on or around the abdomen
and are connected to a pneumatic pressure transducer, which relates pressure
changes with circumferential variations of the abdomen caused by respiration
[145]. Thereby, the patient’s breathing motion can be tracked in real-time and data-
acquisition can be restricted to a fixed respiratory state - mostly end-expiration
- while the patient is allowed to breath freely. This, however, introduces a dead-
time where no data is acquired. Despite the improved patient comfort, respiratory
monitoring using external devices did not find widespread application in clinical
environments, mainly due to its limited reliability [146, 147].
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Finally, respiratory monitoring without the use of external devices can be achieved
using Navigator Echoes (NAV) [21]. Here, the actual data acquisition is interleaved
with additional slice-selective RF pulses used to generate projections through the
abdomen. These projections are typically positioned to image the superior-inferior
motion of the right hemi-diaphragm, i.e. the interface between liver and lung, and
thus serve as scouts to track the respiratory motion. Similar to the respiratory belt,
patients are allowed to breath freely as respiratory motion can be eliminated in the
acquisition by confining data acceptance to e.g. end-expiration. The main drawback
of the NAV approach is the prolonged measurement time due to the interleaved RF
pulses. Moreover, these interleaves can disrupt the steady-state condition in certain
sequences.

2.4.3 Whole Heart Coverage

For a thorough cardiac assessment, physicians require information about the entire
heart. The common strategy to fulfill this requirement is the use of gated multi-slice
MRI, where multiple slices are acquired in an interleaved or sequential fashion us-
ing a conventional gated single-slice cardiac MRI technique. Although being a ro-
bust and probably the most obvious way to cover the third spatial dimension, the
conventional multi-slice approach has three major limitations. First, it is slow. De-
spite evident similarities between adjacent slices no mutual information is shared,
e.g. through regularization. Hence, the acquisition-time increases proportionally
to the number of acquired slices. Second, it introduces temporal inconsistencies.
Since each slice is scanned individually, the results can only be synchronized retro-
spectively, which might impair the integrity of the imaged volume. Third, several
stacks of slices with varying slice orientations, such as the short-axis or the four-
chamber view, need to be acquired. This procedure is not only lengthy but also
requires a trained technician for adequate slice planning.

2.4.4 Conclusion

Current approaches to deal with cardiac and respiratory motion can provide a
high-quality output, but include a cumbersome placement of external devices, de-
mand patient compliance and involve laborious slice-by-slice scanning. Instead, a
fast and universal approach, which provides maximal patient comfort and which
is applicable not only for compliant adults but also sick patients or children is
desired. Promising modern approaches, that try to achieve this goal by enhanced
data processing and the use of temporal and spatial correlations, will be covered
in the subsequent section.

In Chapter 7 we will perform experiments employing the ECG, breath-holds and
the respiratory belt for comparison and validation purposes.
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2.5 advanced methods for multi-dimensional cardiac mri

The techniques and strategies described in the previous section still are the com-
mon choice for cardiac MRI assessments in the vast majority of hospitals world-
wide - despite the apparent drawbacks and the huge potential for improvements.

In this section, we will introduce alternative approaches, which can overcome
many of the aforementioned limitations. In particular, we will present concepts,
which take advantage of multi-spatial and multi-temporal correlations to diminish
the data demand with little sacrifice to image quality. Moreover, we will expound
the idea of self-gated cardiac MRI to eliminate the dependency on external hard-
ware or patient compliance and frame it in the context of dynamical systems theory
and time-delayed embedding.

2.5.1 Approaches Towards the Third Spatial Dimension

For a thorough cardiac assessment single-slice information is insufficient and the
use of conventional multi-slice imaging is lengthy, potentially introduces spatio-
temporal inconsistencies and neglects the opportunity to exploit three-dimensional
spatial correlations. Therefore, we present the alternative concepts of SMS and vol-
umetric imaging to take advantage of the three dimensional nature of the problem.

simultaneous multi-slice imaging Instead of measuring all desired slices
separately, in SMS imaging multiple slices are excited and acquired simultaneously
[148]. This does not only improve the SNR, but also guarantees inter-slice time-
consistency and allows for significantly reduced scan times [149, 150]. The acquired
signal in SMS MRI is a superposition of the signals emitted by the individual
slices. To facilitate the slice-disentanglement, a unitary slice-encoding scheme is
commonly utilized. For this purpose, a possible option is Hadamard encoding [151],
which - however - provides some restrictions regarding the choice of number of
slices. The more popular - and likewise more natural - choice in the context of MRI
is Fourier encoding.

To acquire and reconstruct M slices we have to perform M Fourier-encoded SMS
measurements

ỹp =
M∑
q=1

Ξpqyq , (2.77)

with ỹp the superposed signal for one encoding, which we will refer to as the
signal of partition p. Here, the tilde symbol ·̃ denotes Fourier-encoded variables.
The signal of slice q is represented by yq and

Ξpq = exp
(
−2πi(p − 1)(q − 1)

M

)
(2.78)
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is the discrete M ×M Fourier matrix.
The decoding of signal Equation (2.77) for fully sampled SMS acquisitions can

be performed using the inverse Fourier matrix Ξ−1

qp , which reveals the averaging
nature of SMS MRI

ySMS
q :=

M∑
p=1

Ξ−1

qp ỹp
Eq. (2.77)
=

M∑
p=1

Ξ−1

qp

M∑
m=1

Ξpmym =

∑M
i=1
yq

M
. (2.79)

Since the averaging of signals diminishes the impact of noise, SMS acquisitions
yield an SNR benefit of

√
M compared to individual single-slice measurements [63].

However, the application of the inverse Fourier matrix to obtain disentangled
slices is only possible for aligned trajectories, where the sampling positions are the
same for all encodings ỹp . If a different, so-called interleaved trajectory is chosen
for each encoding, the slices can no longer be disentangled by a simple mathemat-
ical operation and image reconstruction must be performed jointly for all slices.
What sounds like an adverse complication at first eventually turns out to be highly
advantageous. For interleaved trajectories, complementary k-space information for
all slices is acquired in each encoding, which vastly augments the global k-space
coverage. This also explains why the scan-time can be significantly reduced com-
pared to conventional multi-slice measurements: The complementary k-space in-
formation from each encoding allows for a high undersampling of the individual
encodings, while still preserving a good k-space coverage. This approach is also
known as (non-Cartesian) Controlled Aliasing in Parallel Imaging Results in Higher
Acceleration (CAIPIRINHA) in the literature [152, 153] and will be studied in more
detail in Chapter 5. Note that for fully sampled SMS acquisitions there is no tem-
poral benefit compared to conventional multi-slice measurements.

The actual disentangling of slices in SMS acquisitions with interleaved trajecto-
ries happens naturally in the image reconstruction routine by the use of coil sensi-
tivity information and is mathematically equivalent to the use of parallel imaging
for in-plane undersampling. Therefore, a requirement for the successful application
of SMS MRI is sufficient coil sensitivity variation in slice direction. More details on
the reconstruction of SMS MRI measurements and a study of the benefits of vari-
ous k-space trajectories for different slice-encodings can be found in Chapter 5.

To achieve a Fourier-encoded SMS excitation for M slices is straight forward. Let
B(1)rf (zq ,∆z) from Equation (2.35) be an RF pulse, which excites a single slice of
thickness ∆z at slice-center location zq . Then, the SMS excitation pulse for partition
p is the superposition of single-slice RF pulses modulated by the respective Fourier
factors,

B̃(M )rf,p (z1, . . . , zM ,∆z1, . . . ,∆zM ) :=
M∑
q=1

ΞpqB
(1)
rf (zq ,∆zq). (2.80)
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To enable a convenient implementation on the MRI scanner, Equation (2.80) can
be reformulated [63]. For the sake of simplicity, we assume a constant slice thick-
ness ∆z and an equal inter-slice distance for all slices q. With the definitions

Ωc :=

∑M
q=1

ωc ,q

M
, ∆Ωq := ωc ,q − Ωc , (2.81)

where ωc ,q is the carrier frequency of slice q, we obtain7

B̃(M )p,xy (z1, . . . , zM )
Eq.(2.36)(2.80)
=

∑M
q=1

ΞpqB
(1)
1
(t)e−iωc ,q t

Eq.(2.81)
=

(
B(1)

1
(t)∑M

q=1
Ξpqe

−i∆Ωq t
)
e−iΩc t .

(2.82)

Hence, a single carrier frequency Ωc can be used in combination with a phase-
modulated single-slice pulse envelope B(1)

1
to achieve Fourier-encoded SMS excita-

tion. A schematic of exemplary SMS RF pulse envelopes to excite four slices with
Fourier-encoding according to the 4 × 4 Fourier matrix

Ξ
Eq.(2.78)
=

©­­­­«
1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

ª®®®®¬
(2.83)

is given in Figure 2.10 (top row). The corresponding frequency domain representa-
tions (bottom row) illustrate the four separated frequency bands of the individual
pulses. The respective phase of the bands represents the Fourier-encoding accord-
ing to the rows of Fourier matrix Equation (2.83). Note that the imperfect (non-
rectangular) frequency band profiles result from the finite pulse duration.

SMS excitation using a superposition of single-slice RF pulses comes with three
major limitations. First, the superposition of single-slice excitation pulses leads to
a linear increase of amplitude and consequently to a quadratic increase of the SMS
excitation pulse peak power, which can exceed the capabilities of the RF amplifier.
Second, the more slices are simultaneously excited, the more power is deposited
in the subject, which potentially leads to violations of the SAR - particularly for se-
quences that require a high flip angle. Third, the Fourier-encoding scheme counter-
acts the necessary ±π RF pulse phase variation of bSSFP sequences and is therefore
only applicable for FLASH sequences.

Various methods have been proposed to alleviate these limitations [154]. To pre-
vent exceeding the peak power of the RF amplifier, the single-slice excitation pulses
can additionally be modulated by a phase factor [155] or be applied in fast succes-
sion rather than at the same time [156, 157]. The total RF power restrictions can be

7 For convenience we drop the subscript rf and do not explicitly denote the dependency on ∆z and,
accordingly, ∆ωL .
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Figure 2.10.: Schematic illustration of the real and imaginary part of SMS RF pulse
envelopes for the simultaneous excitation of four slices. (Top row) Time domain. (Bot-
tom row) Frequency domain, where the imperfect (non-rectangular) frequency band
profiles for slices q with center frequencies ωc ,q are a consequence of the finite pulse
duration T . The frequency offset due to the carrier frequency Ωc is implicitly assumed.
From left to right the different slice-encodings according to the rows of the Fourier
matrix Equation (2.83) are depicted.

overcome using Variable-Rate Selective Excitation (VERSE): By reducing the ampli-
tude of the slice-selection gradient at times of high energy deposition, the k-space
is effectively traversed slower and the total RF power is reduced. Alternatively,
Power Independent of Number of Slices (PINS) makes use of the Fourier convolution
theorem and applies a sequence of short rectangular RF pulses with interleaved
slice-selection gradients to generate the desired excitation, while the power re-
quirement is independent of the number of slices. One way to implement SMS
excitation for bSSFP is the use of a problem adapted phase-cycling scheme for the
RF pulse [158], which comes at the expense of limited flexibility in the choice of the
number of slices. A different and somewhat more natural approach is the use of
phase-encoding gradients to induce the Fourier modulation Ξpq in the slices [159].

Both the sequential multi-slice and the SMS approach can be seen as first steps
towards the third spatial dimension in cardiac MRI. However, for many applica-
tions a complete three-dimensional time-resolved volume rendering of the beating
heart is desired.

volumetric encoding and stack-of-stars imaging Volumetric encod-
ing in MRI is a natural extension of two-dimensional imaging and is therefore
based on the same signal equation (2.41). Volume-selective excitation follows the
same principles as the slice-selective excitation described in Section 2.2.2. To distin-
guish two- and three-dimensional excitation, we commonly refer to slab-profiles in
volumetric imaging compared to slice-profiles in single- and multi-slice imaging.

For three-dimensional signal encoding, two strategies can generally be distin-
guished: (1) The entire three-dimensional k-space is acquired using a non-Cartesian
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trajectory [160, 161]. (2) The third dimension of k-space - which is by convention
defined as the z-dimension - is sampled on a rectilinear grid, i.e. on Cartesian co-
ordinates, whereas the in-plane encoding is Cartesian or non-Cartesian [81, 162,
163].

Three-dimensional, purely non-Cartesian sampling with a koosh-ball [160] or phyl-
lotaxis [161] trajectory acquires the three-dimensional k-space using radial spokes
that all cross the k-space center. These trajectories can be seen as the natural exten-
sion of two-dimensional radial imaging. While providing high motion robustness
and mild undersampling artifacts, the major problem with this kind of sampling is
the huge amount of data, which is collected due to the equal size of all three spatial
dimensions. Accordingly, the memory and computational demands are very high.

A promising alternative is the use of radial in-plane encoding and Cartesian en-
coding along the third dimension [162]. This so-called Stack-of-Stars sequence will
be used in the context of Chapter 7. The SOS sequence combines several advan-
tageous properties. Most importantly, the Cartesian dimension enables a flexible
choice of the size of the third dimension, which can be used to better adjust the
FOV to the actual geometry of the object and furthermore decreases the mem-
ory demands significantly. Compared to purely Cartesian sampling, SOS imaging
maintains the milder undersampling artifacts and the motion robustness of radial
imaging as described in Section 2.2.4 to a large extent. Finally, the consecutive ac-
quisition of spokes from different partitions naturally gives rise to an AC region for
direct cardiac and respiratory self-gating without the need for additional navigator
lines [143], which will be discussed in Section 2.5.3 and demonstrated in Chapter 7.
Recently, SOS undersampling in the Cartesian direction was proposed, which we
will employ in Chapter 7 to improve the temporal resolution of the motion state es-
timate in self-gated cardiac imaging [164]. An illustration of these applications can
be found in Figure 2.14b. Exemplary slices extracted from a fully sampled isotropic
SOS bSSFP phantom experiment are depicted in Figure 2.11.8

Figure 2.12 depicts the pulse diagram of the SOS bSSFP sequence, which resem-
bles Figure 2.5 for radial single-slice bSSFP imaging to a large extent. To resolve
the third spatial dimension, a variable phase-encoding gradient (B4) is introduced,
which will be discussed in more detail later. To comply with the requirements of
bSSFP sequences, gradient (B5) ensures the zeroth gradient moment to vanish. In
fact, the Fourier encoding of slices in SMS imaging can just as well be achieved us-
ing gradients [159]. Similar to SMS imaging, an interleaved trajectory for improved
k-space coverage is recommended for enhanced incoherence in compressed sens-
ing reconstructions and to improve the overall image quality [165, 166].

8 Relevant measurement parameters corresponding to Figure 2.11 are: TE/TR = 2.35/4.70 ms,
flip angle = 33.3◦, FOV = 192 × 192 × 144 mm3, voxel size = 1 mm × 1 mm × 1 mm.
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Figure 2.11.: Exemplary slices obtained from an isotropic Stack-of-Stars bSSFP measure-
ment of the phantom depicted in Figure 5.3, which consists of plastic bricks immersed
in water. Different views (x-y-, x-z- and y-z-plane) are shown. The flexibility in the
choice of the FOV in z-direction can be appreciated. The colored lines indicate the
position of the different views.

To shorten the TR, gradients (B2) and (B4), as well as gradients (B5) and (B3) are
commonly combined and played simultaneously with gradients (C1) and (D1) or
(C3) and (D3), respectively.

Evidently, the extension of a given radial single-slice sequence to SOS imaging is
straight forward and can essentially be realized by incorporating a phase-encoding
gradient with variable gradient strength Gz . According to Equation (2.38), this
phase-encoding gradient induces a linear phase-offset for the magnetization de-
pending on the spatial position in z-direction

φ(z,kz ) = zkz with kz
Eq.(2.39)
=

∫
PE

γGz (τ )dτ . (2.84)

In the latter equation, the integral covers the time for which the phase encoding
gradient is active. By varying the gradient strength Gz in different shots, a Fourier-
encoding of the signal in z-direction as per Equation (2.41) is achieved. Note that
this Fourier-encoding is the continuous equivalent to Equation (2.77), where the
RF pulse Equation (2.80) instead of the gradient is used to modulate the signal.

According to the Nyquist condition Equation (2.42), the sampling distance ∆kz
determines the FOV in z-direction. Therefore, particular attention must be devoted
to the interaction of Cartesian phase encoding with an imperfect slab-profile, see
Figure 2.2. This issue is schematically illustrated in Figure 2.13, where we assume
an object which exceeds the FOV in z-direction. In the ideal case of a rectangu-
lar slab-profile (Figure 2.13a) only parts of the object within the desired FOV are
excited and contribute to the acquired signal. Consequently, a Fourier-encoding
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Figure 2.12.: Pulse diagram of a SOS bSSFP sequence. Compared to the radial single-
slice bSSFP sequence, an additional gradient (B4) is used for phase-encoding of the
Cartesian dimension. Gradient (B5) balances the zeroth gradient moment of the z-axis
to zero. More details can be found in Figure 2.5.

with ∆kz = 1/FOVz yields a signal which can be reconstructed without alias-
ing artifacts in z-direction. However, in real-world experiments the slab-profile
will be smoothed, see Figure 2.2, thus parts of the object outside of the desired
FOV will additionally be excited. Intuitively, the magnetization of these peripheral
parts will experience excessive phase-offsets and will therefore be mislocated, or
wrapped around, due to the ambiguity of the phase. As a result, the reconstructed
image will suffer from aliasing artifacts (Figure 2.2b). To overcome this problem,
the FOV in phase-encoding direction is commonly increased, while the slab profile
remains unchanged. Therefore, the sampling distance ∆kz must be decreased and
more encodings steps N are required to maintain the resolution ∆z = 1/(N∆kz )
(Equation (2.43)) in image space. After reconstruction, the intended image can be
extracted by cropping the result to the desired FOV (Figure 2.2c). Contrary to read-
out oversampling mentioned in Section 2.2.4, oversampling in phase-encoding di-
rection requires the acquisition of additional k-space lines and thus comes at the
expense of an increased measurement time.

In this chapter we have focused on the bSSFP sequence, although all consid-
erations hold for the FLASH sequence alike. However, unlike bSSFP, the FLASH
sequence is not appropriate for volumetric cardiac MRI. In the latter, the steady-
state magnetization of blood and myocardium is quite similar, which results in a
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Figure 2.13.: Schematic illustration of the effects of (non-) ideal slab excitation profiles
in combination with phase encoding in volumetric imaging. In (a), the investigated
object exceeds the desired FOV in z-direction, but only the fraction of the object which
is inside the FOV is excited due to the rectangular (ideal) slab excitation profile. To
the right, the phase offsets φ(z) (Equation (2.84)) for one Fourier-encoding step are
depicted. While the phase is not changed at the center of the object, positive and neg-
ative offsets in the upper and lower parts are induced by a phase encoding gradient.
Nyquist sampling according to ∆kz = 1/FOVz yields an artifact-free result. In (b), an
imperfect (realistic) slab profile excites parts of the object outside of the desired FOV.
Those parts experience excessive phase offsets (highlighted in red), for which they
are mislocated when sampling with ∆kz = 1/FOVz is performed. The consequence is
aliasing. In (c), oversampling is employed to eliminate the aliasing of (b). Therefore,
the sampling distance ∆kz is reduced while more encoding steps N are performed to
maintain the resolution ∆z = 1/(N · ∆kz ) in image space. This oversampling increases
the FOV to incorporate all excited parts of the object. After reconstruction, the aliasing-
free image can be cropped to obtain the desired FOV.
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poor image contrast. A distinct contrast between blood and myocardium in cardiac
FLASH MRI relies on the inflow of fresh, unsaturated blood - a condition, which is
fulfilled for single-slice, sequential multi-slice and, to a certain extend, SMS imag-
ing. However, if a large portion of the heart gets excited as in volumetric MRI, fresh
inflowing blood soon reaches the steady state, causing a severe loss of contrast in
the systolic phase.

Note that apart from the distinct excitation, SOS and SMS MRI share many sim-
ilarities. In fact, the reconstruction procedure for both approaches is vastly iden-
tical. One exception is that for the volumetric SOS acquisition a TV constraint in
z-direction can be applied, which is not sensible for SMS imaging due to the non-
vanishing slice gap.

2.5.2 Exploiting Temporal Correlations

Besides the unified processing of all spatial dimensions, time-resolved MRI en-
ables the use of temporal correlations to speed up scans and to improve the image
quality. However, most clinical approaches for cardiac MRI process each frame sep-
arately, thereby neglecting the fact that adjacent frames share many similarities.
These similarities can be exploited during image reconstruction by means of tem-
poral regularization, which can significantly reduce the data demand in dynamic
MRI acquisitions.

In this section, we will present popular radial k-space trajectory schemes for
time-resolved imaging and discuss related temporal regularization strategies for
both dynamic and gated cardiac MRI.

radial k-space trajectories for time-resolved imaging In time-re-
solved imaging, we have to trade off k-space coverage against temporal-resolution.
If we assign a large number of spokes to a single frame, undersampling effects
are diminished. However, this will reduce the frame-rate and increase the risk to
obtain blurry results, since spokes could be temporally too far apart to capture the
same motion state. There is no comprehensive rule for how to choose the num-
ber of spokes per frame, as this will depend on the application. Nevertheless, the
order of how spokes are acquired within and throughout different frames can sig-
nificantly impact the achievable results. Here, we present two popular strategies
for the design of k-space trajectories in time-resolved radial MRI.

The first scheme is illustrated in Figure 2.14, exemplarily for Nsp = 5 spokes
per frame. This scheme features a uniform spoke distribution within a frame with
projection angle increment αsp = 2π/Nsp. The projection angle varies from 0 to 360

◦,
which has proved to reduce artifacts in certain experiments compared to a similar
k-space coverage with projection angles from 0 to 180

◦ [88].
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To extend the k-space coverage, a different set of spokes can be used for sub-
sequent frames. Therefore, the spoke pattern is rotated by αfra = αsp/Npat with
Npat = 5 as proposed in [42]. Accordingly, five consecutive frames will possess
complementary spoke patterns and provide uniform k-space coverage with mini-
mal gaps. These spoke patterns are repeated for succeeding frames. This scheme
can be extended for time-resolved SMS imaging, as we will show in Section 6.1.

Another widely used radial trajectory is shown in Figure 2.14b, where the golden
angle is employed as the projection angle increment for adjacent spokes,

αGA =
2π

(1 +√5) ≈ 111.24
◦. (2.85)

With the golden angle each new projection divides one of the largest azimuthal
gaps in k-space by the golden ratio, which yields almost uniform k-space coverage
at any point in time. This allows for temporal sliding window reconstructions with
arbitrary numbers of spokes per frame, while still assuring nearly optimal k-space
uniformity [167].

Another benefit of the golden angle scheme is the prevention of k-space redun-
dancy, since no projection direction is acquired twice. Therefore, this strategy is
ideally suited for gated imaging where spokes from different time-points are com-
bined into bins.

One drawback of the classical golden angle scheme is the relatively large angle
increment for adjacent spokes, which can cause artifacts for bSSFP sequences [168].
Therefore, Wundrak et al. proposed the use of tiny golden angles,

αN
GA =

π

(1 +√5)/2 +N − 1

, (2.86)

where N defines the tiny golden angle number. For N = 1, Equation (2.86) recovers
the classical golden angle.

The tiny golden angles comprise similar characteristics as the classical one, but
possess a smaller angle increment [169, 170]. A popular choice, which will also be
used later in this manuscript is the 7th tiny golden angle α7

GA ≈ 23.62
◦.

The golden angle schemes can naturally be extended to SMS and SOS imaging,
which is illustrated in Figure 2.14b. Sequentially, one spoke is acquired for each
partition, while a golden angle is used as projection angle increment. The central
samples of such spoke stacks can be used to form an AC region, which allows
for self-gated cardiac MRI, see Section 2.5.3. Note that the larger the number of
partitions, the lower the temporal resolution of the AC region, which can lead to
temporal inconsistencies within a spoke stack. Therefore, certain partitions in the
periphery of the k-space can be skipped, while the energetically more dominant
central partitions are acquired for all spoke stacks and used to construct the AC
region [164]. We will apply this approach in Chapter 7 for self-gated SOS imaging.
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Figure 2.14.: Schematic of different radial k-space trajectories for time-resolved imag-
ing. In (a), the Nsp = 5 spokes per frame are uniformly distributed by using the angle
increment αsp = 2π/Nsp. In the top row, the spoke pattern is the same for all frames. In
the bottom row, the spoke pattern is rotated in between frames by αfra = αsp/Npat. Here,
we choose a total of Npat = 5 different spoke patterns, which are repeated thereafter.
The numbers next to the spokes indicate the acquisition order. The two schemes on
the left side of (b) show the spoke distribution using the golden angle αGA ≈ 111.24

◦

(top) and the 7th tiny golden angle α7

GA ≈ 23.62
◦ as angle increment. The golden angle

schemes can also be used for conventional and undersampled SMS and SOS experi-
ments. If the partitions are iterated through for each TR, the central samples of the
spokes from repeatedly acquired partitions form an AC region, which can be used for
self-gated MRI.
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temporal regularization and multi-temporal dimensions Assum-
ing sufficient temporal resolution, the changes between adjacent frames in time-
resolved MRI are little. If those frames furthermore possess complementary k-
space patterns, temporal regularization can be utilized to improve the image qual-
ity and reduce the data demand.9

The key idea behind temporal regularization is to enforce similarity between
neighboring frames by penalizing large changes. For the sake of simplicity, we first
consider a causal frame-by-frame reconstruction with Tikhonov-Phillips regular-
ization, where the difference of the current and the previous frame is penalized.
Inspired by Equation (2.52), the optimization problem for time-step t can be for-
mulated as

x∗(t ) = argmin
x
| |Fx(t ) − y(t ) | |2L2

+ λ | |x(t ) −x(t−1) | |2L2

. (2.87)

Figure 2.15 demonstrates the effect of this regularization on reconstructions of
a human heart with five spokes per frame.10 In Figure 2.15a, no temporal regu-
larization was applied and the images exhibit strong undersampling artifacts. In
Figure 2.15b, temporal regularization was applied but a temporally aligned spoke
pattern was utilized, which yields no significant improvement compared to Fig-
ure 2.15a. In Figure 2.15c, temporal regularization was used in combination with
complementary spoke patterns for different frames. Here, the first frame on the
very left exhibits similar artifacts as the reconstructions from Figure 2.15a and
Figure 2.15b since no previous frame was available for temporal regularization.
However, the subsequent frames show a striking improvement in image quality.

For its apparent impact on the reconstructions, temporal regularization is the
backbone of modern time-resolved MRI. The proposed penalty term in Equa-
tion (2.87) is the simplest and computationally most efficient type of temporal
regularization. It can be used e.g. for real-time MRI, where the entire (ungated)
dynamics of the motion is reconstructed and displayed with low latency on the
scanner [43].11 Other dynamic MRI techniques also recover the entire dynamics of
the motion, but use a non-causal joint reconstruction involving all frames simul-
taneously. Here, a popular choice is the TV constraint, defined in Equation (2.55),
employed on the temporal domain [174].

Temporal regularization can also be used for gated reconstructions, where pe-
riodic motion is not reconstructed in its full dynamics as in real-time MRI, but

9 While in this manuscript we will utilize temporal regularization, other approaches exist to exploit
temporal redundancy for time-resolved imaging, e.g. [33, 171–173].

10 Note that NLINV was used to create the reconstructions shown in Figure 2.15 [40–42]. More details
on the algorithm and the incorporation of temporal regularization can be found in Chapter 5 and
Chapter 6.

11 Techniques for which the images are directly available on the scanner are frequently referred to as on-
line methods, in opposition to offline methods, where the potentially time-consuming reconstructions
are performed after the scan.
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Figure 2.15.: NLINV reconstructions using five spokes per frame to demonstrate the
effect of temporal regularization and different spoke patterns on time-resolved cardiac
MRI. In (a), each frame is reconstructed individually and the same spoke pattern is uti-
lized for all frames (compare Figure 2.14a, top row). In (b), on the same data temporal
regularization, highlighted by the white arrows, is applied by penalizing the differ-
ence between the current and the previous frame. There is no visual improvement. In
(c) we apply the same temporal regularization as in (b), but rotate the spoke pattern
for each frame according to the bottom row of Figure 2.14a. For the first frame, no
improvement can be observed, since no previous frame for regularization is available.
For the subsequent frames, temporal regularization significantly enhances the results.

rather split up and binned into equivalent motion states. As a consequence, data is
accumulated and a generic high-quality representation of a cycle can be generated.
Compared to real-time imaging, where naturally only one temporal dimension
exists, multiple temporal dimensions can be established in gated MRI. A typical
example for free-breathing cardiac MRI is the use of a cardiac and a respiratory
dimension as illustrated in Figure 2.16 and originally proposed in [143]. Like this,
a temporal constraint can be imposed on both the cardiac and the respiratory di-
mension. Even though clinicians are only interested in a single respiration state,
the multi-temporal approach allows for taking advantage of correlations from all
acquired data. Hence, no data has to be dumped and the quality of the respiration
state of interest is further improved.
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Figure 2.16.: Illustration of multi-temporal dimensions in free-breathing cardiac MRI.
On top, the respiratory motion signal is divided into three respiratory bins and the
cardiac motion state is detected e.g. using the ECG signal. Then, the data can be binned
according to the cardiac and respiratory motion state. This generates two temporal
dimensions, which can be exploited during image reconstruction by imposing e.g.
a total variation constraint in both the cardiac and the respiratory dimension. The
white arrows highlight correlated images, on which temporal regularization can be
employed.
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This idea can be extended to even more temporal dimensions such as the change
in imaging contrast for inversion-recovery based sequences [175]. The assignment
of acquired data to bins of the potentially multi-temporal dimensions is a non-
trivial task and will further be discussed in the next section.

2.5.3 Self-Gating and the Concept of Time-Delayed Embedding

In cardiac MRI we strive for a simple, fast and convenient data acquisition and
at the same time demand robustness and high-quality reconstructions. Therefore,
the ECG and a respiratory belt can be used to synchronize data acquisition with
the cardiac and respiratory motion, which allows for the combination of data from
several heartbeats to generate a single synthetic cardiac cycle. Gated cardiac MRI
yields very good results, but the placement of external devices can be cumbersome
and costs time. The monitoring of the respiratory motion can also be replaced
by breath-hold commands, which, however, is inconvenient and problematic for
non-compliant patients such as children, elderly or sick people. Alternatively, the
steadily increasing computational power and the development of novel reconstruc-
tion strategies opened the door for real-time MRI, a technique which does not rely
on patient cooperation and furthermore dispenses with the need for cardiac and
respiratory gating. Data from multiple heartbeats are no longer combined but the
acquired data is consistently used to reconstruct current images of the heart [29,
30, 42, 176]. Nevertheless, these real-time MRI techniques are limited to single-slice
or SMS imaging with few slices. Furthermore, the combination of data from mul-
tiple heartbeats still tends to provide better results than dynamic imaging [61]. An
interesting alternative to the aforementioned strategies is self-gated cardiac MRI.

self-gated cardiac mri Instead of relying on external monitoring hardware,
in self-gated cardiac MRI information about the cardiac and respiratory motion
is extracted from the acquired data itself. Over the past decades, a variety of ap-
proaches have been proposed to extract either the respiratory motion or the cardiac
motion or jointly both motion signals from a suitable chosen AC region, e.g. [51,
52, 55, 57, 177].

Radial imaging is particularly appropriate for self-gating as it naturally provides
an AC region. Each read-out line crosses the k-space center, thus its Direct Current
(DC) component (kx = 0, ky = 0) is sampled at a high temporal resolution. The
value of the DC component represents the average brightness of the image and
can directly be related to the current cardiac state: In end-diastole, the heart is
filled with blood and therefore the image appears bright. During systole, the heart
contracts and the average image brightness decreases. Figure 2.17 illustrates this
principle. A similar reasoning holds for respiratory motion, hence a proper analysis
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Figure 2.17.: Illustration of the relation between between the DC component (kx =
0, ky = 0) of k-space and phases of the cardiac cycle. The top row shows a schematic
of a heart in short-axis view for end-diastole and end-systole. Below, radial k-space
lines (black) and corresponding magnitude values (grey) are shown for a sampling
during end-diastole (time t1) and end-systole (time t2). Since the left-ventricular blood
pool is larger at end-diastole, the average brightness - and likewise the value of the DC
component (red) - is higher compared to end-systole. The bottom row schematically
shows the corresponding temporal evolution of the DC component, which can be
extracted from each spoke and which contains information about the current cardiac
phase.

of the temporal evolution of the DC component should reveal the cardiac and
respiratory motion states.

For SMS or SOS acquisitions, the DC component (kx = 0, ky = 0) of different
partitions kz can be used jointly as AC region, which promotes a better detection
of the motion signals. For illustration, compare Figure 2.14b.

Commonly, self-gating methods preprocess and band-pass filter the AC region
to isolate the cardiac and respiratory motion signal, before a peak-detection al-
gorithms is used to sort the data into their respective cardiac and/or respiratory
phases. A more elegant method was proposed by Pang et al. who try to find the
principle motion components by applying the PCA on the multi-channel AC region
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[56, 143]. Still, self-gating did not yet make its way into clinical practice, mainly due
to the lack of robustness.

time-delayed embedding Here, we want to tackle this problem by approach-
ing it from a different perspective. Instead of excavating the motion signals from
the AC region by bruit force filtering or spatial dimensionality reduction, we con-
sider the samples of the AC region as measurements of a potentially nonlinear
dynamical system.

For a dynamical system the time evolution is defined in some phase space. A
phase space is, simply speaking, a vector space where a point st completely speci-
fies the system’s state at a certain time, discretely represented by the integer num-
ber t , with 0 ≤ t < Nt and Nt the total number of time-steps. The sequence of points
st is called the phase space trajectory. From the study of this trajectory, conclusions
about the dynamics of the system can be drawn. Therefore, it is highly desirable
to find a phase space representation of our dynamics. However, in experiments
we usually cannot directly measure the phase space but a general time series - in
our case the AC region extracted from our radial acquisition. Hence, we have to
reconstruct a representation of the phase space.

We therefore fall back on a remarkable finding published by Packard et al. [178]
in 1980, which states that, in principle, the full dynamics of a complicated nonlinear
dynamical system - namely, its phase space - can be reconstructed from a single
time series. This finding was soon thereafter formalized by Takens [179] and is
today known as the method of delays or time-delayed embedding [180, 181]:

Let xt be the measured data at time-step t , which can be modeled by some
measurement functionM that processes the respective state st of the system,

xt =M(st ). (2.88)

A W -dimensional delay reconstruction can then be formed by stacking measure-
ments xt for different time-steps t into a single W × (Nt − τ (W − 1)) delay vector
X , where the t th column of X is given by12

Xt =
(
xt−wτ ,xt−(w−1)τ , . . . ,xt , . . . ,xt+(w−1)τ ,xt+wτ

)T
, (2.89)

with w := (W − 1)/2. In order to ensure w to be integer, we assume W to be an odd
number. The lag or delay time τ > 0 determines the temporal difference between
adjacent components ofXt and the quantity τ (W − 1) defines the temporal window
from which Xt is comprised of.

12 In the literature a time-delayed embedding is often defined by the combination of xt with past
measurements only, Xt

past = (x
t−(W −1)τ ,xt−(W −2)τ , . . . ,xt−τ ,xt )T . However, to be consistent with

Chapter 7 and for the ease of interpretation, in Equation (2.89) we choose a time-symmetric delay
embedding.
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Commonly, the phase space trajectory Xt is not identical to the internal dy-
namics st of the system. Still, under quite general assumptions, the reconstruction
Xt created by a properly performed time-delayed embedding is guaranteed to
be topologically equivalent to the full dynamics. In other words, there exists a
uniquely invertible smooth function that maps Xt onto st [180]. Many important
measures of a dynamical system are invariant under this transformation, such as
the Kolmogorov-Sinai entropy13, the fractal dimension of the invariant set14 or the Lya-
punov exponents15.

Using the Rössler attractor [183] as an example, we will illustrate the equivalence
of the original dynamics and a phase space reconstruction by time-delayed embed-
ding. The Rössler system is defined by a set of three coupled nonlinear ordinary
differential equations

d

dt
x = −y − z,

d

dt
y = x + ay ,

d

dt
z = b + z(x − c). (2.90)

In our example, we choose the constant parameter values a = 0.1, b = 0.1, c = 14 and
the initial conditions x0 = −5, y0 = −5, z0 = 0. The top-left plot of Figure 2.18 shows
the corresponding attractor. We measure the time evolution of the x-coordinate and
reconstruct the phase space trajectory by applying Equation (2.89) with W = 3, i.e.
w = 1, and different lag times τ = 1, 10, 50. The bottom row of Figure 2.18 shows
the corresponding reconstructions. While the trajectory of the τ = 1 embedding is
indistinguishable from that of a diagonal line when its extent is smaller than the
measurement noise level, the τ = 50 reconstruction shows the same rise and twist
behavior in the dimension orthogonal to the spiral plane as the Rössler attractor.
Apparently, the choice of the embedding parameters has a distinct influence on the
phase space reconstruction.

Takens original embedding theorem requires W > 2D, where D is the integer di-
mension of the smooth manifold, which contains the attractor st . A generalization
of this theorem by Sauer et al. [184] loosens this requirement to W > 2DF, with
DF the capacity or box counting dimension16 of the attractor, which can be signif-
icantly smaller than D [180]. In some cases, attractors can even be reconstructed
in spaces of dimension smaller than 2DF. Moreover, Takens theorem has very low

13 The Kolmogorov-Sinai entropy is a measure for the amount of information per unit time that is
necessary to unambiguously determine the trajectory of a system [182].

14 Loosely speaking, an invariant set in dynamical system theory is a subset of the phase space. If we
know that some part of the phase space trajectory is element of the invariant set at any time, we
can conclude that the entire trajectory always was and ever will be element of this set. A fractal
dimension is a generalization of the concept of dimension for geometric objects. One definition of a
fractal dimension is the box counting dimension, see Footnote 16.

15 The Lyapunov exponent characterizes the rate of separation of infinitesimally close trajectories with
time [180].

16 The box counting dimension is defined as DF := lim
ϵ→0

ln(N (ϵ))/ln(1/ϵ), where N (ϵ) is the number of

boxes with edge length ϵ required to cover the attractor.
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Figure 2.18.: Illustration of the phase space reconstruction of a Rössler attractor. On
the top-left, the three-dimensional trajectory of the Rössler system is plotted. The top-
right shows the temporal evolution of the trajectory’s x-coordinate. The zoomed inset
plot schematically depicts a central sample (blue) and samples relatively shifted by
τ = 1 (yellow), τ = 10 (green), τ = 50 (red). A W = 3 dimensional delay vector with
components Xt = (x t−τ ,x t ,x t+τ ) can be constructed by combination of the sample
x t with its shifted neighbors. The bottom row shows the corresponding phase space
trajectories for delay vectors with different values τ . For a suitably chosen value, here
τ = 50, the topology of the Rössler attractor or can be recovered.

restrictions on the choice of τ , since it assumes infinite precise sampling. However,
in real world applications a suitable choice of the product τW is of major impor-
tance, as it determines the temporal window, which is represented by Xt . For
small values of τW , the W coordinates of Xt are very similar, or redundant [185],
and the trajectory consequently stretches along the main diagonal. With increas-
ing τW , samples further apart in time are correlated and the trajectory unfolds off
this subspace, revealing the underlying topology of the system. On the other hand,
very large values for τW are not necessarily always better as they can cause a recon-
struction to fold over on itself [181]. More details on how to find good embedding
parameters can be found in e.g. [180, 181].

In the context of MRI, we are not so much interested in the determination of
the invariant measures of the dynamical system, but rather want to extract and
separate the preferably noise-free signals of cardiac and respiratory motion from
the AC region of our measurement. In Chapter 7, we will point out how the theory
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of time-delayed embedding can be used to reach this goal. The main idea is to
reconstruct a phase space trajectory Xt with parameters τ = 1 and a choice for W ,
which depends on the sampling rate of the AC region. Inspired by the SSA [186] we
will show that performing a PCA on Xt resembles a data-adaptive filtering and
denoising process of the original time series. This procedure can separate trend
and noise from quasi-periodic motion, which makes it ideally suited for self-gated
cardiac MRI.

2.5.4 Conclusion

A major goal of cardiac MRI is to image the beating heart and therefore the tem-
poral evolution of a volumetric object. While classical approaches often neglect the
nature of this problem, modern strategies try to exploit both spatial and temporal
correlations to improve the image quality and speed up the measurement process.

Both SMS and SOS imaging translate the benefits of radial imaging into the
third spatial dimension, which enables fast and efficient time-consistent imaging of
multiple slices or volumes. Temporal regularization exploits similarities between
neighboring frames to significantly reduce the data demand for the imaging of
dynamic processes. Self-gated cardiac MRI does not require patient compliance
and expedites patient preparation as it dispenses with additional hardware. The
use of dynamical system theory to detect cardiac and respiratory motion from
the measured data constitutes a promising alternative to the problem of self-gated
cardiac MRI, potentially paving the way for a robust clinical application.

The presented methods will be employed in various ways throughout Chapters 3

to 7.

58



3
S I M P L E A U T O - C A L I B R AT E D G R A D I E N T D E L AY
E S T I M AT I O N F R O M F E W S P O K E S U S I N G R A D I A L
I N T E R S E C T I O N S ( R I N G )

The following is a reprint of the original article

S. Rosenzweig, H. C. M. Holme, and M. Uecker. “Simple auto-calibrated gradi-
ent delay estimation from few spokes using Radial Intersections (RING)”. Magn.
Reson. Med. 81 (2019), pp. 1898–1906.

c© 2018 International Society for Magnetic Resonance in Medicine. Reprinted, with
permission from [58].

SR designed the RING method under supervision from MU and implemented it
with input from CH. SR designed and performed all simulations and experiments.
SR analyzed the results with guidance from MU. SR wrote the majority of the
manuscript with contributions by MU and CH.

The layout, the reference numbering, the orthography and the use of acronyms
have been adapted to preserve the natural text flow of this thesis. No substantive
changes to the content have been realized.

In this article we introduce the RING method for gradient delay estimation and
compare it to the AC-Adaptive method [133, 134], which is described in Appendix A.
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Abstract

Purpose: To develop a simple and robust tool for the estimation of gradient
delays from highly undersampled radial k-space data.
Theory: In radial imaging gradient delays induce parallel and orthogonal
trajectory shifts, which can be described using an ellipse model. The inter-
section points of the radial spokes, which can be estimated by spoke-by-
spoke comparison of k-space samples, distinctly determine the parameters
of the ellipse. Using the proposed method (RING), these parameters can be
obtained using a least-squares fit and utilized for the correction of gradient
delays.
Methods: The functionality and accuracy of the proposed RING method
is validated and compared to correlation-based gradient-delay estimation
from opposing spokes using numerical simulations, phantom and in vivo
heart measurements.
Results: In all experiments, RING robustly provides accurate gradient delay
estimations even for as few as three radial spokes.
Conclusion: The simple and straightforward to implement RING method
provides accurate gradient delay estimation for highly undersampled radial
imaging.
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3.1 introduction

In today’s clinical practice almost all Magnetic Resonance Imaging (MRI) techniques
are based on Cartesian trajectories. Nevertheless, in the recent years non-Cartesian
trajectories, in particular radial acquisitions, drew increasing interest among the
scientific community for their motion robustness and milder undersampling arti-
facts and proofed potential for a significant imaging speed-up [41, 162, 187–189].
Although the benefits of radial trajectories seem evident, for various reasons they
did not yet find widespread application in clinical routine. One reason is the higher
sensitivity to system imperfections such as eddy-current-induced gradient delays,
that lead to deviations from the nominal sampling locations [50]. To tackle this
problem, a variety of different trajectory error compensation strategies have been
developed.

One approach is to measure the actual k-space trajectory during each measure-
ment using specialized hardware, which is highly effective but expensive and
not always practical [190, 191]. Alternatively, calibration scans can be utilized to
fully characterize the Gradient System Impulse Response Function (GIRF) of the scan-
ner [192–195]. However, as these methods have not yet been adopted by the ven-
dors they require significant implementation efforts and are difficult to integrate
into a complete workflow. Furthermore, GIRF-based methods cannot capture se-
quence or protocol dependent temporal variations of the gradient system, for ex-
ample, through heating, and the characterization must be repeated regularly to
compensate long-term system variances.

Other approaches have been designed particularly for error compensation in ra-
dial imaging. Iterative, parallel imaging-based methods developed by Deshmane
et al. [196] and Wech et al. [197] exploit correlations in the receive channels using
GRAPPA operator gridding [198] and shift the samples or the trajectory position
until a certain condition is fulfilled. Both methods are data driven and therefore
can be used to retrospectively detect and compensate transient trajectory errors.
These methods require good estimates for the gridding operators, which in turn de-
mands sufficient in-plane coil sensitivity variation and a certain number of spokes
for auto-calibration. These conditions might not always be given, as for example,
in interactive real-time MRI the imaging plane is repeatedly being rotated and
shifted [46, 199–201]. Recently, Jiang et al. [202] introduced a framework, which si-
multaneously estimates gradient delays and coil sensitivities using an alternating
minimization approach. This method inspired by SAKE [203] uses a computation-
ally rather demanding low-rank constraint in conjunction with the Gauss-Newton
method to solve a nonlinear optimization problem. Furthermore, two more gen-
eral algorithms have been proposed that combine trajectory correction and image
reconstruction [204, 205]. However, in the approach of Mani et al. [204] prior knowl-
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edge about the coil sensitivities is necessary. Moreover, both algorithms might be
difficult to combine with other image reconstruction methods.

A noticeable alternative to the above mentioned rather elaborate trajectory cor-
rection techniques is the Adaptive method developed by Block and Uecker [133] for
radial imaging. Because of its intuitive approach, its robustness and accuracy and
the straight forward implementation it found widespread acceptance and applica-
tion [126, 134, 162, 170, 206]. The method requires calibration scans where pairs
of opposed spokes with varying orientation are acquired. Then, the sample shift
along the readout direction is calculated by performing a cross-correlation of the
opposed spokes. The shifts are fitted to a linear ellipse model [50, 126] and compen-
sated for in the gridding procedure. Recently, it was shown that the same approach
can be used to estimate the gradient delays from the data itself without the need
for calibration scans. This auto-calibrated variant, here dubbed AC-Adaptive method,
was described by Untenberger et al. [134], applied in several publications, e.g. [44,
207, 208], and studied in [209]. Instead of using perfectly anti-parallel spokes, the
AC-Adaptive method takes spokes from the actual radial acquisition which are
only approximately anti-parallel to estimate the shifts. This allows for real-time
and retrospective gradient delay correction, which can be applied to, for example,
interactive real-time MRI or to compensate gradient delay changes due to coil heat-
ing. However, the present work shows that the AC-Adaptive method is not fully
consistent with the ellipse model, which it is based on. In settings with oblique
slices and/or non-isotropic delays of the physical gradients, the spokes will ex-
perience both a shift in read-out direction and orthogonal to it. Due to the latter,
even perfectly opposed spokes will not cover the same k-space line, which leads to
inconsistencies in the cross-correlation calculation. Furthermore, the AC-Adaptive
method cannot provide stable gradient delay estimates given only very few spokes,
as then no nearly opposed spoke pairs exist.

The aim of this work is to develop a simple yet accurate and robust gradi-
ent delay estimation tool, which also works for very few spokes. We show that
our method, which uses Radial spoke INtersections for Gradient delay estimation
(RING), outperforms the AC-Adaptive method in all investigated numerical sim-
ulations, phantom and in vivo heart measurements and provides precise gradient
delay estimates even for as few as 3 spokes.

3.2 theory

the gradient delay ellipse model . Peters et al. showed that in radial
imaging, linear eddy current effects delay the start of the readout gradients, which
induces both a parallel and an orthogonal shift to the nominal k-space trajectory,
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while the projection direction is not affected [50]. Moussavi et al. [126] proposed a
simple model to describe this spoke shift as a vector

δk := Sn̂θ , (3.1)

n̂θ :=
(

cosθ
sinθ

)
, (3.2)

S :=
(

Sx Sxy
Sxy Sy

)
(3.3)

with θ the projection angle and n̂ the normalized projection direction. Sx and Sy
capture the delays in the axial case whereas Sxy guarantees three-dimensional rota-
tional invariance and particularly accounts for the interaction of all three physical
gradients when measuring oblique slices. For a detailed derivation please consider
Section 3.8. The goal of this work is to efficiently determine the parameters Sx, Sy

and Sxy , which can then be used to calculate the actual (shifted) trajectory needed
for accurate gridding in image reconstruction.

Let Nsamp be the number of samples in readout direction and Nsp the number of
spokes used for gradient delay estimation. Then, the sample positions in units of
1/FOV of a spoke with projection angle θi , i ∈ {1, . . . ,Nsp}, can be modeled using
the parametric linear equation

rθi = Sn̂θi + aθi n̂θi (3.4)

with aθi = [−Nsamp/2,Nsamp/2− 1]. The ellipse defined by Equation (3.1) determines
the position rθi (aθi = 0) of the shifted spokes.

Figure 3.1 depicts a schematic of actual k-space trajectories for different delays
S. If no gradient delays are present (top-left) the spokes are not shifted at all. For
isotropic delays in the axial case (top-right) the spokes are translated in readout
direction only. For anisotropic delays (bottom-left) and/or oblique slices (bottom-
right) the spokes experience both a readout-shift and an orthogonal shift and no
longer intersect in the k-space center. The intersection points of the spokes relative
to their DC component uniquely define the shift matrix S.

determination of Sx , Sy and Sx y . The intersection point of the spokes rθi
and rθ j yield a conditional equation for S:

rθi (a′θi )
!
= rθ j (a′θ j ), (3.5)

S(n̂θi − n̂θ j ) = a′θ j n̂θ j − a
′
θi n̂θi . (3.6)

To facilitate calculations, we introduce the definitions

s :=
©­­«

Sx
Sy
Sxy

ª®®¬ , (3.7)
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n̂θi − n̂θ j :=
(
ξ1

ξ2

)
, A :=

(
ξ1 0 ξ2

0 ξ2 ξ1

)
, (3.8)

b := a′θ j n̂θ j − a
′
θi n̂θi , (3.9)

and rearrange Equation (3.6)
As = b. (3.10)

If Nsp > 2, MatrixA and vector b can be extended to contain all considered intersec-
tion points. Then, the system of equations Equation (3.10) for s is overdetermined
and s can be obtained by a least-squares fit using the pseudo-inverse

s = (ATA)−1AT b, (3.11)

where T indicates the transpose.

determination of intersection points . To obtain s (Equation (3.11)) the
values a′θ in Equation (3.6) must be determined from the measured data. Since the
k-space value at the intersection point of two spokes should be identical except for
noise in all channels, the values for a′θ can be obtained by comparing the actual
complex sample values of the spokes. The sample pair for which the Root-Sum-of-
Squares (RSS) difference over all channels is minimal is assumed to represent the
intersection point. To guarantee accurate estimates for a′θ and thus s, each spoke
is retrospectively sub-sampled via Fourier interpolation and denoised: An inverse
Fourier transform is used to obtain a spoke’s image domain representation. As the
readout direction is generally oversampled by a factor of 2, all samples outside of
the central Nsamp × 0.6 region can be set to zero to sinc-denoise k-space. Then, the
data is zero-padded by Npad ×Nsamp (we propose Npad = 100) and the sub-sampled
k-space is retrieved using another Fourier transform. As most of the energy is
localized in the low spatial frequency region it is sensible to investigate only inter-
section points in the central region of k-space, which avoids inaccuracies due to
noise. Therefore, only the intersection point of a spoke with its most orthogonal
counterpart is considered, i.e. we search for the spoke pairs that best approximate
an intersection angle of 90

◦. Then, the sample-wise comparison can be restricted to
the central β ×Npad (we propose β = 1.5) samples of the spokes.

An analysis of the accuracy of the proposed method to determine the inter-
section points for different noise values and simulated phantoms is provided as
supplementary material (Figure 3.5).
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Figure 3.1.: Schematic of shifted k-space trajectories in units of 1/FOV for different
delays Sx, Sy and Sxy. Exemplarily, five abridged spokes are depicted. The arrows
point in readout direction and the DC sample of each spoke is highlighted by a dot.
The ellipse determined by δk (Equation (3.1)) is plotted as a dashed gray circle.

3.3 methods

All measurements were performed on a SIEMENS Skyra 3T scanner, all reconstruc-
tions and the gradient delay estimation methods were implemented and performed
using BART [210]. In our study we chose the RING parameters to be Npad = 100

and β = 1.5, which provided accurate and robust results throughout all experi-
ments. In the interest of reproducible research, code and data to reproduce the
experiments are made available on Github.1

numerical simulations . To demonstrate the general functionality and ac-
curacy of our method, we performed a numerical Shepp-Logan k-space phan-
tom study (oversampled readout samples 128, 8 channels) using a golden angle

1 https://github.com/mrirecon/RING
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scheme and spokes shifted according to Equation (3.1) with the nominal values
siso = (0.3, 0.3, 0), sax = (0.3,−0.1, 0) and sobl = (0.3,−0.1, 0.2) respectively.

To quantify the estimation error E(s, sest
Nsp
) we used the L2 norm

E(s, sest
Nsp
) :=

√(
Sx − Sest

x
)

2

+
(
Sy − Sest

y
)

2

+
(
Sxy − Sest

xy
)

2, (3.12)

where S stands for the nominal and Sest for the estimated shifts. We estimated
the shifts using RING for all numbers of spokes in the range Nsp ∈ [3, 127] and
performed the simulations for projection angles distributed over a half circle (θi ∈
[0,π ]) and a full circle (θi ∈ [0, 2π ]) [211].

For comparison we did the same experiments using the AC-Adaptive method.

phantom measurements . For the measurement on a custom-made brick
phantom we used the SIEMENS Head-Neck-20 coil and a FLASH sequence (FOV
= 256 × 256 mm2, oversampled readout samples = 320, number of spokes = 159,
TE/TR = 1.46/2.3 ms, slice thickness = 5 mm) with golden angle (half and full cir-
cle) acquisition. For the sake of better visibility of gradient delay artifacts, only 39

spokes were used for image reconstruction. The delays were estimated for all num-
bers of spokes in the range Nsp ∈ [3, 159] using both RING and the AC-Adaptive
method for full circle acquisitions. For half circle acquisitions only RING is utilized.
We used radial NLINV [40, 41] in combination with the corrected trajectories for
image reconstruction.

For each number of spokes Nsp the estimated delays sest
Nsp

were compared to sest
159

and the L2 errors E(sest
159

, sest
Nsp
) according to Equation (3.12) were calculated.

in vivo measurements . We performed an in vivo measurement on a human
heart (short-axis view, 30 channel thorax and spine coil, FLASH sequence, FOV
= 256 × 256 mm2, oversampled readout samples = 320, TE/TR = 1.47/2.3 ms, slice
thickness = 8 mm) using a full circle golden angle acquisition scheme. Seventy-five
consecutive spokes during the end-diastole were combined for image reconstruc-
tion with ENLIVE [212]. The gradient delays were estimated using RING and the
AC-Adaptive method utilizing all numbers of spokes in the range Nsp ∈ [3, 75]. The
L2 errors were calculated as described previously.

Human imaging was approved by the local ethics committee. Written informed
consent was obtained from the subject before the imaging.

3.4 results

numerical simulations . The results of the numerical simulations are de-
picted in Figure 3.2. The error E(s, sest

Nsp
) of the estimated gradient delays for differ-
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Figure 3.2.: Gradient delay error E(s, sest
Nsp
) (Equation (3.12)) against the number of

spokes utilized for gradient delay estimation using the RING and the AC-Adaptive
method. Numerical k-space Shepp-Logan-phantom study with different nominal k-
space trajectory shifts siso = (0.3, 0.3, 0), sax = (0.3,−0.1, 0) and sobl = (0.3,−0.1, 0.2).
(Left) Full circle golden angle acquisition (projection angle θi ∈ [0, 2π ]). (Right) Half
circle golden angle acquisition (projection angle θi ∈ [0,π ]).

ent trajectory shifts using the AC-Adaptive method and RING are plotted over the
number of spokes used for gradient delay estimation.

The RING method provides nearly perfect estimates for all investigated delays
in half circle and full circle acquisitions, even if only three spokes are employed.

In contrast, the AC-Adaptive method delivers inaccurate gradient delay esti-
mates for half circle acquisitions even if up to Nsp = 127 spokes are used. For
full circle acquisitions at least Nsp ≈ 20 spokes are necessary, to provide reasonable
results. For fewer numbers of spokes the gradient delay error shows unpredictable
behavior, which makes the estimates unreliable. By increasing the number of uti-
lized spokes, the estimated delays converge to constant values. However, only the
isotropic delay is estimated perfectly, whereas in the axial and oblique case a devi-
ation from the optimal values remains.

phantom measurements . The results of the phantom measurement and the
corresponding gradient delay errors E(sest

159
, sest

Nsp
) over the number of spokes used

for gradient delay estimation are provided in Figure 3.3.
RING provides a good gradient delay estimation and thus, effective streaking

artifact reduction even for only Nsp = 3 spokes. The estimate is further improved
when more spokes are utilized. However, the effect on the resulting image quality
is only marginal, since the image is basically streaking-free for Nsp = 3 spokes
already. Again, the method proves to be applicable to both full circle and half
circle acquisition, although visual observation reveals slightly better results for full
circle acquisitions with very few utilized spokes.
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Figure 3.3.: NLINV reconstructions using 39 spokes of a brick phantom FLASH mea-
surement with gradient delay correction estimated from Nsp number of spokes uti-
lizing the AC-Adaptive method and the RING method. Besides, the gradient delay
error E(sest

159
, sest

Nsp
) (Equation (3.12)) against the number of spokes used for gradient

delay estimation is depicted. (a) Full circle golden angle acquisition (projection angle
θi ∈ [0, 2π ]). (b) Half circle golden angle acquisition (projection angle θi ∈ [0,π ]).

The AC-Adaptive method can only be applied in the full circle case, but does
not provide accurate gradient delay estimates for few numbers of spokes where the
results appear worse than the uncorrected image (not shown). Although the actual
convergence value is not reached until Nsp = 37 spokes, the results for Nsp = 15

already look suitable, even if some streaking artifacts can still be observed at the
top.

The actual gradient delay is not known but the convergence values for full circle
acquisitions, sAC-Adaptive

159
= (0.336, 0.360,−0.021) and sRING

159
= (0.345, 0.384,−0.009),

are very similar for both methods. NUFFT reconstructions show an equivalent
behavior and are depicted in Figure 3.6.

in vivo measurements . Figure 3.4 shows the effects of the gradient delay
correction on an in vivo measurement of the human heart, as well as the gradient
delay error E(sest

75
, sest

Nsp
) for both the AC-Adaptive method and RING.
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Figure 3.4.: ENLIVE reconstructions using 75 spokes of an in vivo FLASH measure-
ment of the human heart (short-axis view, end-diastole) with gradient delay correc-
tion estimated from Nsp number of spokes utilizing the AC-Adaptive method and the
RING method. Besides, the gradient delay error E(sest

75
, sest

Nsp
) (Equation (3.12)) against

the number of spokes used for gradient delay estimation is depicted.

Using RING, even Nsp = 3 are sufficient for effective streaking artifact elimina-
tion and the gradient delay error compared to the convergence value is small for
all investigated numbers of spokes.

The AC-Adaptive method also provides robust streaking suppression for Nsp > 40.
It estimates gradient delays close to convergence value for some smaller numbers
of spokes, however, these results are not reliable as the gradient delay error shows
large oscillations. For very few numbers of spokes, for example, Nsp = 3, the esti-
mates are useless and even amplify streaking artifacts.

The convergence values of the gradient delay estimates are sRING
75

= (0.178, 0.068,

0.068) and s
AC-Adaptive
75

= (0.263,−0.032, 0.080) and yield comparable image qual-
ity. NUFFT reconstructions show an equivalent behavior and are depicted in Fig-
ure 3.7.

3.5 discussion

In this work we compared the widely-used AC-Adaptive method without cali-
bration scans [133, 134, 209] for gradient delay estimation in radial imaging with
the here introduced Radial INtersection Gradient delay estimation (RING) method.
The advantage of these two methods compared to other trajectory correction ap-
proaches is the simple and straightforward implementation while still being ro-
bust and accurate. All investigated experiments revealed that RING outperforms
the AC-Adaptive method. It particularly possesses three advantages over the AC-
Adaptive method:
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First and in contrast to RING, the AC-Adaptive method needs (nearly) opposed
spokes to determine the shifts via correlation analysis. However, this requirement
cannot be fulfilled for half circle acquisitions, where the projection angle is dis-
tributed in the range θ ∈ [0,π ] [211]. We demonstrated this fact in numerical
simulations (Figure 3.2) for which the AC-Adaptive method provides inaccurate
estimates for the gradient delays, whereas RING yields accurate results.

Second, the need for opposed spokes in the AC-Adaptive method also prohibits
the use of few spokes for gradient delay estimation without calibration scans, if
at the same time a uniform k-space coverage shall be guaranteed. We found this
notion in all experiments Figures 3.2 to 3.4, which show pronounced streaking
artifacts and gradient delay errors for few spokes using the AC-Adaptive method,
while RING provides high quality results for any number of spokes.

Third, the AC-Adaptive method assumes that gradient delays solely translate
into trajectory shifts in readout direction. This, however, is only the case for isotropic
delays as shown in Figure 3.1. In all other cases, the trajectory additionally experi-
ences an orthogonal shift, which in particular means that even perfectly opposed
spokes do no not cover the same k-space samples. This also explains why in Fig-
ure 3.2 (left) the gradient delay error for the AC-Adaptive method only converges
to zero in the isotropic case, but not in the oblique and axial case.

Recently, we have developed an extension to the AC-Adaptive method which
allows gradient delay estimation from few spokes by exploiting the conjugate sym-
metry in k-space instead of finding opposed spokes [209], which, however, suffers
from the same model inconsistency concerning orthogonal shifts.

RING requires two parameters: Npad, which determines the amount of k-space
sub-sampling to increase accuracy and β , which defines the region in which the
samples of the crossing spokes are compared to find the intersection point. In
preliminary investigations (not shown) we found that the accuracy of the estimates
does not significantly improve for Npad > 100, so we suggest and used Npad =

100 in all our experiments. In general, gradient delay induced k-space shifts are
< 0.5 1/FOV, thus the proposed value for β = 1.5 is sufficient to find all intersection
points. Note that values β < 1 may result in estimation inaccuracies as spokes that
are not quite orthogonal could intersect outside of the so defined region. On the
other hand, we recommend to never choose β & 4, since samples outside of the
central k-space contain less energy and are more affected by noise, which might
suggest a false intersection point. In the scope of this work we only considered the
intersection of a spoke with its most orthogonal counterpart, which is apparently
enough to yield valid results. This restriction, however, can be relaxed and the
intersection of a spoke with multiple other spokes can be considered in the fit
Equation (3.10), which can provide minor improvements for very few considered
spokes.
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3.6 conclusion

RING proofs potential as a general, lightweight on- and offline gradient delay
correction tool for radial imaging. Furthermore, it can be used for AC-Adaptive
frame-by-frame gradient delay correction in interactive real-time MRI. Because of
its flexibility, it can be directly applied to other k-space acquisition schemes based
on radials, such as radial Simultaneous Multi-Slice (SMS) [60, 62, 213] or Stack-of-
Stars (SOS) [162, 166].

3.6 conclusion

We have presented a simple and straight forward new method dubbed RING to
estimate gradient delay errors of radial trajectories from very few spokes. RING
uses the gradient delay ellipse model introduced by Peters et al. [50] and Moussavi
et al. [126] to fit the gradient delays Equation (3.3) using the intersection points of
spokes. The method yields highly accurate and robust gradient delay estimates
even for Nsp = 3 spokes in vivo. For its data driven, auto-calibrating nature, it can
simply be inserted as a module in existing online or offline frameworks without
the need to adapt the measurement protocols.
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3.8 appendix : derivation of the gradient delay ellipse model

First, we recall the definitions and results of [50]. The gradients of the logical sys-
tem

G
log
θ (t) :=

©­­«
G

log
read(t) cosθ

G
log
read(t) sinθ

G
log
slice(t)

ª®®¬ , (3.13)

can be transformed into the physical system using the orthogonal transform

R :=
©­­«
R11 R12 R13

R21 R22 R23

R31 R32 R33

ª®®¬ , (3.14)

which yields
Gphy(t) = RG

log
θ (t). (3.15)
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The timing delays tx , ty and tz , that effect the logical gradients, can be modeled
using the delay operator

TGphy(t) =
©­­«
G

phy
x (t − tx )

G
phy
y (t − ty )

G
phy
z (t − tz )

ª®®¬ . (3.16)

Hence, the delayed gradients in the logical system can be obtained by

G̃
log
θ (t) = R

TTRGlog
θ (t), (3.17)

where T denotes the transpose operation. With definition

T :=
γ

2π

©­­«
tx 0 0

0 ty 0

0 0 tz

ª®®¬ , (3.18)

the actual k-space shift is given by

δkθ =
γ

2π

∫ τ

0

(G̃log
θ (t) −G

log
θ (t))dt (3.19)

Eq. (3.15)
=

γ

2π
RT

∫ τ

0

(TGphy(t) −Gphy(t))dt (3.20)

Eq. (3.16)
=

γ

2π
RT

∫ τ

0

©­­«
G

phy
x (t − tx ) −G

phy
x (t)

G
phy
y (t − ty ) −G

phy
y (t)

G
phy
z (t − tz ) −G

phy
z (t)

ª®®¬dt (3.21)

[50]
= RTT (Gphy(τ ) −Gphy(0)) (3.22)

Eq. (3.15)
= RTTR(Glog

θ (τ ) −G
log
θ (0)) (3.23)

Eq. (3.13)
= RTTR

©­­«
G

log
read(τ ) cosθ

G
log
read(τ ) sinθ
−G log

slice(0)

ª®®¬ . (3.24)

For Equation (3.22), we assumed that the temporal delays are small compared to
the flattop time of the gradients. In Equation (3.24), we used the fact that at the
temporal center of the RF pulse (t = 0), only the slice selection gradient is active
and at the center of readout (t = τ ) only the readout gradients are active. We refer
the reader to [50] for more details.

In general, we only have information about the projection direction Equation (3.2)
n̂

log
θ = (cosθ , sinθ , 0)T and not about the actual gradient strength of a measurement.

Therefore, we separate the projection direction using

Glog :=
©­­«
G

log
read(τ ) 0 0

0 G
log
read(τ ) 0

0 0 −G log
slice(0)

ª®®¬ , (3.25)
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and obtain
δkθ = R

TTRGlog(êlog
z + n̂

log
θ ), (3.26)

with êlog
z = (0, 0, 1)T .

The first term of the right-hand-side of Equation (3.26) is independent of the
angle and thus does not effect the ellipse fit of RING and corresponds to a constant
k-space offset, i.e. a linear phase in image space, and can therefore be neglected.
Then, Equation (3.26) written out is given by

δkθ ≈ RTTRGlogn̂
log
θ (3.27)

=

(
G log

read(tx R
2

11
+ ty R2

21
+ tzR2

31
) G log

read(tx R11R12 + ty R21R22 + tzR31R32) G log
slice(tx R11R13 + ty R21R23 + tzR31R33)

G log
read(tx R12R11 + ty R22R21 + tzR32R31) G log

read(tx R
2

12
+ ty R2

22
+ tzR2

32
) G log

slice(tx R12R13 + ty R22R23 + tzR32R33)
G log

read(tx R13R11 + ty R23R21 + tzR33R31) G log
read(tx R12R13 + ty R22R23 + tzR33R32) G log

slice(tx R
2

13
+ ty R2

23
+ tzR2

33
)

)
·
(

cos θ
sin θ

0

)
. (3.28)

Here, we are only interested in the in-plane gradient delays, for which it suffices
to consider the top left 2 × 2 submatrix. By substitution we yield Equation (3.1)

δkθ ≈
(

G log
read(txR

2

11
+ ty R2

21
+ tzR2

31
) G log

read(txR11R12 + ty R21R22 + tzR31R32)
G log

read(txR12R11 + ty R22R21 + tzR32R31) G log
read(txR

2

12
+ ty R2

22
+ tzR2

32
)

)
n̂

log
θ (3.29)

:=
(

Sx Sxy
Sxy Sy

)
n̂

log
θ . (3.30)
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3.9.1 Accuracy of the Intersection Point Determination

We perform phantom simulations with different numerical phantoms, Signal-to-
Noise Ratios (SNRs) and numbers of coils to analyze the accuracy of the intersection
point determination using a pixel-wise comparison of the spokes’ samples.

We utilize a Shepp-Logan phantom and two other geometric phantoms. The
left side of Figure 3.5 shows NUFFT reconstructions of the phantoms for dif-
ferent SNRs. We simulate the corresponding delayed radial k-space data (s :=
(0.3,−0.1, 0.2), full circle golden angle trajectory, 160 read-out samples, 159 spokes)
for c = 1, . . . , 8 coils and add Gaussian white noise. As a measure for the noise
we divide the energy of the noise-free k-space by the energy of the added noise:
SNRk = Es/En). We compare all actual intersection points with the estimated inter-
section point using Equations (3.4) and (3.5) and s. For the estimation, the values
for aθi are determined by pixelwise comparison of the spokes’ samples as described
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in the manuscript. The analytical expression used to determine the actual intersec-
tion point can be derived using Equation (3.5):

aθi =

(
n̂θ j ,2

n̂θi ,2n̂θ j ,1
− n̂θi ,1

) (
Sxξ1 + Sxy ξ2 −

n̂θ j ,1

n̂θ j ,2
(Sxy ξ1 + Sy ξ2)

)
.

The central column of Figure 3.5 shows the Root-Mean-Square (RMS) error between
all measured and actual intersection points for different noise levels and numbers
of coils.

Furthermore, we estimate the gradient delays sest
SNRk,c for the same numbers of

coils c and SNRs. The gradient delay error E(s, sest
SNRk,c ) (Equation (3.12)) is depicted

in Figure 3.5, right column.
Both the gradient delay error and the RMS error of the intersection points im-

prove with the number of utilized coils. This behavior is sensible as samples from
all channels can be used to determine the intersection points and thus more robust
results can be obtained. While a single coil yields bad results for any noise level, the
use of multiple coils, which today is clinical standard, yield accurate results even
for low SNRk values. The accuracy is comparable for all investigated phantoms.
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Figure 3.5.: Intersection point accuracy analysis for three different numerical phan-
toms (a), (b), (c). (Left) NUFFT reconstructions without noise and with SNRk ≈ 7.
(Center) Root-mean-square error of the measured intersection point against the SNRk
for different numbers of coils. (Right) Gradient delay estimation error against the SNRk
for different numbers of coils.
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3.9.2 NUFFT Reconstructions

Figure 3.6.: NUFFT reconstructions of a brick phantom FLASH measurement with gra-
dient delay correction estimated from Nsp number of spokes utilizing the AC-Adaptive
method and the RING method. (a) 39 spokes used for reconstruction. (b) 159 spokes
used for reconstruction.
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Figure 3.7.: NUFFT reconstructions using 75 spokes of an in vivo FLASH measurement
of the human heart (short-axis view, end-diastole) with gradient delay correction esti-
mated from Nsp number of spokes utilizing the AC-Adaptive method and the RING
method.
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4
R I N G F O R I N T E R A C T I V E R E A L - T I M E M R I

Motivated by the accurate gradient delay estimations from only few spokes demon-
strated in the previous chapter, we will here use RING to estimate and correct the
gradient delays frame-by-frame for an interactive real-time MRI measurement.

Parts of this work have been published as an abstract at the International Society
for Magnetic Resonance in Medicine (ISMRM) 27th Annual Meeting and Exhibition
in 2019 [59].

4.1 methods

We extracted 30 seconds from a random RF spoiled [90] radial FLASH measure-
ment of a human heart with interactive changes to the slice position and orien-
tation, which has been acquired in the scope of a different study at the Univer-
sity Medical Center Göttingen. The utilized acquisition parameters were TE/TR =
1.3/2.0 ms, FOV = 256× 256 mm2, flip angle 8

◦, base resolution 128. The acquired k-
space was composed of 21 evenly distributed spokes per frame with rotated spoke
patterns to generate five different radial trajectories, as shown in Figure 2.14a (bot-
tom row). We estimated the gradient delays for each frame individually using RING
and utilized real-time NLINV for offline reconstruction of the frame-by-frame cor-
rected data. As a reference, we compared the results to a reconstruction for which
the gradient delays estimated for the first frame were used to correct all subsequent
frames. Note that the estimation of gradient delays in a pre-processing step using
initial frames or prep-scans, and their use to correct all subsequent frames of the
scan, is a common strategy.

4.2 results

Figure 4.1a depicts the temporal evolution of the gradient delay parameters Sx , Sy
and Sxy , introduced in Equation (3.3). The values remain approximately constant
for the first 177 frames, which is in compliance with the corresponding steady slice
position. Starting with frame 178, the gradient delay estimates change distinctly as
the imaging plane is subject to shifts and rotations. Moreover, slight oscillations
with a period of five frames can be noticed for each parameter.

Figure 4.1b shows reconstructions for frames 100, 180, 600 and 800, which are
highlighted by the dashed grey lines in Figure 4.1a. The top row shows reference
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images, for which the gradient delay estimates of the first frame were utilized for
the correction of all subsequent frames. The image of frame 100 is basically free
of gradient delay induced artifacts. The streakings in all other depicted frames of
the reference imply imperfect gradient delay compensation. In contrast, streaking
artifacts are significantly reduced when the gradient delays are estimated frame-
by-frame as shown in the bottom row of Figure 4.1b.

Figure 4.1.: Gradient delay correction using RING for interactive real-time MRI.
(a) Evolution of the gradient delay parameters Sx , Sy and Sxy with time. For the first
177 frames the slice position and orientation is kept constant. Then, the gradient delays
change because the imaging location interactively gets modified. The vertical dashed
lines show the frames corresponding to the images shown in (b). (b) Comparison of
real-time NLINV reconstructions with gradient delay estimation using the first frame
only (top row) and the proposed frame-by-frame updated gradient delay estimations
(bottom row).
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4.3 discussion

In this proof of principle study, we have successfully applied RING to an interactive
real-time MRI acquisition and could reliably diminish the streaking artifacts on a
frame-by-frame basis for arbitrary imaging locations and orientations.

The experiment confirms the assumption that gradient delays remain constant if
the imaging plane is not changed. Accordingly, the reference image of frame 100

does not exhibit streaking artifacts, as its imaging plane corresponds to the one of
the first frame, whose gradient delay estimates were used to correct all reference
frames. The variations of the gradient delay parameters after frame 177 reflect
the modifications to the imaging plane. The superposed oscillations with period
length 5 corresponds to the 5 different utilized spoke patterns, which suggests a
slight dependency of the gradient delay estimation on the used trajectory. This
relation could result from uncorrected B0 eddy currents [126], see Section 2.3.3.
Nevertheless, these oscillations did not reveal a notable impact on the quality of
streaking suppression.

The presented frame-by-frame gradient delay estimation using RING was per-
formed offline. Still, we are confident that the RING algorithm can be fast enough
to run online directly on the scanner. In particular, to speed up the computation the
oversampling factor Npad could be diminished or the number of spokes to estimate
the gradient delays, which does not need to coincide with the number of spokes
per frame, could further be reduced - without significant loss of accuracy, as was
demonstrated e.g. in Figure 3.4. Further investigations to guarantee a time-lag free
online gradient delay estimation and the incorporation of the RING algorithm into
the online reconstruction pipeline remain to be done in the future.

4.4 conclusion

RING is a promising tool for the repeated determination of gradient delays in
radial MRI. This study demonstrates the successful application of RING to inter-
active real-time MRI, which demands a frame-by-frame update of gradient delay
estimates from few available spokes.
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A N D R A D I A L F L A S H A N D R E G U L A R I Z E D N O N L I N E A R
I N V E R S I O N : S M S - N L I N V

The following is a reprint of the original article

S. Rosenzweig, H. C. M. Holme, R. N. Wilke, D. Voit, J. Frahm, and M. Uecker.
“Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized
nonlinear inversion: SMS-NLINV”. Magn. Reson. Med. 79 (2018), pp. 2057–2066.

c© 2017 International Society for Magnetic Resonance in Medicine. Reprinted, with
permission from [60].

SR implemented the SMS sequence with contributions by RW and DV. SR im-
plemented the SMS extension to NLINV with the assistance of MU and CH. SR
designed and conducted all experiments and performed the analysis with the help
of MU. JF and MU supervised the analysis of the experiments. SR and MU wrote
the manuscript with input from all authors.

The layout, the reference numbering, the orthography and the use of acronyms
have been adapted to preserve the natural text flow of this thesis. No substantive
changes to the content have been realized.

The technique of SMS-NLINV was described in [63] for Cartesian imaging. This
reprinted article presents the basic functionality of SMS-NLINV, extends it to radial
imaging, comprises a comparison to the alternative linear reconstruction approach
ESPIRiT and evaluates different Cartesian and radial sampling patterns for SMS
imaging.
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Abstract

Purpose: The development of a calibrationless parallel imaging method for
accelerated Simultaneous Multi-Slice (SMS) MRI based on Regularized Non-
linear Inversion (NLINV), evaluated using Cartesian and radial Fast Low-
Angle Shot FLASH.
Theory and Methods: NLINV is a parallel imaging method that jointly esti-
mates image content and coil sensitivities using a Newton-type method with
regularization. Here, NLINV is extended to SMS-NLINV for reconstruction
and separation of all simultaneously acquired slices. The performance of the
extended method is evaluated for different sampling schemes using phan-
tom and in vivo experiments based on Cartesian and radial SMS-FLASH
sequences.
Results: The basic algorithm was validated in Cartesian experiments by
comparison with ESPIRiT. For Cartesian and radial sampling, improved re-
sults are demonstrated compared to single-slice experiments, and it is fur-
ther shown that sampling schemes using complementary samples outper-
form schemes with the same samples in each partition.
Conclusion: The extension of the NLINV algorithm for SMS data was im-
plemented and successfully demonstrated in combination with a Cartesian
and radial SMS-FLASH sequence.
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5.1 introduction

Accelerating image acquisition is of great importance in clinical Magnetic Resonance
Imaging (MRI). Parallel imaging exploits receive-coil arrays for acceleration. Con-
ventional reconstruction methods for parallel imaging consist of a calibration from
reference lines followed by linear reconstruction [93, 94, 96, 214]. In contrast, Reg-
ularized Nonlinear Inversion (NLINV) [40] does not require a calibration step but si-
multaneously computes image content and coil sensitivities from all available data.
Because NLINV does not depend on the presence of explicit (Cartesian) calibration
data, it is ideally suited for non-Cartesian parallel imaging. For example, NLINV is
used in a highly accelerated real-time MRI method based on radial sampling [42].

Many applications require the acquisition of several slices. Simultaneous Multi-
Slice (SMS) MRI [148] allows for significant scan time reductions and improved
image quality [149, 150]. In SMS MRI several slices are excited at the same time
and the resulting superposition is disentangled using special encoding schemes
[151, 215] and/or the spatial encoding information inherent in receiver coil arrays
[148]. The main benefit of accelerated SMS MRI over conventional single-slice imag-
ing is the possibility to distribute undersampling among an additional dimension
and exploit sensitivity encoding in all three dimensions, which allows for higher
acceleration factors [152, 153, 213, 216–218].

The aim of this work is to extend NLINV for the reconstruction of SMS data.
First, the extension of the algorithm for Cartesian and radial sampling with arbi-
tray encoding in slice direction is introduced. For Cartesian data from an SMS-Fast
Low-Angle Shot (FLASH) sequence, SMS-NLINV is compared to ESPIRiT [96]. For
Cartesian and radial data, a single-slice measurement is compared to SMS acqui-
sitions with equivalent or complementary samples in each partition. Accelerated
SMS measurements of a human brain and a human heart are performed to show
feasibility of in vivo scans.

5.2 theory

Table 5.1 shows the notation used in this work.

5.2.1 SMS Encoding and Excitation Pulses

In SMS MRI, M partitions p = 1, . . . ,M are measured to get information about M
parallel slices q = 1, . . . ,M . Please note that a fully sampled acquisition with M par-
titions has M times the number of samples compared to a single-slice experiment,
and the acceleration factor of an SMS experiment is then given by R = N full/N red,
with N full/red the number of samples acquired in a full and undersampled partition
measurement, respectively. Contrary to conventional multi-slice, in each partition
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measurement all M slices are excited simultaneously, i.e. superposed data are ac-
quired. In the limit of small flip angles, an SMS radio-frequency (RF) excitation pulse,
which excites M slices at positions zq and thickness ∆zq , can be created by superpos-
ing conventional single-slice excitation pulses B(1)rf (zq ,∆zq). To generate differently
encoded partitions a unitary M ×M encoding matrix Ξ is included. The SMS RF
excitation pulse for partition measurement p is then given by

B̃(M )rf,p (z1, . . . , zM ,∆z1, . . . ,∆zM ) :=
M∑
q=1

ΞpqB
(1)
rf (zq ,∆zq). (5.1)

Let yq := (y1

q , . . . ,yNq ) be a vector, which contains the k-spaces y jq of slice q and
coils j = 1, . . . ,N . Then, the encoded k-space of partition p is given by

ỹp :=
M∑
q=1

Ξpqyq . (5.2)

Although the derived SMS-NLINV algorithm is completely generic, we use the
discrete Fourier-matrix for encoding in the scope of this work, i.e.

Ξpq = exp
(
−2πi

(p − 1)(q − 1)
M

)
, p,q = 1, . . . ,M . (5.3)

5.2.2 Image Reconstruction

If the encoded k-spaces ỹ1, . . . , ỹM determined by the M partition measurements
are fully sampled, the k-space of each slice can be recovered by applying the in-
verse of the encoding matrix

y
avg
q :=

M∑
p=1

Ξ−1

qp ỹp . (5.4)

Note that the k-spaces yavg
q possess an Signal-to-Noise Ratio (SNR) benefit of

√
M

compared to single-slice experiments due to averaging given by Equation (5.4) and
because Ξ is unitary. Equation (5.4) can also be applied to undersampled data if the
same k-space positions are acquired for all partitions. The recovered (but still un-
dersampled) k-spaces yavg

q can then be processed using conventional single-slice re-
construction algorithms. This still leads to an SNR benefit, but the actual advantage
of SMS - the acceleration in direction perpendicular to the slices - only comes into
play when distinct samples are acquired for each partition. Then, Equation (5.4) is
no longer applicable and more elaborate SMS reconstruction approaches must be
applied. A novel approach to tackle this reconstruction problem is introduced in
the following.
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NLINV [40] can be extended for the reconstruction of encoded SMS data [219].
In NLINV, the MRI signal equation is modeled as a nonlinear operator equation,

F (X ) = Ỹ . (5.5)

X is the vector to be reconstructed. It contains the image contentmq(r) and the N

coil sensitivities c jq(r), j = 1, . . . ,N , for each of the M slices q, i.e. the stacked vector

X := (x1, . . . ,xM )T as a concatenation of the vectors xq :=
(
mq , c1

q . . . , cNq
)T

. The

vector Ỹ contains the encoded k-spaces for all M partitions and all N channels, i.e.

Ỹ := (ỹ1, . . . , ỹM )T with ỹp :=
(
ỹ1

p , . . . , ỹNp ,
)T

. Then, the nonlinear mapping function
F is given by

F : X 7→ PΞ
©­­«
F (m1c1)

...
F (mMcM )

ª®®¬ , F (mqcq) :=
©­­«
F (mqc

1

q)
...

F (mqc
N
q )

ª®®¬ . (5.6)

Here, F is the (two-dimensional) Fourier transform and Ξ is an encoding matrix,
e.g. Equation (5.3). The projection matrix P is defined by

P :=
©­­«
P1 0

. . .
0 PM

ª®®¬ , (5.7)

where Pp is the orthogonal projection onto the k-space trajectory used for par-
tition p = 1, . . . ,M . A more compact notation for Equation (5.6) can be given by
introducing the operator C, which performs the multiplication of the object with
the sensitivities:

F : X 7→ PΞFCX . (5.8)

The forward operator F weights the magnetization mq of slice q with the coil
sensitivities cq = (c1

q , . . . , cNq )T (C), transforms into k-space (F ), encodes (Ξ) and
samples (P ). The derivative DF and its adjoint DFH will be used later to solve the
inverse problem Equation (5.5) and are given in Section 5.7.2. Figure 5.1 shows a
flow chart of the operators F , DF and DFH .

Equation (5.5) is highly underdetermined, hence prior knowledge has to be in-
corporated to prevent image content to be assigned to coil profiles and vice versa.
While the image content can contain strong variations and edges, coil profiles in
general are smooth functions, so a smoothness-demanding norm can be applied.
Uecker et al. suggest a Sobolev norm

| | f | |H l := | |a(I −b∆)l/2 f | |L2 , (5.9)
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with l a positive integer, I the identity matrix, a and b scaling parameters and ∆ =

∂2

x + ∂
2

y the two-dimensional (2D) Laplacian. Hence, in Fourier space the standard
L2-norm has to be weighted by the additional term a(1+b | |k | |2)l/2, which penalizes
high spatial frequencies. This regularization is implemented by transforming X =

(x1, . . . ,xM )T using a weighting matrixW−1.

We denote X ′ := W−1X and x′q := W −1xq =
(
mq , c ′1q , . . . , c ′Nq ,

)T
. This yields a

transformed but equivalent system of equations

G(X ′) := FWX ′ = Ỹ , (5.10)

which is solved using the Iteratively Regularized Gauss-Newton Method (IRGNM).
As a first step, the IRGNM linearizes Equation (5.10),

Ỹ = DG
��
X ′n
dX ′ +GX ′n , (5.11)

where X ′n is the estimate of the nth Newton step and DG
��
X ′n

is the Jacobian of G
at X ′n . This equation is solved in the least-squares sense and with regularization
using the Conjugate Gradient (CG) algorithm. The corresponding cost function to
be minimized in every Newton step is

Φ(dX ′) = argmin
dX ′

(
| |DG

��
X ′n
dX ′ − (Ỹ −GX ′n)| |2L2 + βn | |X ′n +dX ′ | |2L2

)
, (5.12)

where the L2 penalty term βn | |X ′n +dX ′ | |2L2 = βn | |W−1Xn+1 | |2L2 , with βn = β0h
n and

h ∈ (0, 1), implies Tikhonov regularization.

5.2.3 Implementation for Cartesian and non-Cartesian Data

We assume Equation (5.5) to be given in discretized form and all functions are rep-
resented by vectors of point values on a rectangular grid. For Cartesian sampling,
F can be implemented exactly as a discrete Fourier transform, and Pp is a diagonal
matrix with ones at sample positions and zeros elsewhere. The 2D Fourier trans-
form F always appears in combination with the encoding matrix Ξ, which in this
work is the discrete Fourier-matrix Equation (5.3). Thus, ΞF and its adjoint can
simply be implemented as a three-dimensional Fast Fourier transform and its ad-
joint. Note that the 2D Fourier transform F is a discretized version of a continuous
Fourier transform, whereas the Fourier-encoding Ξ is discrete by definition.

For non-Cartesian sampling, Pp projects onto arbitrary positions in k-space. As in
non-Cartesian SENSE, PF can be implemented with a non-uniform Fourier trans-
form [220]. The term F HΞHPΞF is the main operation, which occurs in each iter-
ation step. As described previously [121], it can be interpreted as a non-periodic
convolution with a point-spread function, which has to be evaluated on a region
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Figure 5.1.: Flow chart for the calculation of the forward operator F , its derivative
DF and the adjoint of the derivative DFH . ỹ : Encoded k-space data. m: Magnetiza-
tion. c: Coil sensitivity. P : Projection onto k-space trajectory. F : 2D Fourier transform.
Ξpq : Encoding matrix. ·: Pointwise multiplication. +: Addition. ∗: Complex conjuga-
tion.
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with compact support defined by the Field of View (FOV). Thus, an efficient imple-
mentation is achieved with the Fast Fourier Transform (FFT) on a 2-fold enlarged
grid to implement the non-periodic convolution using Toeplitz embedding. This
requires only a minor modification of the Cartesian implementation, which can
then be used with data gridded once onto the Cartesian grid in a preparatory step
and with a pre-computed point-spread function.

5.2.4 Sampling Schemes

All utilized Cartesian sampling patterns possess Lref reference lines in the k-space
center, whereas the periphery is undersampled by a factor R. For each of the M

partition measurements we can use a distinct undersampling pattern. The CAIPIR-
INHA technique can improve the image quality for SMS acquisitions by acquiring
alternating lines between each partition [152, 221]. Alternatively, in each partition
the same samples can be acquired (aligned pattern).

In radial measurements k-space samples are acquired along spokes. Let Nsp be
the total number of acquired spokes per partition. Then, the angle between consec-
utive spokes of a partition is set to αsp = 2π/Nsp, which guarantees uniform k-space
coverage and prevents strong gradient delay artifacts by opposing the acquisition
direction of adjacent spokes. For each partition the k-space trajectory, i.e. the spoke
distribution scheme, can be chosen individually. Figure 5.2 shows three possible
spoke distribution schemes: (1) The aligned scheme acquires the same spokes for
each partition. (2) In the linear-turn scheme the initial spoke pattern is rotated by

αLIN
trn = (p − 1) · π

Nsp ·M
(5.13)

for partition p = 1, . . . ,M , assuring the acquisition of complementary samples
and uniform spoke distribution (cf. Figure 5.2b). (3) Fourier-encoding in SMS MRI
can also be seen as an additional phase-encoding in kz direction. The acquisition of
many slices is therefore very similar to a Stack-of-Stars (SOS) sequence in true three-
dimensional imaging for which Zhou et al. [166] showed that a golden angle-like
rotation of the spoke distribution results in a higher image quality than aligned or
linearly varied distributions. Here the turn angle for partition p is given by

αGA
trn =

(
(p − 1) · π

Nsp
·
√

5 − 1

2

)
mod

π

Nsp
. (5.14)

This scheme provides a more uniform local three-dimensional k-space coverage
as can be seen in Figure 5.2c, but the spokes themselves are not as evenly dis-
tributed as in the linear-turn scheme. Turn-based spoke distribution schemes in
combination with Fourier-encoded partition measurements are known to improve
image quality similar to CAIPIRINHA in the Cartesian case [153, 221].
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Figure 5.2.: Schematic for three radial sampling schemes (multi-band factor M = 4 and
Nsp = 3 spokes per partition measurement). Aligned: Same spokes acquired for each
partition. Linear-turn: Linearly varied rotation angle αtrn of the initial spoke distribu-
tion. Golden-angle-turn: Rotation angle αtrn chosen according to the golden angle. (a)
Spoke distribution for all 4 partitions. αsp is the angle between consecutive spokes. The
arrow hints the readout direction. (b) Spokes of all partitions plotted in one diagram.
(c) kz plotted against the rotation angle αtrn.
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5.2.5 Post-Processing

Although the matrixW promotes adequate distribution of image content and coil
sensitivities, the results may still exhibit minor large scale intensity variations com-
pared to a conventional Root-Sum-of-Squares (RSS) reconstruction. This can be com-
pensated for by multiplying the image content with the RSS of the coil profiles:

mfinal
q =mq ·

√√√ N∑
j=1

|c jq |2 (5.15)

5.3 methods

Cartesian and radial 2D FLASH sequences with adapted RF excitation pulses for
Fourier-encoded SMS excitation as described in the theory section were developed
and utilized in this study. All experiments were conducted on a Magnetom Skyra
3T (Siemens Healthcare GmbH, Erlangen, Germany) scanner using a 20-channel
head/neck coil for phantom and human brain measurements and a combined tho-
rax and spine coil with 26 channels for human heart measurements. All phan-
tom measurements (FOV = 170 × 170 mm2, matrix size 192 × 192, slice thickness
∆z = 6 mm) were performed on a custom-made phantom (Figure 5.3) consisting of
ABS bricks (LEGO) being immersed in pure water.

Figure 5.3.: Schematic of the custom-made phantom consisting of LEGO bricks in pure
water.

It is designed such that the proton density of the top and bottom part of the
phantom differ distinctly from each other. This property can be used to demon-
strate the capability of SMS-NLINV to disentangle simultaneously excited slices.
The in vivo brain measurements (FOV = 230 × 230 mm2, matrix size 192 × 192,
slice thickness ∆z = 4 mm, flip angle θ = 25

◦) as well as the heart measurements
(FOV = 256 × 256 mm2, matrix size 160 × 160, slice thickness ∆z = 6 mm, flip angle
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θ = 8
◦) were performed on volunteers with no known illnesses. In all experiments,

all simultaneously acquired slices are separated by a fixed distance d. NLINV as
well as SMS-NLINV were implemented in the C-based software package BART
[210]. The initial guess was mq = 1 (q = 1, . . . ,M) for the magnetizations and c jq = 0

(q = 1, . . . ,M , j = 1, . . . ,N ) for the coil sensitivities. The parameters for the Sobolev
norm were set to a = 1, b = 220 and l = 32. The initial regularization parameter
was β0 = 1 with reduction factor h = 1/2. In the interest of reproducible research,
code and data to reproduce the experiments are made available on Github.1

To confirm the basic functionality of SMS-NLINV, a Cartesian SMS measure-
ment with multi-band factor M = 2 (slice distance d = 60 mm, TE/TR=4.4/8.3 ms,
flip angle θ = 15

◦) was performed on the brick phantom. A full k-space was ac-
quired and undersampling was performed retrospectively by multiplication with
the corresponding patterns. The full and a retrospectively undersampled k-space
(CAIPIRINHA pattern, R = 4, Lref = 12) were reconstructed with SMS-NLINV.
For comparison, reconstructions were also performed using the L2-regularized ES-
PIRiT algorithm [96], which is based on SENSE [94] and can therefore also be
applied to SMS data [152]. To validate the accuracy of the results, difference im-
ages between the full and undersampled reconstructions were calculated. To assure
proper difference images for ESPIRiT reconstructions, the complex-valued slice-
images were multiplied with the corresponding coil sensitivities followed by an
RSS combination. The post-processing step in SMS-NLINV already compensates
for intensity variations, thus adequate difference images can be calculated using
the magnitude of the resulting images. We performed the same experiment using
Lref = 4 reference lines to demonstrate the advantage of SMS-NLINV over ESPIRiT
given a very small calibration region.

The CAIPIRINHA technique can significantly improve the image quality of SMS
experiments [152, 221]. We confirm these findings for SMS-NLINV by comparing
retrospectively undersampled SMS measurements (TE/TR=4.8/9.1 ms, flip angle
θ = 15

◦, Lref = 12, R = 4) with CAIPIRINHA patterns to SMS measurements with
aligned patterns using the multi-band factors M = 2 (slice distance d = 60 mm)
and M = 3 (slice distance d = 30 mm). The absolute slice locations were chosen
such that the outermost slices in both experiments were located at the same po-
sitions, which allowed a comparison of the respective slice images. A reference
measurement was performed with each investigated slice acquired separately in a
single-slice experiment and reconstructed with regular NLINV using equivalent re-
construction parameters. Apart from reduced SNR, the single-slice measurements
should be identical to the acquisition with the aligned patterns.

The same experiment was performed using a radial trajectory to rule out errors
with the radial SMS-FLASH sequence (TE/TR=2.0/3.1 ms, flip angle θ = 15

◦, Nsp =

29 spokes per partition) and the SMS-NLINV reconstruction for non-Cartesian data.

1 https://github.com/mrirecon/SMS-NLINV
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Again, the improved k-space coverage of interleaved acquisitions, i.e. the use of
linear-turn- and golden-angle-turn-based spoke distributions, should provide bet-
ter results than aligned distributions or single-slice measurements with the same
reduction factor. As a reference we performed single slice measurements on the
same slices using Nsp = 301 spokes to achieve Nyquist sampling even in the outer
region of k-space.

Finally, we present two in vivo experiments. First, M = 5 slices (slice distance d =

60 mm, TE/TR=4.0/9.8 ms, Nsp = 39 spokes per partition) of a human brain were
acquired using the golden-angle-turn scheme. Reconstructions were performed us-
ing SMS-NLINV and L2-ESPIRiT. Calibration using ESPIRiT requires a four step
procedure: (1) the reconstruction of a fully-sampled Cartesian calibration regions
using gridding (for all partitions) (3) disentangling of the partitions into slices
using the inverse of matrix Ξ, (3) Fourier transformation back into a Cartesian k-
space (for each slice), and (4) actual calibration from the Cartesian k-space data
(for each slice). For this procedure to work, only the region in k-space, which ful-
fills the Nyquist criterion in all partitions can be used. The size of the calibration
region for ESPIRiT Rcal is limited by the Nyquist criterion and was calculated to be
Rcal = 35 × 35. Second, M = 2 slices (slice distance d = 40 mm, TE/TR=1.37/2.2 ms,
Nsp = 35 spokes per partition) of a human heart were acquired without electrocar-
diogram (ECG)-triggering [42].

To be able to reconstruct a single frame without temporal regularization or filter-
ing, we combined 5 interleaves with 7 spokes per partition to obtain a single data
set with 35 spokes per partition and linear-turn scheme.

5.4 results

5.4.1 Cartesian Data

Figure 5.4a shows ESPIRiT and SMS-NLINV reconstructions of a 4-fold undersam-
pled Cartesian SMS measurement with multi-band factor M = 2 and Lref = 12

reference lines. The SMS-NLINV algorithm can completely disentangle the super-
posed slices without significant artifacts after it = 9 Newton steps. The resulting
image quality is equivalent to ESPIRiT. Figure 5.4a also depicts difference images
of undersampled and full reconstructions for both methods. For better visibility the
image intensity was increased by a factor of 5. In all difference images almost no
residual image content can be observed and mostly noise is present, which means
that almost all aliasing artifacts could be eliminated. The enhanced noise in the cen-
tral region is a consequence of the specific Cartesian sampling pattern. Figure 5.4b
shows the same reconstructions using a reduced calibration region. Whereas we
find significant aliasing artifacts for ESPIRiT, SMS-NLINV still provides good re-
sults after it = 10 Newton steps.
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Figure 5.4.: (a) Reconstructions of a 4-fold undersampled Cartesian SMS measurement
with multi-band factor M = 2 (slice distance d = 60 mm, Lref = 12 reference lines) and
corresponding difference images to full reconstructions: ESPIRiT and SMS-NLINV
after it = 9 Newton steps. A magnified Region of Interest (ROI) indicated by a white
rectangle is shown as inset on the bottom right. For better visibility, the image intensity
of the difference images was increased by a factor of 5. (b) Same experiment as in (a)
using only Lref = 4 reference lines and it = 10 Newton steps for SMS-NLINV. The
arrows highlight aliasing artifacts.
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Figure 5.5 shows SMS-NLINV reconstructions of Cartesian SMS acquisitions
with multi-band factors M = 2 and M = 3 after it = 10 Newton steps using aligned
and CAIPIRINHA patterns. As a comparison, the figure also depicts NLINV re-
constructions of single-slice measurements for the same slices using it = 10 New-
ton steps. For both pattern types and multi-band factors the superposition can be
completely disentangled and no severe undersampling artifacts are present. How-
ever, the image quality resulting from the CAIPIRINHA data is clearly superior to
aligned SMS and single-slice data. Besides an SNR benefit, the images of aligned
SMS do not show any advantages compared to the single-slice images. By contrast,
the CAIPIRINHA images resolve small details of the phantom bricks much better.

Figure 5.5.: Comparison of different acquisition and reconstruction strategies for Carte-
sian measurements on the brick phantom with reduction factor R = 4 and Lref = 12

reference lines. (a) Single-slice acquisition and NLINV reconstruction for each slice.
(b) SMS acquisition and SMS-NLINV reconstruction for M = 2 and aligned (left) and
CAIPIRINHA pattern (right). Slice distance d = 60 mm. (c) SMS acquisition and SMS-
NLINV reconstruction for M = 3 and aligned (left) and CAIPIRINHA pattern (right).
Only the outermost slices with slice distance d = 60 mm are depicted. A magnified
ROI indicated by a white rectangle is shown as inset on the bottom right of every
image.

5.4.2 Radial Data

Figure 5.6 depicts SMS-NLINV reconstructions of aligned, linear-turn- and golden-
angle-turn-based radial SMS acquisitions with multi-band factor M = 3 after it = 10

Newton steps, as well as NLINV reconstructions of single-slice measurements for
the same slices using it = 10 Newton steps. The results for M = 2 are provided in
Figure 5.9. Similar to Figure 5.5 the slice images could be reconstructed without

96



5.4 results

significant undersampling or superposition artifacts. As in the Cartesian case, the
turn-based SMS acquisitions, where complementary k-space data are acquired in
each partition, yield a much better image quality than aligned SMS and single-slice
measurements. The linear-turn and the golden-angle-turn scheme yield similar
results. As Figure 5.10 we provide difference images in image and k-space for
Nsp = 301 and Nsp = 29 spokes per partition for the linear-turn-based M = 3

measurement. Figure 5.11 shows the same experiments as Figure 5.6 and Figure 5.9
but with Nsp = 69 spokes.

Figure 5.6.: Comparison of different acquisition and reconstruction strategies for radial
measurements on the brick phantom with Nsp = 29 spokes per partition or slice and
a fully sampled reference scan with Nsp = 301 spokes per slice. (a) Single-slice acqui-
sition and NLINV reconstruction for each slice. (b) SMS acquisition and SMS-NLINV
reconstruction for M = 3 and aligned (left), linear-turn-based (center) and golden-angle-
turn-based sampling (right). Only the outermost slices with slice distance d = 60 mm
are depicted. A magnified ROI indicated by a white rectangle is shown as inset on the
bottom right of every image. The same experiment for M = 2 is provided as Figure 5.9.

Figure 5.7 and Figure 5.8 show the results of the in vivo scans where we have
chosen the number of Newton steps to obtain the best results using visual obser-
vation. Figure 5.7 shows M = 5 slices of a 7-fold undersampled acquisition of a
human brain reconstructed with SMS-NLINV using it = 11 Newton steps and ES-
PIRiT. Both methods show similar results as all slices are completely disentangled
and all streaking artifacts could be eliminated. As Figure 5.12 shows, the resid-
ual for the SMS-NLINV reconstruction approaches a constant value when plotted
against the number of Newton steps.

Figure 5.8 depicts M = 2 slices of a human heart in end-diastole simultaneously
acquired in 154 ms using Nsp = 35 spokes per partition and reconstructed with
SMS-NLINV using it = 13 Newton steps. Again, the two slices are completely dis-
entangled and only slight blurring as well as minor streaking artifacts are present.
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Figure 5.7.: SMS-NLINV and ESPIRiT reconstructions of a human brain using a radial
SMS-FLASH acquisition with multi-band factor M = 5 (slice distance d = 10 mm, slice
thickness ∆z = 4 mm, golden-angle-turn scheme, Nsp = 39 spokes per partition, it = 11

Newton steps).

Figure 5.8.: SMS-NLINV reconstruction of a human heart in end-diastole using a real-
time SMS-FLASH acquisition with multi-band factor M = 2 (slice distance d = 40 mm,
slice thickness ∆z = 6 mm, Nsp = 35 spokes per partition, it = 13 Newton steps).
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5.5 discussion

In this work, SMS-NLINV has been combined with a Cartesian and a radial SMS-
FLASH sequence.

With sufficient reference lines, SMS-NLINV and ESPIRiT reconstruct undersam-
pled SMS data with similar image quality as shown in this work for radial and
Cartesian data. This finding is in agreement with previous results comparing ES-
PIRiT and regular NLINV [96]. For very small calibration regions SMS-NLINV
still provides good results where ESPIRiT reconstructions already show severe ar-
tifacts. The reason for this is that SMS-NLINV does not rely on a fully sampled
calibration region but jointly estimates the image content and the coil sensitivities.
In contrast, direct calibration using ESPIRiT or other calibration methods requires
a complicated four step procedure and only the region in k-space, which fulfills
the Nyquist criterion simultaneously in all partitions can be utilized for calibra-
tion. SMS-NLINV not only makes all these additional separate processing steps
unnecessary, it also works even for very small calibration regions by exploiting
all available samples. This latter property makes SMS-NLINV ideally suited for
non-Cartesian sampling, especially for accelerated dynamic imaging with chang-
ing coil sensitivities where only five to seven spokes per partition are acquired and
the Nyquist-sampled region can become very small [62]. We compared Cartesian
SMS acquisitions with CAIPIRINHA and aligned patterns as well as radial SMS
acquisitions with aligned spoke scheme and linear-turn spoke schemes for differ-
ent multi-band factors M with single-slice (M = 1) measurements as control. The
aligned schemes acquire the same k-space samples for each of the M partitions,
which resembles an averaging process and thus yields an SNR benefit relative to
single-slice measurements. However, the partitions do not contain complementary
k-space information and therefore no significant advantages in terms of better re-
solved details can be achieved. In this case a joint reconstruction does not possess
any benefits compared to an inverse discrete Fourier transform (Equation (5.4)) on
the Fourier-encoded k-spaces followed by single-slice reconstructions. The actual
advantage of SMS-NLINV becomes apparent with the use of schemes where each
partition contributes complementary k-space data, which is equivalent to supple-
mentary object information. Consequently, in addition to the SNR benefit, details
are better resolved. Whereas single-slice NLINV and aligned SMS-NLINV recover
missing k-space samples using 2D sensitivity information, SMS-NLINV using com-
plementary data also exploits sensitivity variations in the third dimension, which
allows for higher acceleration factors [216].

In principle, the more slices M we simultaneously acquire using an interleaved
scheme, the better will be the resulting image quality of each slice due to the√
M-like SNR benefit and the acquisition of additional complementary samples.

However, for the acquisition of M slices we have to perform M partition measure-
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ments and therefore the measurement time increases with increasing M until it
approaches the time of a three-dimensional measurement. The optimal choice for
M depends on various experimental considerations such as overall motion robust-
ness, magnetization preparation scheme, etc.

A future subject of study will be the use of SMS-NLINV for dynamic imaging at
high temporal resolution, which was already successfully demonstrated for single-
slice MRI using NLINV [41–43, 222]. The incorporation of additional minimization
penalties such as temporal regularization and median filtering [41] known from
NLINV and adapted spoke distribution schemes for dynamic SMS imaging [223]
can directly be applied to SMS-NLINV and will further reduce streaking artifacts
as well as blurring and improve the overall image quality. Preliminary results have
been presented by Rosenzweig et al. [62].

In this work, we used a basic SMS-FLASH sequence. However, SMS-NLINV is
a very general reconstruction approach and should be applicable to all sequences
that can make use of an SMS acquisition, such as Diffusion Tensor Imaging, functional
MRI or T1/T2 quantification. In the future, we also plan to combine SMS-NLINV
with a bSSFP sequence [158] and more advanced regularization techniques, which
will improve image quality at high acceleration [224, 225].

5.6 conclusion

The present work extends the NLINV algorithm to SMS MRI. As NLINV does not
rely on the presence of Cartesian calibration data, it is an ideal choice for parallel
imaging with non-Cartesian acquisitions. The combination with SMS offers the ad-
vantages of increased SNR and higher acceleration by exploiting three-dimensional
sensitivity encoding.
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5.7 appendix

5.7.1 Glossary

Table 5.1.: Glossary of notations
M Multi-band factor N Number of receive channels
d Slice distance xq Magnetization and coil sensitivities
y k-spaces of all coils for slice q

y j k-space of coil j yq k-space of slice q

m Magnetizations seen by all coils mj Magnetization seen by coil j
mq Magnetization of slice q c Coil sensitivities of all coils
cq Coil sensitivity of slice q ĉ Normalized coil sensitivity
zq Center coordinate of slice q ∆z Slice thickness
˜ Encoded quantity H Adjoint
T Transpose ∗ Complex conjugate
it Number of Newton steps

5.7.2 Derivative and Adjoint of the Forward Operator

Given the forward operator F (x) from Equation (5.6) the corresponding derivative
reads

DF
��
X

©­­«
dx1

...
dxM

ª®®¬ = PΞ
©­­«
F (dm1c1 +m1dc1)

...
F (dmMcM +mMdcM )

ª®®¬ . (5.16)

The adjoint of the derivative is given by

DFH
��
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©­­«
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...
dỹM

ª®®¬ =
©­­­­­­­«

(
cH

1

mH
1

)
0

. . .

0

(
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mH
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)
ª®®®®®®®¬
F HΞHP H
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dỹ1

...
dỹM

ª®®¬ , (5.17)

with (
cHq
mH

q

)
:=

(
c1

q
∗, . . . , cNq

∗

m∗q

)
.

The asterisk ∗ denotes pointwise complex conjugation.
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5.7.3 Weighting Matrix

The weighting matrix used in SMS-NLINV to implement the smoothness penalty
for the coil sensitivities is given by:

W−1 :=
©­­«
W −1

0

. . .
0 W −1

ª®®¬ , (5.18)

Here, W −1 is the same weighting matrix as used in conventional NLINV:

W −1 :=

©­­­­­«
I 0

a(1 +b | | ®k | |2)l/2F
. . .

0 a(1 +b | | ®k | |2)l/2F

ª®®®®®¬
. (5.19)

5.8 supplementary material

Figure 5.9.: Comparison of different acquisition and reconstruction strategies for radial
measurements on the brick phantom with Nsp = 29 spokes per partition or slice and
a fully sampled reference scan with Nsp = 301 spokes per slice. (a) Single-slice acqui-
sition and NLINV reconstruction for each slice. (b) SMS acquisition and SMS-NLINV
reconstruction for M = 2 and aligned (left), linear-turn-based (center) and golden-angle-
turn-based sampling (right). Slice distance d = 60 mm. A magnified ROI indicated by
a white rectangle is shown as inset on the bottom right of every image.
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Figure 5.10.: Difference images in image and k-space for SMS (M = 3, slice distance
d = 30 mm, linear-turn-based spoke distribution) acquisitions with Nsp = 301 (fully
sampled reference) and Nsp = 29 spokes per partition. For better visibility, the inten-
sity of the difference images was increased by a factor of 5 and the k-spaces were
additionally depicted using the log-scale.
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Figure 5.11.: Comparison of different acquisition and reconstruction strategies for ra-
dial measurements on the brick phantom with Nsp = 69 spokes per partition or slice
and a fully sampled reference scan with Nsp = 301 spokes per slice. (a) Single-slice
acquisition and NLINV reconstruction for each slice. (b) SMS acquisition and SMS-
NLINV reconstruction for M = 2 and aligned (left), linear-turn-based (center) and
golden-angle-turn-based sampling (right). Slice distance d = 60 mm. (c) SMS acqui-
sition and SMS-NLINV reconstruction for M = 3 and aligned (left), linear-turn-based
(center) and golden-angle-turn-based sampling (right). Only the outermost slices with
slice distance d = 60 mm are depicted.
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Figure 5.12.: Residuum of the SMS-NLINV reconstruction in Figure 5.7 against the
number of Newton steps.
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6
R E A L - T I M E I M A G I N G U S I N G S M S - N L I N V

In the previous chapter, we have demonstrated the capability of SMS-NLINV to
provide accurate reconstructions from highly undersampled SMS data. The imag-
ing of dynamic processes allows for even higher undersampling factors by exploit-
ing temporal correlations. In this chapter, we will therefore incorporate temporal
regularization into the SMS-NLINV algorithm to employ radial SMS-NLINV for
real-time imaging of M = 3 and M = 5 simultaneously acquired slices. We will
compare the results to conventional interleaved multi-slice measurements.

Parts of this work have been published as an abstract at the ISMRM 25th and
26th Annual Meeting and Exhibition in 2017 and 2018 [61, 62].

6.1 theory

The effective use of temporal regularization requires adapted radial acquisition
schemes, as Figure 2.15 demonstrates. Therefore, the acquisition scheme for real-
time single-slice imaging presented in Section 2.5.2 must be revised for real-time
SMS MRI and conventional time-resolved interleaved multi-slice MRI.

For the latter, the pattern with inter-frame rotations illustrated in Figure 2.14a
(bottom row) is commonly utilized with a small modification. Instead of performing
conventional single-slice acquisitions one slice after the other, a spoke from a dif-
ferent slice is recorded in each TR. This strategy, which is illustrated in Figure 6.1a,
enforces temporal consistency at the expense of reduced temporal resolution for
each slice, as only every M-th TR a spoke of the same slice is acquired. To obtain
a uniform k-space coverage for a single frame and slice, the angle increment is set
to αsp = 2π/Nsp, with Nsp the number of spokes per frame. The resulting spoke
distribution is rotated by αfra = αsp/Npat to obtain Npat = 5 different frame patterns,
which are repeated for succeeding frames.

While for interleaved multi-slice experiments only one slice per TR is excited,
for SMS MRI in each TR all slices are simultaneously excited. Accordingly, each
spoke contains superposed information from all slices, for which spokes do not
belong to specific slices but to partitions, which represent z-encodings in k-space.
Consecutive spokes are acquired from different partitions, thus the projection an-
gle is increased by αtrn = π/(Nsp ·M) until all partitions have been visited, which
is motivated by Chapter 5 and Equation (5.13). As before, the angle increment
within a frame and partition is set to αsp = 2π/Nsp. To generate Npat = 5 different
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frame patterns, the spoke distribution for all partitions of a frame is rotated in the
subsequent frame by αSMS

fra = 2π/(Nsp ·M · Npat). This strategy avoids redundancy
and guarantees uniform k-space coverage within Npat = 5 consecutive frames. The
scheme is repeatedly applied for succeeding frames. Figure 6.1b and Figure 6.1c
illustrate this approach.

For consistent disentangling of the superposed slices, M consecutive spokes are
assigned to the same time-step, for which the temporal resolution of SMS MRI is
equal to the corresponding interleaved multi-slice experiment. Nevertheless, the
benefits of SMS MRI, such as improved SNR and the ability to exploit spatial
correlations between slices as described in Chapter 5 give reason to expect quality
improvements.

As proposed in [42] and described in Section 2.5.2, we incorporate temporal reg-
ularization in the SMS-NLINV algorithm by modification of the objective function
Equation (5.12) to take advantage of the complementary k-space information intro-
duced by the frame-wise rotated spoke patterns. Let X ′(t ) be the weighted vector
of image content and coil sensitivities for time-step t . Then, temporal regulariza-
tion is incorporated by penalizing the difference of iteration n of the current frame
X ′(t )n + dX ′(t ) and the result of the previous frame X ′(t−1), damped by the factor
ξ = 0.9.

Φ
(
dX ′(t )

)
= argmin

dX ′(t )

( ��������DG��
X ′(t )n

dX ′(t ) −
(
Ỹ (t ) −GX ′(t )n

) ��������2
L2

+βn

��������X ′(t )n +dX ′(t ) − ξX ′(t−1)
��������2
L2

)
,

(6.1)

Intuitively, this enforces similarity between the current and the previous frame.
To reduce the number of required IRGNM steps and thus to speed-up the image
reconstruction, the previous frame can furthermore be used as initialization.
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Figure 6.1.: Illustration of a time-resolved interleaved radial multi-slice and SMS acqui-
sition scheme for three slices. The top row of (a) and (b) depicts the k-space pattern
and in the bottom row, colored planes highlight the excited slices per TR. (a) For
interleaved multi-slice MRI, one slice at a time is excited and a single spoke is ac-
quired before proceeding to the next slice, where a spoke with the same projection
angle is recorded. After a completed iteration through all slices, the projection angle
is increased by αsp and the procedure is repeated. When all spokes per frame and
slice have been acquired, the spoke pattern is rotated as in Figure 2.14 to increase the
k-space coverage (not shown here). The temporal increment between two acquired
spokes within a slice is here given by ∆t = 3 TR. The numbers next to the spokes
indicate the acquisition order. (b) For SMS MRI, all slices are excited in each TR using
a specific encoding. Thus, the corresponding spoke does not belong to a particular
slice but to a partition, i.e. a kz -position in k-space, and contains information about
all slices. This increases the SNR compared to (a). Three consecutive spokes are com-
bined to one time-step, which yields the same temporal increment ∆t = 3TR as in (a).
Subfigure (c) depicts the angle αsp between spokes within one partition. While iterat-
ing through the partitions the projection angle is increased by αtrn, which extends the
k-space coverage compared to interleaved multi-slice. When all spokes per frame and
partition have been acquired, the entire spoke pattern for all partitions is rotated by
αSMS

fra for temporal complementarity.
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6.2 methods

In this proof of principle study for real-time cardiac SMS imaging, we conducted
SMS-FLASH measurements of 10 s duration with M = 3 and M = 5 slices. For
comparison, we performed conventional interleaved multi-slice measurements of
the same slices and with similar temporal resolution. The interleaved multi-slice
measurements were reconstructed individually using NLINV with temporal regu-
larization. A joint reconstruction of all slices was performed for the SMS acquisition
using SMS-NLINV with temporal regularization.

For all measurements the following parameters were used: Slice thickness 5 mm,
slice gap 10 mm, TE/TR 1.35/2.10 ms, flip angle 8

◦, base resolution 128 and FOV
256× 256 mm2. We utilized the spoke distribution schemes presented in Section 6.1
with Nsp = 5 spokes per partition/slice for the M = 3 experiment and Nsp = 3

spokes per partition/slice for the M = 5 experiment, which yields a temporal reso-
lution of 31.5 ms per frame and slice for all experiments. Gradient delay correction
was performed using RING [58]. For the interleaved multi-slice experiments, gra-
dient delays were estimated individually for each slice. For the SMS experiments
the center partition, which contains most energy, was used to determine a gradient
delay estimate, that was then used to correct all partitions.

6.3 results

Figure 6.2a depicts end-systolic frames for all three slices of the SMS measurement,
as well as the temporal evolution of a vertical line extracted from the center slice.
Figure 6.2b shows the same plot for the interleaved multi-slice experiment. In both
spatio-temporal plots, eight full heartbeats can be recognized. Furthermore, ap-
proximately two respiration cycles can be appreciated. The overall image quality
as well as the time resolved performance is comparable for both experiments. Nev-
ertheless, the blood to myocardium contrast of the SMS acquisition outperforms
the conventional multi-slice results, which is even more apparent in the experi-
ments using five slices shown in Figure 6.2c and Figure 6.2d. Still, the quality of
both five-slice experiments is significantly decreased and appear more blurry and
unsharp compared to the results for three slices.
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Figure 6.2.: Results of the real-time SMS (a,c) and real-time interleaved multi-slice
experiments (b,d) with three and five slices. (a) and (b) depict end-diastolic frames
for all three slices. Moreover, the temporal evolution of a vertical line (red highlight)
extracted from the center slice is shown. In (c) and (d) end-diastolic frames of all five
slices are displayed.
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6.4 discussion

The presented results suggest that both three-slice experiments with five spokes
per frame and slice/partition achieve a reasonable image quality with a clinically
relevant temporal resolution. In contrast, the excessive undersampling in the five-
slice experiment with three spokes per frame and slice/partition distinctly deteri-
orates the results.

Due to the repeated excitation of all slices in each TR, the SNR is expected to
be increased by a factor of

√
M in the SMS measurement [63]. However, the use of

spatial and temporal regularization has a smoothing effect and hampers a proper
SNR analysis. Moreover, the SNR is affected by the choice of the flip angle. A flip
angle of 8

◦ was proposed for cardiac radial single-slice FLASH [42] and provides a
good blood to myocardium contrast in end-diastole for SMS experiments. However,
for interleaved multi-slice MRI, the effective TR for each slice is increased by a
factor of M , which alters the steady-state condition. Therefore, a higher flip angle
might be more appropriate and could increase the blood to myocardium contrast
in end-diastole.

This being said, the use of the FLASH sequence for interleaved multi-slice or
SMS imaging of the heart is not recommended for a routine clinical use. The blood
to myocardium contrast in the FLASH sequence relies on the in-flow of fresh, unsat-
urated blood. The repeated excitation of multiple slices inside the heart impairs this
condition. Beyond that, the bSSFP sequence provides a better blood to myocardium
contrast and higher SNR and is therefore often preferred for cardiac MRI [226].
However, conventional interleaved multi-slice MRI is incompatible with a bSSFP
sequence, since the condition TE = TR/2 is infeasible due to the prolonged effective
TR. Therefore conventional multi-slice bSSFP imaging is limited to a sequential ac-
quisition of one slice after the other, which inhibits inter-slice time-consistency. On
the contrary, SMS imaging can be combined with the bSSFP approach [158, 159],
which also solves the problem of contrast loss in end-systolic phases.

6.5 conclusion

In this study, we have successfully applied SMS-NLINV for the reconstruction of
real-time SMS measurements on a human heart. A detailed study to investigate
the effects of different parameter combinations such as flip angle or number of
spokes per frame and the implementation of the SMS bSSFP sequence was beyond
the scope of this thesis and remains future work.
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Abstract

Cardiac Magnetic Resonance Imaging (MRI) is time-consuming and error-
prone. To ease the patient’s burden and to increase the efficiency and robust-
ness of cardiac exams, interest in methods based on continuous steady-state
acquisition and self-gating has been growing in recent years. Self-gating
methods extract the cardiac and respiratory signals from the measurement
data and then retrospectively sort the data into cardiac and respiratory
phases. Repeated breathholds and synchronization with the heartbeat using
some external device as required in conventional MRI are then not necessary.
In this work, we introduce a novel self-gating method for radially acquired
data based on a dimensionality reduction technique for time-series analysis
(SSA-FARY). Building on Singular Spectrum Analysis, a zero-padded, time-
delayed embedding of the auto-calibration data is analyzed using Principle
Component Analysis. We demonstrate the basic functionality of SSA-FARY
using numerical simulations and apply it to in vivo cardiac radial single-
slice bSSFP and Simultaneous Multi-Slice radio-frequency-spoiled gradient-
echo measurements, as well as to Stack-of-Stars bSSFP measurements. SSA-
FARY reliably detects the cardiac and respiratory motion and separates it
from noise. We utilize the generated signals for high-dimensional image re-
construction using parallel imaging and compressed sensing with in-plane
wavelet and (spatio-) temporal total-variation regularization.

114



7.1 introduction

7.1 introduction

Magnetic Resonance Imaging (MRI) is an intrinsically slow imaging technique, which
makes imaging of moving organs particularly challenging. Still, from the early
years of MRI, researchers recognized the great chances and implications of moni-
toring the beating heart without the use of ionizing radiation and with the supe-
rior tissue contrast of MRI. Here, the respiratory and cardiac motion pose high
demands on the acquisition and reconstruction.

One solution is real-time imaging, which resolves the true dynamics of the heart
but is limited in terms of temporal and spatial resolution and restricted to two-
dimensional imaging [41, 42, 199, 201]. In clinical practice, pro- or retrospective
gating is typically used, which exploits the quasi-periodicity of the respiratory and
cardiac motion to compose a single synthetic heartbeat from data acquired during
several actual beats. To synchronize data-acquisition with breathing motion, exter-
nal devices like a respiratory belt or adapted sequences with navigator readouts are
commonly used [144, 228]. However, these devices have to be placed and adjusted
individually for each patient. Furthermore, the resulting respiratory signal is not al-
ways directly correlated to the motion of the heart [229]. Sequences with additional
interleaved navigator acquisitions prolong the measurement substantially and com-
plicate the use of steady-state sequences. Otherwise, breath-hold commands can be
used to avoid the need for respiratory gating completely, which, however, can be
exhausting, time-consuming and not expedient for sick or non-compliant patients
and children. For cardiac gating, the standard in clinical practice is the use of an
electrocardiogram (ECG) [230], but the ECG signals can experience signal distortion
when MRI sequences with fast gradient switching are utilized [231].

To avoid these drawbacks and to gain more flexibility, techniques have been
developed to extract cardiac motion from the data itself, which is known as retro-
spective self-gating [52]. Similar approaches can also be used to extract respiratory
motion [51]. A large number of different strategies for cardiac, respiratory or com-
bined self-gating with Cartesian or non-Cartesian acquisition were proposed in
the past, e.g. [52–55, 57, 232]. Still, the fundamental idea in most approaches is
similar: Either a 1D signal is extracted from certain receive channels using a band-
pass filter and specific properties of the acquired auto-calibration (AC) data, or a
(sliding window) low-spatial high-temporal resolution reconstruction of a specific
Region of Interest (ROI) is analyzed. A more sophisticated yet simple idea was pro-
posed by Pang et al. [56]: The general concept of dimensionality reduction [233]
is applied to the AC data by using a Principle Component Analysis (PCA) to extract
the required motion signals. However, the resulting signals are often spoiled by
noise or trajectory-dependent oscillations, which makes additional filtering neces-
sary [61, 143, 234]. Moreover, cardiac and respiratory motion are not always clearly
separated [235], which complicates data binning into the respective breathing and
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heart phases and requires the use of further post-processing steps such as coil
clustering [236].

To overcome these limitations, we propose the use of an adapted Singular Spec-
trum Analysis (SSA), which can be thought of as a temporally localized PCA or
equivalently as a PCA applied to time-delay embedded coordinates. SSA is an
application of the general Karhunen-Loève theorem [237] and a powerful tool for
the analysis of dynamical systems, incorporating elements of classical time-series
analysis, multivariate statistics, multivariate geometry and signal processing [238].
Broomhead and King derived SSA from Takens’ theorem for the analysis of chaotic
dynamical systems, and applied it to the problems of dynamical systems theory
[179, 186]. Further development was promoted by Vautard et al. [239, 240]. Since
the birth of SSA in 1986 [186, 241] it has found wide-spread application in various
fields [242–247]. SSA can be used for noise reduction, detrending and the identifi-
cation of oscillatory components [240], hence it is ideally suited for the extraction
of vital motion signals such as respiratory and cardiac motion in self-gated MRI.

Nevertheless, conventional univariate SSA can only be applied to single-channel
time series, whereas in parallel MRI multiple receive channels (phased array coils)
are available. Channels located closer to the heart tend to capture cardiac motion,
while coils placed near the diaphragm rather monitor respiratory motion. Manual
coil selection [248] can enable the use of univariate SSA for vital motion extrac-
tion, but correlated information from other coils is then lost. Moreover, for routine
clinical use a fully automated technique is preferred.

Fortunately, univariate SSA has a natural extension for the analysis of a multi-
channel time series [241]. However, this multivariate SSA is not a dimensionality
reduction technique, but recovers the specific oscillations for each channel rather
than to extract a single signal that describes the temporal evolution of the principle
motion components.

Here, we adapt the Singular Spectrum Analysis For Advanced Reduction of
dimensionalitY, which we dub SSA-FARY [64, 65]. In its original form (multivariate)
SSA consists of four steps [238]: I) Hankelization, II) Decomposition, III) Grouping,
IV) Backprojection. In SSA-FARY, we remove steps III) and IV) and instead perform
a zero-padding operation at the start. We will demonstrate the basic functionality
of SSA-FARY in numerical simulations and show reconstructions of in vivo cardiac
measurements acquired with single-slice bSSFP and Simultaneous Multi-Slice (SMS)
radio-frequency (RF)-spoiled gradient-echo (FLASH) sequences, as well as with a
Stack-of-Stars (SOS) bSSFP sequence.

7.2 theory

In radial single-slice, SMS or SOS imaging the central k-space point or the cen-
tral line along the slice-dimension kz (kx = 0, ky = 0), respectively, have proved
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to be ideally suited for self-gating [52, 143]. We extract this AC data from the
measurement data and stack all coils and partitions into a single dimension. This
yields a multi-channel time-series X t

c of size [(Np × Nc ) × Nt ], with 1 ≤ t ≤ Nt and
1 ≤ c ≤ (Np · Nc ), which contains information about the respiratory and cardiac
motion. Nt is the total number of central k-space points or lines used for auto-
calibration, Np is the number of partitions and Nc is the number of receive coils.
Each channel c is normalized to have zero mean.

7.2.1 Correction of the AC Data

System imperfections such as gradient delays and off-resonances usually cause
a corruption of the AC data X , which manifests an oscillation of a trajectory-
dependent frequency in radial imaging [234]. This signal fluctuation is often mis-
interpreted by dimensionality reduction methods as a major signal contribution.
This contribution can mostly be removed by a simple orthogonal projection based
on its known frequency. Here, we extend this method to also include higher-order
harmonics which yields a method that almost completely removes the unwanted
signal. For simplicity, we assume a golden angle acquisition scheme. Let φ0 be the
incremental projection angle, then

φt = t · φ0 (7.1)

is the projection angle used for the acquisition at time step t . We define the vector

nt :=

©­­­­­­­­­­­«

eiφ
t

e−iφ
t

ei ·2φ
t

e−i ·2φ
t

...
ei ·NHφ t

e−i ·NHφ t

ª®®®®®®®®®®®¬
, (7.2)

containing the oscillations up to the NH -th harmonic as a basis for the perturbing
oscillation and constrain X to be orthogonal to n,

Xcor =Xraw −n(n†Xraw), (7.3)

with † denoting the pseudo-inverse. This procedure cleans the corrupted signal
Xraw and yields a corrected time series Xcor. We use this AC correction method in
all presented in vivo experiments.
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7.2.2 Dimensionality Reduction Methods

principle component analysis PCA can be understood as the rotation of
the original coordinate system to a new one with orthogonal axes that coincide
with the directions of maximum variable variance [249]. The PCA of a time series
X can be performed using the Singular Value Decomposition (SVD).

XT = USV H . (7.4)

Here, the diagonal matrix S contains the real eigenvalues λ1 ≥ · · · ≥ λNt ≥ 0

in decreasing order of magnitude. PCA provides the expansion of XT onto the
orthonormal [Nt ×Nt ] basis U ,

(XT )t =
Nt∑
k=1

U k
t (SV H )k , (7.5)

where the principle components (SV H )k are given by

(SV H )k :=
Nc ·Np∑
l=1

S l
k (V

H )l = λk (V H )k . (7.6)

Since the cardiac and respiratory motion signals contribute as main sources of
variation to the time series X , their temporal behavior should be captured by one
of the first basis vectors U k , respectively [56].

singular spectrum analysis for advanced dimensionality reduc-
tion (ssa-fary) A schematic of the SSA-FARY procedure is depicted in Fig-
ure 7.1a. In contrast to conventional (multivariate) SSA, we first zero-pad (Z) the
second dimension of the AC data X to obtain matrix X̃ of size [(Np × Nc ) × (Nt +

W − 1)],
X̃ = ZX . (7.7)

Next, we construct a Block-Hankel calibration matrix

A = HX̃ (7.8)

of size [Nt × ((Np ×Nc ) ×W )]. Here, the Hankelization operator H slides a window
of size [1 ×W ] through channel X̃c of the zero-padded AC data and takes each
block to be a row in the c-th column of the calibration matrix. This operation is
similar to the construction of the calibration matrix in ESPIRiT [96].

We decompose A using an SVD

A = USV H , (7.9)
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and consider U of size [Nt × Nt ] as the orthonormal basis that consists of the Em-
pirical Orthogonal Functions (EOFs) U k , 1 ≤ k ≤ Nt . The principle components (SV H )k
are given by

(SV H )k :=
W ·Nc ·Np∑

l=1

S l
k (V

H )l = λk (V H )k . (7.10)

The expansion of A, or X̃ , in the basis U then reads

X̃ t+j
c = A c j

t =

Nt∑
k=1

U k
t (SV H ) c jk , (7.11)

where 1 ≤ t ≤ Nt iterates through the temporal samples, 1 ≤ c ≤ (Nc · Np ) through
the channels and 0 ≤ j < W is the index inside the sliding window. The EOFs
can be considered as data-adaptive weighted moving averages of the original time
series X̃ , with V being the data-adaptive filters [240, 250],

US = AV , (7.12)

U k
t =

1

λk

Np ·Nc∑
c=1

W∑
j=1

X̃ t+j
c V k

c j . (7.13)

In fact, the columns of V can bee seen as a complete eigenfilter decomposition of
the original time series [251]. These filters V k act as data-adaptive band-pass filters
with a frequency bandwidth δ fB given by

δ fB =
fs
W

, (7.14)

where fs is the sampling rate [252, 253]. Harris and Yuan showed in [250] for the
univariate case that a periodic oscillation contained in the data lead to an even and
odd filter. The application of these filters to the original time series constitutes for
each oscillation one EOF which is in phase and one which is in quadrature to the
original oscillation, respectively.

Vautard et al. [240] proposed another interpretation of the EOFs considering the
minimization problem

arg min
α

|t ,k

Np ·Nc∑
c=1

W∑
j=1




X̃ t+j
c − α(SV H ) c jk




2

. (7.15)

The solution of Equation (7.15) is α = U k
t , thus the EOFs can be obtained by a local

least-squares fit of the k-th principle component to the original time series. This
locality, determined by the window sizeW , distinguishes SSA-FARY from classical
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PCA, which does not take the temporal past and future of a sample into account.
In fact, PCA is a special case of SSA-FARY with W = 1,

A|W =1 = HX̃ = HZX =XT . (7.16)

In conventional SSA, i.e. where no zero-padding is applied, the EOFs are of re-
duced length Nt −W + 1. Thus, the exact correspondence in time is lost, which
inhibits their use as self-gating signal. In contrast, the EOFs U k in SSA-FARY pre-
serve the length Nt of the original time series and can directly be used for self-
gating, similar to the eigenvectors U k in PCA. In distinction to PCA, the EOFs in
SSA(-FARY) capture temporal oscillations via oscillatory pairs [239]. In particular,
if two consecutive eigenvalues are nearly equal, the two corresponding EOFs are
nearly periodic with the same period and in quadrature [254], which is a conse-
quence of the filtering property of SSA-FARY [250]. To ensure a proper separation
the singular values of different EOF pairs should be distinct, which is called the
strong separability condition [255] and usually fulfilled for our application.

These pairs can be seen as the data-adaptive equivalent to the sine-cosine pairs
of Fourier analysis [256]. A single EOF pair might suffice for the analysis of nonlin-
ear and inharmonic oscillations, as it automatically locates intermittent oscillatory
regions. In contrast, classical spectral analysis would require a large amount of
harmonics or subharmonics of the fundamental period [240, 257].

comments The EOF U k is also the k-th left eigenvector of the [Nt × Nt ] real-
symmetric cross-covariance matrix

C = AAH . (7.17)

Depending on the number of acquired spokes and partitions, computing the eigen-
decomposition of C is usually more efficient than computing the SVD of A.

In contrast to the parameter-free PCA, for SSA we must define a window size
W . To long-range correlations in time, W should be large, which - as a trade-off -
results in a lower degree of statistical confidence [257]. Vautard et al. [240] showed
that SSA can resolve oscillations best when the periods are shorter than the window
size W . In our study, the window size W ≈ 3 s proofed to be a robust choice for
most measurements, independently of the utilized sequence, and this value was
chosen as the default. More information on the choice of the window size is given
in the Methods and Discussion section.

The fundamental concept behind the use of a temporal windowW is Taken’s de-
lay embedding theorem [179], one of the backbones of chaotic dynamical system
analysis. Instead of considering each temporal sample individually and isolated
from other time points, so called time-delay coordinates are constructed by em-
bedding the samples in a higher-dimensional space with embedding dimension
W . Consequently, each time point is represented by a time-delay coordinate vector,
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which comprises not only the sample of the respective time but also its temporal
past and future. It is therefore a natural choice to pick an odd value forW in order
to incorporate the same amount of past and future information.

Towards the beginning and the end of a time series this embedding can no longer
be constructed due to lack of past or future samples, respectively. There are two
strategies to overcome this limitation: 1.) Time-delay coordinates are constructed
for the central Nt − (W − 1) samples only, which means that W − 1 samples would
be discarded from future processing. 2.) (W − 1)/2 samples are zero-padded on
both ends of the time series, which comes at the expense of increased inaccuracy
for the marginal samples of the time series. However, for the second approach no
samples have to be discarded and through the symmetric zero-padding the time-
delay coordinates remain in sync with the actual temporal evolution of the signal.
In this manuscript, the second approach is used.

7.2.3 Binning

The myocardium shows different behavior for contraction and expansion, so usu-
ally the entire cardiac cycle is divided into multiple distinct bins to accurately
resolve the temporal motion. For respiratory gating it is usually assumed that in-
spiration and expiration do not have to be distinguished [57, 143, 258]. However,
various studies reveal that respiratory motion is heavily subject-dependent and ex-
hibits a strong variability as well as hysteresis, which affects the global position
of the myocardium [139, 259–261]. Hence, inspiration and expiration should be
distinguished to properly resolve the effects of breathing motion on the heart.

Since SSA-FARY yields EOF quadrature pairs that capture the phase information
of periodic oscillations, binning is straight-forward for both cardiac and respiratory
motion: The phase portrait, i.e. the amplitude-amplitude scatter plot, of an EOF
pair is divided into N circular sectors with central angle ϕ = 360

◦/N . The samples
are then binned according to their respective circular sector, see Figure 7.1b.
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Figure 7.1.: (a) Schematic of SSA-FARY: The multi-channel AC data is zero-padded Z
and Hankelized H . Then the cross-correlation matrix AAH is calculated and decom-
posed using an eigenvalue or singular value decomposition. The left eigenvector U

contains the EOF quadrature pairs that represent the principle motion signals of the
time series. (b) Binning: The phase portrait of an EOF quadrature pair is divided into
N circular sectors with equal central angle φ = 360

◦/N . The samples are then assigned
to bins according to their respective circular sector.

7.3 methods

7.3.1 Numerical Simulations

We compare the capability of PCA and SSA-FARY in extracting and separating
oscillatory signals in simple numerical simulations.

The signals we want to extract are two frequency-modulated sinusoids

a(t) = A sin(φa +ωat +ϕa(t)), (7.18)

b(t) = B sin(φb +ωbt +ϕb (t)), (7.19)

with
ϕa(t) = Φ sin(2πt/2T ), (7.20)

ϕb (t) = Φ sin(2πt/T ), (7.21)

which account for frequency variations. To simulate various channels i, we use a
weighted sum

xi (t) =
i

Nc
a(t) + (Nc + 1 − i)

Nc
b(t), 1 ≤ i ≤ Nc . (7.22)

To spoil the composite signals xi (t), we add Gaussian white noise hnoise(t) with
standard deviation σnoise, or an oscillatory spell from time t1 to time t2,

hspell(t) = C sin(φc +ωct), t1 ≤ t ≤ t2, (7.23)

or an exponential trend
htrend(t) = D1e

ξ t −D2, (7.24)
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to all channels, which yields

Xi (t) = xi (t) +h(t). (7.25)

We analyze the time-series Xnoise, Xspell and X trend using PCA and SSA-FARY
with window size W . Note that the aim of this numerical experiment is to demon-
strate the general benefits of SSA-FARY over PCA for the analysis of time series,
and not to simulate cardiac and respiratory motion in the most accurate way. We
therefore did not include the modeling of a more complex frequency variability or
motion signal shapes. More details on the simulation are provided in Section 7.8.

7.3.2 In Vivo Experiments

All measurements were performed on a Skyra 3T scanner (Siemens Healthcare
GmbH, Erlangen, Germany) using 30 channels of a thorax and spine coil. Gradient
delay correction was performed using RING [58, 59]. The AC data was corrected
using the orthogonal projection with NH = 5. In the following, the AC data’s real
and imaginary part are treated as individual channels. The Field of View (FOV) in all
experiments was 256 × 256 mm2 at base resolution 192. All presented experiments
were performed on volunteers with no known diseases, who gave written informed
consent. All SOS measurements were performed on different volunteers. The study
had received approval from the local ethics committee.

sequence design, auto-calibration and reconstruction We utilize
a radial bSSFP sequence for the single-slice measurement, an RF-spoiled gradient-
echo sequence with randomized RF spoiling [90] for the SMS measurement and a
radial bSSFP sequence with undersampling in kz direction [164] for the SOS mea-
surement. To obtain maximum k-space coverage and thus improved image quality
[60, 166], the projection angle φ is increased in each shot about the seventh tiny
golden angle φ0 ≈ 23.6◦ [170]. For the SMS and SOS measurements, the partitions
are acquired in an interleaved fashion, i.e. one spoke is recorded for each partition
before the next in-plane spoke of a partition is acquired.

For single-slice imaging, the central sample of all spokes is used for auto-cali-
bration. For SMS, more AC data is available as not only a single sample but the
central line along the kz (kx = 0, ky = 0) direction can be utilized.

Inspired by [164], we make use of variable-density kz -undersampling for the
SOS acquisition. From the total number of 14 partitions, the central 6 partitions
are always acquired and the corresponding central line is used for auto-calibration.
The remaining 8 partitions are undersampled by a factor of 4. This center-dense
sampling scheme does not only increase the temporal resolution of the AC data
but also improves the image quality [262].
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For self-gating with PCA and SSA-FARY as well as for imaging reconstruction
we use BART [210]. Image reconstruction is performed using combined Paral-
lel Imaging and Compressed Sensing (PICS) [14] applying the Alternating Direction
Method of Multipliers (ADMM) [108] with in-plane wavelet-regularization on the
spatial dimensions and Total Variation (TV) on the cardiac and respiratory dimen-
sion [143, 263]. For SOS imaging, we additionally apply TV regularization in slice
direction. The coil sensitivities for the single-slice and SMS measurements are gen-
erated using radial ENLIVE allowing two maps [41, 60, 96, 264]. To reduce the
memory demand we allow only one map in the SOS reconstruction. We apply coil
compression [265, 266] to reduce the number of coils to 13 for single-slice and
SMS, and 10 for SOS imaging and perform the calibration of the sensitivities using
a lower resolution.

The SSA-FARY gating signals is distributed into 25 cardiac and 9 respiratory
bins for image reconstruction. Although not always necessary, we standardly per-
form an additional detrending of the EOFs using a moving average filter of length
Lavg ≈ 3W . This further improves the binning accuracy of SSA-FARY by removing
a possibly remaining residual trend.

In the spirit of reproducible research, code and data to reproduce the experi-
ments are made available on Github.1

single-slice imaging We perform a 72 second free-breathing bSSFP scan
(TE/TR = 1.90/3.80 ms, flip angle 40

◦) with slice-thickness 7 mm of the human
heart in short-axis view and use the first 30 seconds of data for further analysis and
image reconstruction. The full 72 second scan is used for a gridding reconstruction
in Section 7.9.2. We furthermore conduct an ECG-triggered CINE bSSFP breath-
hold scan of the same slice (TE/TR = 1.52/3.04 ms, flip angle 57

◦, slice-thickness
7 mm).

We compare the principal motion signals using PCA and SSA-FARY with win-
dow size W = 751, which covers a period of about 3 s.

sms imaging We perform a 60 second free-breathing SMS RF-spoiled gradient-
echo scan (TE/TR = 1.79/2.90 ms, flip angle 12

◦) with three simultaneously ac-
quired slices in short-axis view. The slice thickness is 5 mm and the slice gap
10 mm. We use SSA-FARY with window size W = 345, which covers a period
of about 3 s. We perform a joint reconstruction of all slices using binning based on
SSA-FARY. To evaluate the accuracy of SSA-FARY, we compare the SSA-FARY res-
piration quadrature-signals of the complete time series with the breathing pattern
extracted from a pneumatic respiratory belt (Siemens Healthcare GmbH, Erlangen,
Germany) and a real-time reconstruction [60, 62].

1 https://github.com/mrirecon/SSA-FARY
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sos imaging We measure 8 volunteers and on each we perform a free-breathing
three-minute radial SOS bSSFP scan (TE/TR = 1.90/3.80 ms, flip angle 35

◦) with
fourteen partitions in short-axis view and slice thickness 7 mm. By default we use
SSA-FARY with window size W = 91, which covers a period of about 2.8 s. For
one volunteer the respiratory EOF pair revealed highly irregular breathing with
occasional breath-holds of up to 12 s and for another volunteer the cardiac EOF
pair showed a pronounced frequency variation. To improve the gating accuracy in
these two cases, we determined another respiratory EOF pair using window size
W = 51 and another cardiac EOF pair using window size W = 21, respectively.

To evaluate the precision of the cardiac gating with SSA-FARY, we analyze the
SSA-FARY signal in comparison to the simultaneously acquired ECG trigger using
a Python 3 script. Therefore, we define a synthetic trigger point when the phase
related to the orthogonal cardiac SSA-FARY quadrature pair experiences a zero-
phase crossing. Since the global phase-offset of the quadrature pair is arbitrary,
we correct the synthetic SSA-FARY trigger by a constant shift using the average
distance to the ECG trigger. We then compute the standard deviation σtrig and
standard error of the corrected SSA-FARY trigger to the ECG trigger.

Moreover, we acquire the same slices using a conventional ECG-triggered breath-
hold CINE single-slice stack bSSFP measurement with Cartesian read-out (TE/TR
= 1.52/3.04 ms, flip angles depending on the Specific Absorption Rate (SAR) limits
between 47

◦ and 62
◦) and cardiac bin size Tbin ≈ 48 ms. The patient dependent

measurement time is around 6 − 8 min. We compare the end-diastolic and end-
systolic left-ventricular blood-pool area of a mid-ventricular slice to the SSA-FARY
based reconstruction using ImageJ.

7.4 results

numerical simulations Figure 7.2 depicts the results of the numerical sim-
ulations. PCA is able to extract, at least essentially, the shape of the two oscillations
a(t) and b(t) from Xnoise and Xspell. However, both the noise and the oscillation
spell are still evident in the resulting eigenvectors and corrupt the signal. PCA
fails to produce a useful result for X trend. While oscillation a(t) is present in two
principle eigenvectors, oscillation b(t) is not distinctly separated in any of the eigen-
vectors.

In contrast, SSA-FARY extracts the oscillation signals with almost no spoiling
residuals in all three investigated cases. Only at the borders deviations from the
ideal signal can be observed. Notably, SSA-FARY does not only yield a one-dimen-
sional signal of the temporal evolution of an oscillation, but preserves the phase in-
formation by quadrature pairs, as can be appreciated from the amplitude-amplitude
plots. The two EOFs corresponding to the same pair have very similar singular val-
ues. In the scree plot of Figure 7.2 (b) and (c), the first plateau corresponds to EOF 1
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Figure 7.2.: Comparison of PCA eigenvectors and SSA-FARY EOFs. (a) Frequency-
modulated sinusoidal oscillations (a(t) (left), b(t) (center)) used for the numerical simu-
lations and weighted composite signal (right). (b), (c), (d) (Black): Different additional
signals (left) - (b) noise, (c) oscillatory spell, (d) exponential trend - added to the com-
posite signal of (a) and a selected channel of the resulting signal Xi (t) (right). (Red):
First two eigenvectors of the PCA. (Blue): SSA-FARY singular values S (scree plot) and
EOF pairs (amplitude-time plot and amplitude-amplitude scatter plot). All plots are
normalized.
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and 2, and the second plateau belongs to EOF 3 and 4. In Figure 7.2d, the first two
plateaus correspond to EOF 1 and 2, and to EOF 4 and 5. Hence, SSA-FARY does
not mix the trend into the oscillations but creates an additional EOF to account for
it.2

single-slice imaging For each coil, Figure 7.3 depicts the DC component of
100 consecutive spokes before and after the data correction using the orthogonal
projection. Before correction some coils exhibit pronounced oscillations with ap-
proximately 15 samples per period. As we have used the seventh tiny golden angle
(φ0 ≈ 23.6◦) the oscillations period of 15 samples corresponds to φ15 = 15 ·φ0 ≈ 354

◦

(see Equation (7.1)). Hence, the oscillation period in the AC data is linked to the
period of the projection angle. By removing this frequency and the higher-order
harmonics these oscillations can be completely eliminated.

Figure 7.3.: Snippet of the amplitude plot with color-coded phase of the DC samples
used for auto-calibration of the single-slice reconstruction before (a) and after (b) the
data correction using the orthogonal projection. The period length of the oscillations
in (a) corresponds to 15 samples.

Figure 7.4 shows the self-gating signals generated with PCA and SSA-FARY.
In SSA-FARY, the first two EOFs represent respiratory motion and the third and
fourth EOF cardiac motion. The EOFs of the pairs are in quadrature, respectively.
Both the cardiac and the respiratory phases are well separated. In contrast, PCA
cannot fully extract and separate the signals as respiratory and cardiac motion are
superposed and heavily spoiled by noise.

Figure 7.4c shows six representative images of the SSA-FARY-gated reconstruc-
tion. Depicted are from bottom to top the end-systolic, an intermittent and the
end-diastolic frame for end-expiration and end-inspiration, respectively. For com-
parison, we also show the result of the ECG-triggered CINE breath-hold scan.

In Section 7.9.2 we present the results of a conventional gridding reconstruction
of the full 72 second measurement gated with SSA-FARY.3

2 In Figures 7.7 to 7.9 we provide results for simulations with different noise variance and trend and
spell amplitudes, as well as a different frequency variation. More information on these figures is
provided in Section 7.9.1.

3 Figure 7.10 shows the SSA-FARY and PCA gating signals of the 72 second scan. Moreover, a gridding
reconstruction for three different cardiac phases is depicted and the results of a breath-hold and ECG-
gated CINE scan are shown for comparison.
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In Section 7.9.3 we present a similar experiment with an RF-spoiled gradient-
echo sequence.4

sms imaging Figure 7.5a shows 5 out of 25 cardiac phases for all three slices
in end-expiration. The different systolic and diastolic phases are well resolved.

The background of Figure 7.5b shows the temporal evolution of a line extracted
from an SMS-NLINV real-time reconstruction of the full time series. The line was
placed in slice two in vertical direction such that the actual motion of the di-
aphragm can be observed. This diaphragmatic motion is linearly related to the
translation of the heart during breathing [267]. On top of the background image,
we have plotted the respiratory EOF quadrature pair obtained from SSA-FARY as
well as the signal provided by the respiratory belt. For the purpose of compari-
son, the motion signals were scaled according to the amplitude of the diaphragm
motion in the background image.

One of the EOFs (light blue) coincides very well both in amplitude and phase
with the temporal evolution of the diaphragm. This is in line with the filtering in-
terpretation of SSA-FARY, which states that one EOF of the quadrature pair is in
phase with the related underlying motion, whereas the other EOF (dark blue) con-
stitutes the quadrature signal. The in-phase EOF is furthermore in good agreement
with the motion signal provided by the respiratory belt.

The presented volunteer shows a largely periodic breathing pattern. In Sec-
tion 7.9.4 we present the results of the same experiment on another volunteer,
which happend to exhibit a highly irregular respiration pattern during measure-
ment.5

sos imaging Figure 7.6a depicts a zoomed view on EOFs representing respi-
ratory and cardiac motion for different window sizes. For window size W = 31,
which - considering the undersampling scheme - covers a period of ≈ 1.0 s, respi-
ratory and cardiac motion are not fully separated and appear superposed in one
EOF for respiratory and one EOF for cardiac motion. In contrast, for the proposed
window size W = 91 (≈ 2.8 s) the motion signals are well separated. Then again,
for W = 151 (≈ 4.5 s) a signal loss can be observed in the cardiac EOFs. Figure 7.6b
shows one respiratory EOF and one cardiac EOF for the windows W = 81, W = 91

andW = 101, covering periods from 2.5 s to 3.0 s. All signals are in good agreement.
The corresponding pairing-components of the EOFs show similar behavior and are

4 Figure 7.11 shows the effect of the proposed correction on the AC region. Figure 7.12 shows the
self-gating signals determined with SSA-FARY and PCA. Furthermore, six representative frames of
the SSA-FARY-gated reconstruction for different respiratory and cardiac motion states are depicted.

5 In Figure 7.13 we provide results of the same experiment conducted on a different volunteer. We
depict 5 cardiac phases for all three slices, as well as a comparison between the SSA-FARY respi-
ratory self-gating signal, the respiratory belt and the diaphragm motion extracted from a real-time
reconstruction.
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Figure 7.4.: Self-gating signals and PICS reconstruction of the human heart from a
single-slice radial bSSFP acquisition in comparison to a conventional CINE scan. In
(a) the two quadrature EOFs of SSA-FARY are plotted against time for the respira-
tory (left) and cardiac (right) motion, respectively. In (b) the first two eigenfunctions
of the PCA are depicted. In both, a superposition of the cardiac and respiratory mo-
tion spoiled by additional noise can be perceived. For (c) the self-gating signal of
(a) was utilized. It shows 6 representative frames of the PICS reconstruction using
SSA-FARY corresponding to three cardiac phases from end-systole to end-diastole at
end-expiration and end-inspiration. For comparison, we also show the vendor images
of an ECG-triggered CINE breath-hold scan.
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Figure 7.5.: Images of the human heart reconstructed using PICS and the SSA-FARY
self-gating signal from a radial SMS gradient-echo acquisition. (a) shows 5 out of 25

cardiac phases in end-expiration for each of the three slices. The background of (b)
is extracted from an SMS-NLINV real-time reconstruction of the entire time series
and shows the temporal evolution of a vertical line (highlighted in white), placed
on the diaphragm in slice two. On top, the respiratory self-gating EOF quadrature
pair of SSA-FARY and the signal extracted from the respiratory belt is plotted. The
amplitudes of the motion signals are scaled for the purpose of comparison.
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therefore not depicted. Figure 7.6c presents end-diastolic and end-systolic frames
for three out of fourteen slices in end-expiration. All respiratory and cardiac states
are well separated, the cardiac wall and the diaphragm are sharply resolved. Note,
however, that some slices at the fringe of the slab have low signal intensity due to
an unoptimized excitation profile. The image quality is comparable to the CINE
reconstruction Figure 7.6d, although the latter tends to be sharper. Due to the
higher flip-angle, which is restricted by SAR limitations in volumetric sequences,
the CINE images possess a better blood myocardium contrast.

For the different volunteers, Table 7.1 shows the average heart-rate f̄heart, its
standard deviation σheart, the standard deviation σtrig of the synthetic SSA-FARY
trigger to the ECG trigger and the end-diastolic and end-systolic left-ventricular
blood-pool area of a mid-ventricular slice for CINE and SSA-FARY.

For imaging on a 3T system an insufficient shim can lead to banding artifacts.
Measurements with bandings affecting the heart could not immediately be noticed
and repeated as the reconstruction was performed offline. Therefore, these mea-
surements were discarded for which the analysis of one volunteer is omitted.

The observed average heart rates range from 0.91 Hz (54.60 bpm) to 1.38 Hz
(82.20 bpm) with different heart rate variabilities. For the given SOS acquisition
with 14 partitions (6 AC lines and undersampling factor of 4), the temporal resolu-
tion of the SSA-FARY trigger is 30.4 ms. The standard deviation of the SSA-FARY
trigger to the ECG trigger, σtrig, is of similar size. Hence, the SSA-FARY trigger is
in good agreement with the ECG signal and also matches the temporal resolution
of the ECG-CINE acquisition.

The areas of the chosen mid-ventricular slices are comparable for ECG-CINE
and SSA-FARY, particularly for end-diastole the difference lies mostly in the lower
single-digit percent range, whereas a larger uncertainty can be observed for end-
systole.

Volunteer V6 exhibits a highly erratic breathing pattern and volunteer V7 pos-
sesses a strongly irregular heartbeat and furthermore unintentionally yawned three
times during the measurement. Still, SSA-FARY can provide satisfying results as
Table 7.1 and Figures 7.14 and 7.15 show.6

For all in vivo experiments, we have attached representative movies as Supple-
mentary Material.7

6 Figures 7.14 and 7.15 display the SSA-FARY gating signal, representative frames of the SSA-FARY-
based image reconstruction and the corresponding CINE reconstructions for volunteers V6 and V7.
More information on the figures is provided in Section 7.9.5.

7 The files Mov1-14 of the Supplementary Material show representative movies of all in vivo recon-
structions. More information on the movies is provided in Section 7.9.6.
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Table 7.1.: Average heart rate f̄heart and corresponding standard deviation σheart, stan-
dard deviation of SSA-FARY from ECG trigger σtrig. End-systolic and end-diastolic
left-ventricular blood-pool area of a mid-ventricular slice for ECG-CINE and SSA-
FARY and corresponding error. ∗ denotes the volunteer with highly erratic respiration,
∗∗ denotes the volunteer who yawned.

Volunteer f̄heart [Hz] σheart [Hz] σtrig [ms] Diastole [mm2] Systole [mm2]

ECG SSA-FARY Err. [%] ECG SSA-FARY Err. [%]

V1 0.910(4) 0.057(3) 23(1) 2254 2222 1.4 1068 1017 4.8
V2 1.380(3) 0.0541(2) 14.7(7) 1536 1647 7.2 573 706 23.2
V3 0.979(2) 0.0245(1) 28(2) 1911 2161 13.1 1072 1168 11.0
V4 1.245(3) 0.045(2) 23(1) 1998 1956 2.1 866 961 11.0
V5 0.955(4) 0.056(3) 19(1) 2348 2380 1.4 1005 1179 17.3
V6
∗

1.195(7) 0.103(5) 34(2) 2244 2220 1.1 1351 1407 4.1
V7
∗∗

1.08(1) 0.129(7) 27(1) 3398 3314 2.5 2060 1930 6.3
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Figure 7.6.: SSA-FARY self-gating signals for different window sizes from a SOS bSSFP
acquisition and representative slices from a 3D PICS reconstructions for volunteer
V5 in comparison to a conventional CINE scan. (a) A zoomed view on normalized
EOF pairs representing respiratory and cardiac motion are depicted for window sizes
W = 31, W = 91 and W = 151. The black arrows indicate signal mixing (top-left) and
signal loss (bottom-right). (b) For window sizes W = 81, W = 91 and W = 101, one EOF
representing respiratory motion and one EOF representing cardiac motion are plotted
in a zoomed view on top of each other. (c) shows three out of fourteen slices of an end-
diastolic and end-systolic human heart after expiration. (d) depicts the corresponding
vendor images for the ECG-triggered CINE breath-hold measurement.
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7.5 discussion

We introduced a novel dimensionality reduction method dubbed ”SSA-FARY”,
which is based on Singular Spectrum Analysis and showed that the proposed tech-
nique can successfully recover the cardiac and respiratory signal from the AC data
of single-slice, SMS and SOS MRI measurements. Moreover, we have proposed an
extended orthogonal projection to correct for system imperfections in the AC data.

ac correction The reasons for the oscillations in the AC data are many fold
and according to our experience cannot be eliminated completely by techniques
that correct for trajectory errors only [196, 198]. Particularly for bSSFP sequences,
eddy current related dephasing of spins additionally compromises the data [168,
268], although this effect should be rather small for the tiny golden angle [170].

Zhang et al. [177] find this to be particularly problematic for 3D bSSFP imaging
on a 3T system and propose to eliminate these measurement errors by averaging
over the central five samples of each spoke. However, we found this to produce
even more oscillations in the AC data, which requires additional filtering. In con-
trast, the orthogonal projection used here can remove most of the signal perturba-
tions directly. For constant increments of the projection angle, the correction can
be thought of as a set of sharp band-stop or notch filters corresponding to higher-
order harmonics of a base frequency, which can be calculated from the increment
of the projection angle.

Strictly speaking, the AC correction is not mandatory for SSA-FARY as without
filtering these spurious oscillations appear as additional EOFs. However, as these
oscillations usually manifest distinctly in the AC region, the corresponding EOFs
often possess the highest singular values. Consequently, they dominate the result
of Equation (7.15) which reduces the significance and accuracy of the components
of interest, i.e. cardiac and respiratory motion, and complicates the analysis. This
can be easily avoided by using the proposed orthogonal projection, which corrects
for first-order system imperfections.

Alternatively, advanced techniques to measure the trajectory error [190, 269] or
higher-order system imperfection corrections could be utilized to account for the
oscillations in the AC region [192, 195]. Still, these approaches require additional
hardware and/or sequence modifications, which limits their accessibility.

ssa-fary The presented dimensionality reduction technique for time-series SSA-
FARY can be considered a PCA applied to a time-delayed embedding of the AC
data to exploit the locally low-rankness of dynamic time series. The Block-Hankel
matrix A (Equation (7.8)) consists of shifted segments of the original time series.
Its covariance matrix C t ′

t = At (AH )t ′ (Equation (7.17)) is an array of scalar products
specifying the correlation of all pairs of multi-channel segments in the embedding
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space. The considerable redundancy in the correlations of the segments in the pres-
ence of (quasi) repetitive oscillations, e.g. cardiac and respiratory motion, causes
C to have low-rank. By exploiting not only spatial but also these temporal corre-
lations, SSA-FARY performs better in recognizing temporal patterns than classical
PCA and allows the separation of trend, oscillations and noise from the signal.
This was successfully demonstrated on numerical simulations of superposed and
spoiled sinusoidal time series. In the actual in vivo measurements the respiratory
and cardiac motion could be detected and clearly separated for all investigated
sequence types.

To yield comparable results, methods like classical PCA must be combined with
various pre- and post-processing techniques such as coil-selection or coil-clustering
[236], (iterative) band-pass filtering [258] and signal smoothing [143], which - espe-
cially for small AC regions - may be unstable and demand further manual tuning.
By contrast, in SSA-FARY these steps are implicitly integrated and therefore sur-
plus to requirement. Moreover, since SSA-FARY preserves phase information by
producing quadrature pairs it allows for direct binning, which also renders the
otherwise mandatory peak detection obsolete [52].

We demonstrated the high quality of the SSA-FARY gating signals by compari-
son with a real-time reconstruction, a respiratory belt and ECG triggers. Moreover,
at free breathing and at a considerably lower acquisition time SSA-FARY achieved
a reconstruction quality that comes close to the results of the ECG-triggered CINE
breath-hold scans. The analyzed left-ventricular blood-pool area of SSA-FARY re-
constructions mostly corresponds well to the CINE results for end-diastole, whereas
larger uncertainties were found for end-systole. Here, because the left-ventricular
blood-pool area is significantly decreased compared to end-diastolic states, any
deviation will result in larger relative errors. One reason might be that due to the
high acceleration factor the short end-systolic phase is not perfectly resolved. In
addition, some discrepancy between a breath-hold scan and a gated free-breathing
scan is expected, since it cannot be guaranteed that the selected respiratory bins
exactly matches the anatomical state of the breath-hold scan.

As the aim of this manuscript was the introduction of the self-gating technique,
we did not fully optimize the sequence and reconstruction parameters, particularly
the number of cardiac and respiratory bins, the regularization values of the ADMM
and the undersampling scheme of the SOS sequence. The parameter tuning and
the setup of a clinically applicable protocol is left for future investigations.

In single-slice imaging we only use a single sample per time step for auto-
calibration and despite the proportionally large window size, which reduces sta-
tistical significance, SSA-FARY yields reliable results. Still, SSA-FARY tends to be
more resilient when multiple partitions are used and thus more AC data is avail-
able, as in SMS or SOS experiments, or when more samples relative to the window
size are used for auto-calibration. For SMS or SOS imaging a bSSFP sequence is

135



ssa-fary

recommended since for RF-spoiled gradient-echo imaging a loss of contrast in sys-
tolic phases can occur due to pre-saturated blood flowing in from other slices, see
Figure 7.5. Note, however, that bSSFP sequences suffer from SAR limitations due
to the increased flip-angle of the RF pulse and are prone to banding artifacts when
no proper shimming is conducted.

Due to the zero-padding operation, Equation (7.7), and the subsequent Hanke-
lization, Equation (7.8), the first and last samples in the SSA-FARY EOFs suffer
from slight approximation errors. Still, for all presented experiments and analysis
we did not discard these samples.

Occasionally, the trend was not completely separated from the EOFs for cardiac
and respiratory motion, which we fixed by standardly using a moving average
filter. The reason for the incomplete separation of trend can be understood by
considering Equation (7.14), which relates the window size W to the frequency
bandwidth δ fB of the eigenfilters V generating the EOFs U . Our default choice
of window size and sampling rate corresponds to δ fB ≈ 0.35 Hz for all measure-
ments and sequences. If we choose W too small, the EOFs capture a wider range
of frequencies, which can result in a mixing of trend and oscillations. Similarly, if
the respiration frequency (usually fresp ≈ 0.3 Hz) and cardiac frequency (usually
fresp ≈ 1.0 Hz) happen to be spectrally close to one another, a very small window
and the corresponding large frequency pass-band of the filters can hinder a proper
separation, as it is the case in Figure 7.6a, W = 31. Then again, if we choose a
very large W , the frequency response fB of the filters can be too narrow. Thus,
possible frequency variations in the cardiac and respiratory motion can no longer
be captured by a single (band-limited) EOF, which results in signal voids and/or
the generation of additional EOFs representing higher order harmonics. Detecting
these related EOFs corresponds to the ’Grouping’ step of conventional SSA [270].
In the cardiac signal of Figure 7.6a such a signal void caused by a cardiac fre-
quency variation of ≈ 0.3 Hz can be observed for W = 151, whereas the signal can
still be adequately captured with W = 91. As a summary, we found δ fB ≈ 0.35 Hz
to be a robust choice and we propose to choose the window size accordingly using
Equation (7.14).

The computational bottle-neck of SSA-FARY is the SVD of C of size [Nt ×Nt ]. Es-
pecially for single-slice imaging, the window sizeW required to obtain δ fB ≈ 0.35 Hz
and the corresponding number of AC samples Nt to obtain good results is rela-
tively large. Hence, the decomposition of C is rather time-consuming. Neverthe-
less, there are approaches to significantly speed up the decomposition stage [271,
272].

SSA-FARY reliably detected the EOF pairs corresponding to cardiac and respira-
tory motion, which for RF-spoiled gradient echo measurements usually possess the
highest singular values. It is, however, not determined that the two largest compo-
nents belong to the cardiac or the respiratory motion. For bSSFP sequences, which
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are generally more prone to system imperfections, we frequently found other com-
ponents such as trends to have high singular values, too. Although for this study
the components used for gating were chosen by visual inspection of the EOFs, it is
fairly simple to automatize the assignment using a frequency analysis.

If one finds the separation of SSA-FARY to work insufficiently, a variation of the
window size usually helps to recover a suitable gating result. Still, for patients with
strong cardiac or respiratory frequency variations, highly non-periodic respiratory
motion or arrhythmia the results of the presented SSA-FARY method might still
be insufficient. In this case various promising extensions of SSA(-FARY) exist to
improve the results, e.g. ’Nonlinear Laplacian Spectral Analysis’, ’Sliding SSA’,
’Oblique SSA’, ’Nested SSA’ and their combinations [255, 273, 274].

outlook The property of SSA-FARY to not only reliably separate cardiac and
respiratory motion but also to extract the trend in data, suggests further applica-
tions. In dynamic contrast-enhanced MRI, SSA-FARY could replace spline-fitting
[143] for separating motion and contrast enhancement. Furthermore, preliminary
results suggest that the T1 decay in inversion recovery sequences is detected as
an individual component and separated from the motion signals, which would en-
able the simultaneous reconstruction of parameter maps and self-gated anatomical
motion [175].

Last but not least we want to mention that the zero-padding approach used
in SSA-FARY is not limited to self-gated MRI but turns multi-variate SSA into a
general dimensionality reduction method, which might be useful for many other
problems related to time-series analysis.

7.6 conclusion

We have introduced a novel SSA-based dimensionality reduction method called
SSA-FARY. Its intuitive approach, the easy implementation and its capability to
separate cardiac and respiratory motion as well as trend makes it a promising
approach for MRI self-gating, particularly when it is combined with efficient data
acquisition schemes and a state-of-the-art image reconstruction technique.
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7.8 appendix : details for numerical simulations

Here we present the values for the variables used in the numerical simulation
(Figure 7.2). The total duration T = 800 [a.u.] consists of 1000 discrete samples. The
other parameters can be found in Table 7.2.

Table 7.2.: Variables and values for the numerical simulation.

Variable Value

Nc 30

A 3

ϕa 0

ωa
2π
80

B 1

ϕb 0.5
ωb

2π
30

σnoise 2

C 1

ϕc 0

ωc
2π
10

[t1, t2] [220, 300]
D1 0.15

D2 1.5
ξ 3.75 · 10

−3

W 101

Φ 2

7.9 supplementary material

This supplementary material provides additional information and experiments re-
garding the numerical simulation and the in vivo experiments.
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7.9.1 Numerical Simulations with Varying Simulation Parameters

We demonstrate the effects of different parameter values on the numerical simula-
tion. For each simulation, we keep the basic parameters as given in Table 7.2 and
list all modified parameters in Table 7.3 of this supplementary material.

Table 7.3.: Variables and values for the numerical simulation.

Variable Value

Figure 7.7 σnoise 4

C 2

D1 0.25

D2 2.5

Figure 7.8 σnoise 7

C 3

D1 0.35

D2 3.5

Figure 7.9 Φ 3

For Figure 7.7, we moderately increase the noise variance and the amplitude of
the spell and the trend. Consequently, the PCA performs even worse in detecting
the individual oscillations, particularly for the oscillation with the higher frequency.
In contrast, SSA-FARY still provides satisfying results.

For Figure 7.8, we further increase the noise variance and the amplitude of the
spell and the trend. Here, the SSA-FARY result for the lower frequency oscillations
are still acceptable, whereas the EOFs for the higher frequency oscillation are now
also clearly corrupted.

For Figure 7.9, the same parameters for noise variance, trend and spell are used
as in the main part of the manuscript, but a higher frequency variation is simulated.
The PCA result is comparable to the one in the main part of the manuscript, while
the SSA-FARY results look still satisfying, yet slightly worse due to the limited
frequency bandwidth of the EOFs, which is determined by the window size W .

7.9.2 SSA-FARY Gated bSSFP Reconstruction using Conventional Gridding

While we have used only 30 seconds of data in the single-slice experiment de-
scribed in Section 7.3 of the main part of the manuscript, we now apply SSA-FARY
self-gating and PCA self-gating to the full 72 seconds of data. We use the same SSA-
FARY window sizeW = 751 and bin the data into 25 cardiac and 3 respiratory bins.
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Figure 7.7.: Comparison of PCA eigenvectors and SSA-FARY EOFs. In this example
there is a moderate increase of the noise variance and the spell and trend amplitude
compared to Figure 7.2 of the main part of the manuscript. (a) Frequency-modulated
sinusoidal oscillations (a(t) (left), b(t) (center)) used for the numerical simulations and
weighted composite signal (right). (b), (c), (d) (Black): Different additional signals (left)
- (b) noise, (c) oscillatory spell, (d) exponential trend - added to the composite signal
of (a) and a selected channel of the resulting signal Xi (t) (right). (Red): First two eigen-
vectors of the PCA. (Blue): SSA-FARY singular values S (scree plot) and EOF pairs
(amplitude-time plot and amplitude-amplitude scatter plot). All plots are normalized.
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Figure 7.8.: Comparison of PCA eigenvectors and SSA-FARY EOFs. In this example
there is a strong increase of the noise variance and the spell and trend amplitude com-
pared to Figure 7.2 of the main part of the manuscript. See also caption of Figure 7.7.
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Figure 7.9.: Comparison of PCA eigenvectors and SSA-FARY EOFs. In this example
there is a moderate increase of the frequency variation compared to Figure 7.2 of the
main part of the manuscript. See also caption of Figure 7.7.
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On the SSA-FARY-gated data we perform a conventional gridding reconstruction
followed by a Root-Sum-of-Squares (RSS) coil combination.

Similar to the results of the main part of the manuscript, SSA-FARY outperforms
the PCA self-gating, which fails to separate the cardiac from respiratory motion,
see Figure 7.10.

Because of the longer acquisition time and the reduced number of respiratory
bins, each cardiac state contains sufficient spokes such that a conventional grid-
ding reconstruction can be performed. While mild undersampling artifacts can
be observed, the temporal dynamics are well resolved, see Figure 7.10 and movie
Mov5.

Note that due to the limited number of respiratory bins we can’t depict the
matching respiratory state of the ECG-gated CINE breath-hold scan for the grid-
ding reconstruction.

7.9.3 SSA-FARY Gated Reconstructions for a Single-Slice RF-Spoiled Gradient-Echo Se-
quence

Similar to the bSSFP single-slice experiment in Section 7.3 of the main part of
the manuscript, we perform a 30 second RF-spoiled gradient-echo scan (TE/TR
= 1.63/2.60 ms, flip angle 12

◦) with slice-thickness 7 mm of the human heart in
short-axis view.

We compare the principal motion signals using PCA and SSA-FARY with win-
dow size W = 1171, which covers a period of about 3 s.

For each coil, Figure 7.11 depicts the DC component of 100 consecutive spokes
before and after the data correction using the orthogonal projection. Just as in
Figure 7.3 of the main part of the manuscript, some coils exhibit pronounced oscil-
lations with approximately 15 samples per period, which is related to the seventh
tiny golden angle. With the proposed correction method these oscillations can be
eliminated.

Figure 7.12 shows the self-gating signals generated with PCA and SSA-FARY.
In SSA-FARY, the first two EOFs represent respiratory motion and the third and
fourth EOF cardiac motion. The EOFs of the pairs are in quadrature and the motion
signals are well separated. PCA fails in separating the cardiac from the respiratory
motion and both principle components are spoiled by noise.

Figure 7.12c shows six representative images of the SSA-FARY-gated reconstruc-
tion, three of which in end-systole and three in end-diastole. Depicted are three
respiratory states from end-inspiration to end-expiration.
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Figure 7.10.: Self-gating signals and gridding reconstruction of a single-slice radial
bSSFP aquisition in comparison to conventional CINE images. In (a) the two quadra-
ture EOFs of SSA-FARY are plotted against time for the respiratory (left) and cardiac
(right) motion, respectively. In (b) the first two eigenfunctions of the PCA are depicted.
For (c) the self-gating signal of (a) was utilized. It shows three representative frames
of the SSA-FARY-gated gridding reconstruction corresponding to three cardiac phases
from end-systole to end-diastole for a single respiration state. As in Figure 7.4 of the
main manuscript, we also show vendor images of the ECG-triggered CINE breath-
hold scan.
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Figure 7.11.: Snippet of the amplitude plot with color-coded phase of the DC samples
used for auto-calibration of the single-slice reconstruction before (a) and after (b) the
data correction using the orthogonal projection. The period length of the oscillations
in (a) corresponds to 15 samples.

Figure 7.12.: Self-gating signals and PICS reconstruction from a single-slice radial
gradient-echo acquisition. In (a) the two quadrature EOFs of SSA-FARY are plotted
against time for the respiratory (left) and cardiac (right) motion, respectively. In (b)
the first two eigenfunctions of the PCA are depicted. In both, a superposition of the
cardiac and respiratory motion can be perceived. For (c) the self-gating signal of (a)
was utilized. It shows six representative frames corresponding to end-systole and end-
diastole for end-inspiration, an intermittent state and end-expiration.
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7.9.4 Respiratory Signal Comparison for Irregular Breathing

We perform the same SMS measurement as described in Section 7.3 of the main
part of the manuscript on another volunteer who happened to have an irregular
breathing pattern during the measurement. We depict the results of the experiment
in Figure 7.13.

For all three slices, Figure 7.13a shows 5 out of 25 cardiac phases in end-expiration,
where the individual cardiac phases can be distinguished well. From the SMS-
NLINV real-time reconstruction of the full time series, we determine the actual
motion of the lung by extracting a line from slice one, which cuts the diaphragm
in vertical direction, and use it as background for Figure 7.13b. On top, we plot
a respiratory EOF obtained using SSA-FARY. It shows good agreement with the
diaphragm motion in the background.

We also depict the signal from the respiratory belt, which tends to be temporarily
misaligned with the diaphragm position after deep inhalation.

For the purpose of clarity, we do not plot the quadrature pair belonging to the
depicted EOF. Similar to Figure 7.5 of the main part of the manuscript, the motion
signals were scaled to match the amplitude of the diaphragm position displayed
in the background image.

Deviations of the respiratory belt signal from the actual diaphragm position are
not surprising. The correlation between external physiological motion and internal
organ movement is subject dependent and patient specific signal processing can
be required to account for the associated dephasing [275, 276], which is specifically
important for irregular breathing patterns [277, 278]. Moreover, it is a know issue
that the signal from a respiratory belt may be imperfect [279]. Furthermore, it was
shown that an internal navigator based on the diaphragmatic motion outperforms
the respiratory belt [146]. Consequently, the respiratory belt is not widely used for
respiratory gating in MRI [147].

This experiment shows that - even for irregular breathing - the respiratory gating
signal obtained with SSA-FARY resembles the diaphragmatic position largely well
both in phase and in amplitude and therefore constitutes a suitable surrogate for
respiratory gating.

7.9.5 SSA-FARY Gated Reconstructions for Highly Irregular Breathing, Yawning and a
Pronounced Heart Rate Variability.

Here, we present more details on the gating and reconstruction of the SOS mea-
surements of volunteers V6 and V7.

irregular breathing pattern Volunteer V6 shows a non-dictated highly
irregular breathing pattern with periods of normal breathing, interrupted by vari-
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Figure 7.13.: PICS reconstructions and self-gating signal of a radial SMS gradient-echo
acquisition. For all three slices, (a) shows 5 out of 25 cardiac phases in end-expiration.
The background of (b) is extracted from a SMS-NLINV real-time reconstruction of the
entire time series. It shows the temporal evolution of a vertical line (highlighted in
white), placed on the diaphragm in slice one. As an overlay, the signal obtained from
the respiratory belt and the EOF which is in phase with the lung motion is plotted.
The signal from the respiratory belt shows some disparities compared to the real-time
reconstruction after deep inhalation. This is indicated by the white arrows.
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ous breath-hold intervals of up to approximately 12 s. The default EOF bandwidth
δ fB ≈ 0.35 Hz, which here corresponds to a window size of W = 91, is too narrow
to capture this complex breathing motion in a single EOF pair. In fact, SSA-FARY
creates at least 6 EOFs to account for the respiratory motion. Consequently, the
cardiac motion is only given by EOF 8 and EOF 9, see Figure 7.14a. Since for
respiratory binning a single EOF pair is required, we run SSA-FARY again with re-
duced window size W = 51 to increase the spectral width of the EOFs. This choice
and the corresponding EOFs 2 and 3 allow for a proper binning of the respiratory
motion. The window size of the moving average was adjusted to Lavg = 600 sam-
ples. The results for end-expiration are depicted in Figure 7.14b, together with the
corresponding slices of the ECG-CINE breath-hold measurement Figure 7.14c.

yawning and pronounced cardiac frequency variations Volunteer
V7 admitted that he unintentionally yawned during the three minute measurement.
The volunteer furthermore exhibits a highly irregular heartbeat with the heart rate
standard deviation of σ̄heart = 0.129 Hz and heart rate jumps of up to 0.3 Hz.

Using the window size W = 91, the three yawns are very well reflected in the
first EOF, while the respiration is represented by EOFs 2 and 3, see Figure 7.15a.
The first EOF was used to discard the intervals in which the volunteer yawned
before binning, which reduces the for the reconstruction effectively available data
about 30 s. Note that the analysis for σtrig of Table 7.1 was performed using the full
data-set.

Due to the high heart rate variability, we run SSA-FARY again with window size
W = 21 to increase the spectral width of the EOFs for cardiac binning. Although
such a low window-size can lead to a mixing of respiratory and cardiac oscillations,
as was shown in Figure 7.6a of the main part of the manuscript, this is not the case
here and the determined gating signal is in good agreement with the ECG signal,
see Table 7.1. To better compensate the signal offset in the cardiac EOFs, which
particularly arouse during the yawing periods, we adapted the moving average
filter for the cardiac EOFs to Lavg = 30.

7.9.6 Movies of the In Vivo Experiments

For the single-slice bSSFP (Mov1-2) and RF-spoiled gradient-echo measurements
(Mov3-4), we have attached two movie files, respectively. Mov1 and Mov3 show the
cardiac cycle for end-expiration (left) and end-inspiration. Mov2 and Mov4 show
the respiratory cycle for end-systole (left) and end-diastole. To account for the low
number of respiratory bins, we have interpolated the frames in the respiratory
resolved videos.

Mov5 shows a cardiac cycle of the gridding reconstruction.
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7.9 supplementary material

Mov6 shows a cardiac cycle for all three slices of the SMS reconstruction from
the main part of the manuscript at end-expiration (top) and end-inspiration.

Mov7 shows a cardiac cycle for all three slices of the SMS reconstruction with
erratic breathing at end-expiration.

For all analyzed volunteers V1-V7 of the Stack-of-Stars measurements, we have
attached a representative movie (Mov8 - Mov14) showing a cardiac cycle for 6 out
of 14 slices in end-expiration.
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ssa-fary

Figure 7.14.: SSA-FARY self-gating signals and representative slices from a 3D PICS
reconstruction of a SOS bSSFP acquisition for volunteer V6 in comparison to conven-
tional CINE images. (a) depicts a zoomed view on normalized EOF pairs representing
respiratory and cardiac motion using the window sizes W = 51 and W = 91, re-
spectively. (b) shows three out of fourteen slices in end-diastole and end-systole after
expiration. (c) shows the corresponding reconstructions for the ECG-triggered CINE
breath-hold measurement.
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7.9 supplementary material

Figure 7.15.: SSA-FARY self-gating signals and representative slices from a 3D PICS
reconstruction of a SOS bSSFP acquisition for volunteer V7 in comparison to conven-
tional CINE images. (a) A zoomed view on the normalized EOFs 1, 2 and 3 determined
with window sizeW = 91. While EOF 1 captures the yawning, the EOFs 2 and 3 repre-
sent breathing motion. For window size W = 21, the EOFs 3 and 4 capture the cardiac
motion. (b) shows three out of fourteen slices in end-diastole and end-systole after
expiration. (c) shows the corresponding reconstructions for the ECG-triggered CINE
breath-hold measurement.
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8
S U M M A RY, O U T L O O K A N D C O N C L U S I O N

The main goal of this thesis was the development of techniques to enable fast and
robust cardiac MRI. Therefore, we have introduced three complementary methods,
which bear the potential to benefit both clinically existing and emerging applica-
tions in cardiac MRI and beyond.

gradient delay estimation with ring The basic prerequisite for any
imaging technique is distortion-free data. Unfortunately, in MRI we often have
to trade-off scan time with system imperfections, which corrupt the data acquisi-
tion. In particular, the use of fast imaging sequences, such as FLASH or bSSFP, in
combination with efficient k-space sampling schemes, such as radial trajectories,
lead to eddy-current-induced gradient delays, which effect inconsistent sampling.
To resolve this deficiency, we have developed RING in Chapter 3. RING exploits
the fact that delayed magnetic field gradients cause a miss-centering of the radial
spokes, which consequently no longer intersect in the k-space center. However,
the distributed intersection points can be determined and utilized to find the ac-
tual sampling locations. We could demonstrate that as few as three spokes can be
enough for RING to accurately estimate gradient delays and to remove the majority
of the corresponding streaking artifacts.

This capability makes RING ideally suited for interactive real-time MRI applica-
tions, where the slice position - and accordingly the gradient delays - frequently
change. In Chapter 4 we showed that the RING gradient delay estimates readily
adapt to positional changes of the slice, which was used to significantly reduce
streaking artifacts in an interactive real-time MRI experiment.

The major limitation of the presented study is the missing online implementa-
tion to make RING accessible for on-the-fly reconstructions directly on the scanner.
Despite the fact that RING does not involve computationally demanding opera-
tions, an efficient implementation and further parameter tuning will be necessary
to make it compatible with the speed and latency demands of online real-time
MRI.

Although introduced for conventional radial single-slice imaging, RING can also
be used for SMS and SOS imaging, as it was done in Chapters 6 and 7. Recently,
RING was successfully applied to flow imaging [280] and extended to compensate
gradient delay errors not only for radial but also for rosette trajectories [281].
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summary, outlook and conclusion

simultaneous multi-slice imaging with sms-nlinv Besides system im-
perfections, another even bigger problem is intrinsic to MRI: the slow measurement
process. Hence, the only way to speed up scans is to reduce the amount of data
acquired. This, however, poses high demands on the image reconstruction, which
then has to yield clinically relevant results from massively undersampled data. In
Chapter 5 we have therefore introduced and studied SMS-NLINV, a method which
combines two established MRI techniques for fast imaging: Simultaneous Multi-Slice
(SMS) and Regularized Nonlinear Inversion (NLINV). In SMS imaging, multiple slices
are acquired simultaneously, which not only effects an SNR benefit but also allows
for an enhanced k-space coverage, thus enabling higher undersampling factors. By
the extension of the calibrationless reconstruction algorithm NLINV to SMS imag-
ing, we have demonstrated superior image quality compared to a state-of-the-art
method for highly accelerated scans.

SMS-NLINV treats image reconstruction for all slices as a joint nonlinear in-
verse problem, estimating both image content and coil sensitivities. As a generic
method, SMS-NLINV has a large field of application. Recently, we have applied
SMS-NLINV to model-based T1 mapping of multiple slices using single-shot in-
version-recovery radial FLASH [282, 283]. Furthermore, in Chapter 6 we have
demonstrated the feasibility of real-time cardiac SMS imaging using SMS-NLINV.
Real-time SMS-NLINV bears huge potential for future applications but requires
further investigations. In particular, the implementation of an SMS bSSFP sequence
would allow for time consistent dynamic imaging of multiple slices with signifi-
cantly improved blood to myocardium contrast, which is fundamentally infeasible
for conventional interleaved multi-slice MRI. While an efficient multi-Graphical Pro-
cessor Unit (GPU) implementation of NLINV already allows for on-the-fly single-
slice reconstructions [284], the joint reconstruction of multiple slices in SMS-NLINV
poses even higher computational demands. Nevertheless, we are confident that fur-
ther tuning of the algorithm and a suitable parallelization in combination with the
steadily increasing computation power will enable real-time SMS imaging in the
near future. Meanwhile, aligned SMS trajectories could be utilized, for which slice-
disentangling can be performed as a pre-processing step. This will allow for an
independent and thus efficient reconstruction of slices, while the time-consistency
and the SNR gain provided by SMS imaging is still preserved. Real-time SMS-
NLINV could yield immediate improvements for various clinical studies which
already rely on single-slice real-time imaging or akin techniques. Amongst others,
stress testing cardiac MRI, used for cardiac parameter analysis in patients under
physical exercise [285] or first-pass perfusion studies as recently demonstrated in
[286, 287] could benefit from the SMS approach. Another considerable application
is the MRI-guided targeted endomyocardial biopsy [46], where SMS real-time MRI
would contribute a facilitated volumetric localization of the bioptome.
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self-gating with ssa-fary While multi-slice coverage is sufficient for some
applications within the scope of cardiac MRI, other uses require full volumetric
information about the heart, which then demands gated acquisitions. With SSA-
FARY we have introduced a dimensionality reduction technique for time series,
which allows for robust cardiac and respiratory self-gating without the use of any
external devices. At its core, SSA-FARY performs a PCA on a time-delay embedded
AC region. The concept of time-delayed embedding, though simple in its construc-
tion, facilitates the detection and separation of quasi-periodic oscillations, trend
and noise by involving temporal correlations in the analysis. Even though a re-
lated approach named Second-Order Blind Identification (SOBI) was recently applied
to self-gated MRI as an additional signal-disentangling step [288], SSA-FARY is -
to the best of our knowledge - the first comprehensive and self-contained dimen-
sionality reduction method to successfully exploit a time-delayed embedding for
self-gating. It furthermore lines up with other recent approaches that employ struc-
tured low-rank matrices for image reconstruction [96, 203, 204, 289, 290], while
being different in its focus on temporal signal detection and separation.

In Chapter 7, we have applied SSA-FARY to radial imaging and determined
the respiratory and cardiac motion signals for single-slice, SMS and SOS free-
breathing cardiac MRI experiments. The inherent data binning was successfully
combined with compressed sensing image reconstruction, thereby exploiting both
multi-spatial and multi-temporal correlations. In the future, we want to use this
technique to generate movies of the heart with isotropic resolution. This would
not only contribute a higher flexibility in the image analysis but also facilitate and
speed-up the work-flow. This will be possible due to the fact that specific views of
the heart can freely be chosen retrospectively by the physician and do not have to
be planned explicitly in advance. First experiments imply the reliable functionality
of SSA-FARY for the self-gating of isotropic data, but more effort has to be put
into the acquisition side to deal with SAR limitations and artifacts arising from fat
[291–293].

Besides the use for functional analysis of the heart, early trials suggest that SSA-
FARY can benefit a variety of other applications, which rely on gated imaging.
Initial tests hint that SSA-FARY in combination with classical SSA can be used
to identify sequence-imposed contrast changes as global trends, thus allowing for
the detection and separation of motion signals in e.g. inversion-recovery experi-
ments. Moreover, it gave promising results when applied to multi-echo and flow
sequences. Recently, SSA-FARY was utilized to determine the motion states for an
XD-NLINV reconstruction [294].

We furthermore want to stress that the capability of SSA-FARY to extract motion
signals from an AC region offers another, entirely different approach for the imag-
ing of dynamic processes. Instead of employing the eigenfunctions generated by
SSA-FARY for cardiac and respiratory binning, they can be considered a temporal
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basis. This idea is known by the term Partially Separable Function [173, 295, 296] and
avoids the explicit determination of motion states by capturing the entire dynam-
ics of the acquisition in a compact representation, which additionally reduces the
memory demand of the reconstruction. While originally introduced employing the
PCA, our prospect is that SSA-FARY can generate adequate basis functions from
even smaller or noisier AC regions than current approaches.

Lately, we discovered a connection to another recently developed technique for
real-time cardiac MRI by adapting the Nonlinear Laplacian Spectral Analysis (NLSA)
[273], the nonlinear extension of SSA, for dimensionality reduction. The resul-
tant method yields promising results and can be considered a delay-embedded
extension of the Smoothness Regularization on Manifolds (SToRM) approach [38, 297],
which uses a nonlinear manifold model to impose temporal constraints. Further
inquiries are being performed to evaluate the potential of this idea.

Although exclusively applied to radial MRI in the scope of this thesis, SSA-FARY
is a very general method for which it can likewise be employed for different k-
space trajectories. Moreover, its domain of application as a dimensionality reduc-
tion technique for time series is not merely limited to the scope of MRI but can
similarly be applied to other fields and purposes.

conclusion To conclude, we have developed three novel techniques, which all
contribute to the conquest of different issues, that currently hamper fast and robust
cardiac MRI. RING was conceived for the elimination of gradient delay artifacts,
SMS-NLINV yields efficient image reconstruction and coil sensitivity calibration
and SSA-FARY allows for reliable cardio-respiratory self-gating. All these methods
inherently possess broad fields of applications, but most importantly constitute es-
sential building blocks and future prospects for fast and robust multi-dimensional
cardiac MRI.
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A
G R A D I E N T D E L AY E S T I M AT I O N U S I N G T H E
( A C - ) A D A P T I V E M E T H O D

In this chapter, we will introduce the concept and a convenient implementation for
the adaptive gradient delay estimation method for radial MRI developed by Block
and Uecker [126, 133, 209].

Imperfect magnetic field gradient timing results in shifted k-space lines. In Chap-
ter 3 we have shown that this shift can be modeled by

δk := Sn̂θ , (A.1)

with normalized projection direction

n̂θ :=
(

cosθ
sinθ

)
, (A.2)

and delay matrix

S :=
(

Sx Sxy
Sxy Sy

)
. (A.3)

The shift along the read-out direction is therefore given by the quadratic form

δk | | = n̂
TSn̂. (A.4)

The Adaptive method assumes that anti-parallel spokes experience a shift in di-
ametrically opposed directions. Hence, a cross-correlation of anti-parallel spokes,
which would be identical if it was not for gradient delays, should have a peak
at twice the value for the actual k-space shift δk | |(θ ). To determine the delay ma-
trix S the Adaptive method starts with the acquisition of anti-parallel calibration
spokes yθ , yθ+π for various projection directions θ . Next, a cross-correlation of both
spokes is performed by application of the Fourier convolution theorem. Therefore,
we flip f one spoke, Fourier transform F both spokes, and multiply the complex
conjugate ∗ of the flipped and transformed spoke with its counterpart,

д(r ) = Fyθ ·
(
Fyfθ+π

)∗
. (A.5)

The result д(r ) is the Fourier transform of the cross-correlation function. A shift
in one domain corresponds to a linear phase in the Fourier domain. Hence, the
slope of the phase of д(r ) corresponds to twice the k-space shift. This concept is
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(ac-)adaptive method

visualized in Figure A.1. The properly normalized k-space shift can therefore be
obtained by

δk | |(θ ) =
1

2

arg(〈д(r ),д(r + 1)〉)NRO

2π
, (A.6)

with NRO the number of samples per spoke. The argument of the complex scalar
product of д(r ) and its duplicate shifted by one pixel, д(r + 1), yields a magnitude
weighted estimation of the slope of the phase of д(r ). Given the estimated shifts
δk | |(θ ) for various projection angles θ , the delay matrix S can be determined using
a least squares fit of Equation (A.6).

flip *
. arg(g(r))

|g(r)|

A

B

B

kx

 

A

A

B

ky
B

B

A

A

Figure A.1.: Schematic of the Adaptive method for gradient delay estimation. On the
left, two anti-parallel spokes are depicted. The arrow-head denotes the read-out di-
rection and the dot denotes the spoke’s center, which without gradient delays should
coincide with the k-space center. Each spoke is shifted by δk | | towards its read-out
direction. The letters A and B denote spatial positions. To the right we depict the
procedure proposed by the Adaptive method. Schematically, we show the magnitude
profile of the two k-space lines and highlight, that there is a mismatch between the
actual center of k-space, represented by the peak in the profile, and the spoke’s cen-
ter. Then, one spoke gets flipped to ensure a matching spatial orientation and both
spokes get Fourier transformed. Finally, the flipped and transformed spoke is com-
plex conjugated (∗) and multiplied (·) with its counterpart. The slope of the result д(r )
is equivalent to twice the k-space shift δk | | . The graphic was adapted from [209].

Instead of using calibration scans to acquire anti-parallel spokes, spoke pairs
can also be directly picked from the actual measurement. In this so-called AC-
Adaptive method, (almost) anti-parallel spokes are determined form all acquired
spokes to estimate the gradient delays. The AC-Adaptive method was successfully
applied in various publications [44, 207, 208], although it was not always explicitly
mentioned.
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A C R O N Y M S

AC auto-calibration
ADMM Alternating Direction Method of Multipliers

BART Berkeley Advanced Reconstruction Toolbox
bSSFP balanced Steady-State Free Precession

CAIPIRINHA Controlled Aliasing in Parallel Imaging Results in Higher Acceleration
CG Conjugate Gradient
CT Computed Tomography

DC Direct Current
DFT Discrete Fourier Transform

ECG electrocardiogram
ENLIVE Extended Nonlinear Inversion inspired by ESPIRiT
EOF Empirical Orthogonal Function
EPI Echo-Planar Imaging
ESPIRiT Eigenvector-based Iterative Self-Consistent Parallel Imaging Reconstruction

FFT Fast Fourier Transform
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
FLASH Fast Low-Angle Shot
FOV Field of View

GIRF Gradient System Impulse Response Function
GPU Graphical Processor Unit

IRGNM Iteratively Regularized Gauss-Newton Method
ISMRM International Society for Magnetic Resonance in Medicine

MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MVUE Minimum-Variance Unbiased Estimator
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acronyms

NAV Navigator Echoes
NLINV Regularized Nonlinear Inversion
NLSA Nonlinear Laplacian Spectral Analysis
NMR Nuclear Magnetic Resonance
NUFFT Non-Uniform Fast Fourier Transform

PCA Principle Component Analysis
PICS Parallel Imaging and Compressed Sensing
PINS Power Independent of Number of Slices

RF radio-frequency
RING Radial Spoke Intersections for Gradient Delay Estimation
RMS Root-Mean-Square
ROI Region of Interest
RSS Root-Sum-of-Squares

SAKE Structured Low-Rank Matrix Completion
SAR Specific Absorption Rate
SENSE Sensitivity Encoding
SMS Simultaneous Multi-Slice
SNR Signal-to-Noise Ratio
SOBI Second-Order Blind Identification
SOS Stack-of-Stars
SSA Singular Spectrum Analysis
SSA-FARY Singular Spectrum Analysis for Advanced Reduction of Dimensionality
SToRM Smoothness Regularization on Manifolds
SVD Singular Value Decomposition

TE Echo Time
TR Repetition Time
TV Total Variation

VERSE Variable-Rate Selective Excitation
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