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Abstract

Magnetic resonance imaging (MRI) is a medical imaging technique that can vi-

sualize internal organs for examination and diagnosis. It is non-invasive and ionizing

radiation-free, and provides good contrast between different soft tissues. One of the

drawbacks of MRI is its lengthy acquisition time. Significant research has been done

in order to accelerate the MRI data acquisition and reduce the scan time. Compressed

sensing (CS) has been recently proposed for accelerating MRI acquisition time. Com-

pressed sensing recovers the desired image from undersampled MRI dataset by ex-

ploiting the sparsity of MR image in transform domain. In this thesis, we propose

CS reconstruction methods in various cardiovascular MRI applications for accelerated

imaging.

We consider 3D whole-heart coronary MRI. Isotropic 3D radial trajectories allow

undersampling of k-space in all three dimensions, enabling accelerated acquisition of

volumetric data. Our CS based approach provides further acceleration by removing

undersampling artifacts and improving image quality. However, the underlying heavy

computational overhead of this method is also a limiting factor which depreciates the

applicability of CS. A parallelized implementation of an iterative CS reconstruction

for 3D radial acquisitions using a graphics processing unit is presented to reduce the
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reconstruction time.

The efficacy of CS is also investigated in cardiac cine MRI. Cardiac function is

usually assessed using segmented cine acquisition with multiple breath-holds (BHs).

Subjects are given resting periods between adjacent BHs, where no data is acquired,

resulting in low acquisition efficiency. We propose an accelerated radial acquisition for

BH cine imaging which utilizes the resting period to acquire additional free-breathing

(FB) data without increasing scan time. The difference image between BH and FB

acquisitions is used as the sparsity regularization of the CS reconstruction.

Compressed sensing can be used as a respiratory motion correction technique in

FB whole-heart MRI. Respiratory motion causes aliasing artifacts and blurring on the

resulting image. To obtain motion-free images, a respiratory navigator is often used

to track the heart position, but the scan efficiency is reduced to 30-50% resulting in

a prolonged scan. We propose a CS reconstruction to correct respiratory motion by

using an undersampled dataset which only contains motion-free k-space lines whereas

the motion-corrupted lines are excluded from the reconstruction.
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Chapter 1

Introduction

As the amount of the information is fast increasing in every aspect of human life,

there should be a way to deal with the massive amount of the accumulated data.

It is very common to compress the data either in lossless or lossy format before it

is stored. For example, digital music, pictures and movies can be compressed in

MP3, JPEG, and MPEG formats. Compression of data often involves extraction of

small but the most important portion of the data in a transform domain, such as

Fourier transform, discrete cosine transform (DCT) and wavelet transform, with the

assumption that the data can be well represented only using the small fraction to the

extent that there happens no or little loss of information. This is called “sparsity”

or “compressibility” of the data, and is well-understood and widely used in the data

compression of digital images. For example JPEG[1] and JPEG2000[2] utilize DCT

and wavelet transform, respectively. Provided the fact that most of the signals have

compressibility to some degree, it would be even better if we can directly acquire the

important information from the signal and not acquire the entire signal at the time

1
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of measurement/acquisition. Not to mention that the compression saves the cost of

storage, it will also reduce the cost of acquiring the data as it is often the case that

data acquisition is time consuming. This is the basic idea of “Compressed Sensing”

or “Compressive Sampling”. Medical images are compressible as well. Especially

the magnetic resonance imaging requires long scan time and therefore will benefit

from acquiring the compressed information directly from a small number samples at

the time of measurement. This will reduce the acquisition time, improve the scanner

throughput and ease the patient cooperation. It has been shown that if the underlying

image has transform sparsity, and if the measurements result in incoherent artifacts in

that transform domain, then the image can be properly reconstructed from the small

number of measurements by using appropriate signal processing methods which could

include nonlinear operations.

In the remainder of this chapter, we will first provide the appropriate background

in compressed sensing (CS) and related mathematical theories. Then we will provide

the outline of the remainder of this thesis, and conclude this chapter with the summary

of the contributions of this thesis.

1.1 Compressed Sensing

Suppose we are dealing with a linear system with a input signal x ∈ CM where

C denotes the complex field, an acquisition (or an encoding) matrix A ∈ CN×M , and

a measurement vector y ∈ CN from the acquisition equation y = Ax. Our goal is

to estimate the input vector x from the measurement vector y. If the number of

measurements is equal to the number of unknown variable, i.e., M = N , the problem
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can be solved, for a non-singular matrix A, by multiplying the inverse matrix of A to

the measurement vector, x̂ = A−1y. If M < N , the system is called over-determined

and there may or may not exist a solution depending on the specific system. If there

does not exist an exact solution, it is often desirable to find a solution in least-squares

sense, i.e., minimizing ||y −Ax||22, where the lp norm is defined as

||s||p =

(
n∑

i=1

|si|p
)(1/p)

, p > 0. (1.1)

When M > N , the system is called under-determined and may have an infinite

number of solutions. We need to introduce more constraint on the system in such

a way that solving the linear system gives us the most sensible solution. Usually a

priori information about the input vector x is often used to constrain the solution.

In the next section, we will provide more details of this problem and the conditions

under which this problem can be efficiently solved.

1.1.1 Sparsity in Transform Domain

We note that the formulation described in this section is abstract and general,

but it is based on a specific assumption that is known to be valid in various settings

in image and signal processing areas. Supposed the object we are interested in is

a vector x ∈ CM , which can either be an image or a signal with total M pixels or

samples. Suppose there also exists an orthonormal basis (ψi, i = 1, 2, · · · ,M) for CM ,

for example, a Fourier basis or a wavelet basis, depending on the specific application

and the property of the object of interest. The transform domain coefficients θ =

(θ1, θ2, · · · , θM)T ∈ CM , θi = ⟨x, ψi⟩ of the input signal are assumed to be sparse

in the sense that ||θ||0 = |{θi|θi ̸= 0}| = L, where L << M . In other words, the
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transform domain representation has L nonzero elements out of total M elements.

The lp norm with some 0 < p < 2 is also often used instead of the l0 norm as the

measure of sparsity. It has been observed that most of the natural and human-made

signals can be made sparse (or compressible) in certain transform domains.

Now we turn our attention to a problem of measuring (or detecting) a signal x ∈

CM . Conventional way of measuring is to directly pick up the value of each coefficient

of theM coordinates of the signal vector. This is the case when the acquisition matrix

is given as an identity matrix, A = I. On the other hand, the measurements may be

given as different linear combinations of all the M samples in x. After the sampling

is over, the measured signal may undergo a compression stage before it is stored

or transmitted to elsewhere, so some of the non-significant coefficients are discarded

during the compression. Now a fundamental question arises: if x is an unknown signal

whose transform domain representation θ satisfies the sparsity constraint ||θ||0 = L,

is it possible to reconstruct the original x from a reduced number N << M of

measurements? Can we compressively sample the data so that we can simultaneously

perform data compression at the time of acquisition? The answer is “yes” for certain

type of acquisition matrices A. For more details, the readers are referred to [3, 4].

LetΨ be the sparsifying transform, i.e., θ = Ψx, where the transform domain vec-

tor satisfies the sparsity constraint ||θ||0 = L such that L << M . The measurement

is performed by taking a linear combination of the coefficients of x using each column

of the M × N acquisition matrix A. Thus the measurement vector y is given by

y = Ax, where L ≤ N << M . The number of measurements is less than the number

of coefficients in x but greater than or equal to the number of nonzero coefficients in
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Ψ.

1.1.2 Reconstruction

The problem of reconstructing the original signal can be expressed as

argmin
θ

||θ||0 s.t. y = Ax, θ = Ψx, (1.2)

where y is an N -dimensional column vector, A is an N ×M matrix, Ψ is an M ×

M matrix. The final estimate of x is given by x̂ = Ψ−1θ. For the remainder of

this section, without loss of generality, we will restrict our interest on the identity

transform Ψ = I. Thus the problem is written as

argmin
x

||x||0 s.t. y = Ax. (1.3)

Minimization of l0 norm in Equation (1.2) is a nonconvex optimization problem

which is NP-hard [5] and intractable for a large size vector. Solving l0 norm mini-

mization involves combinatorial search over all possible sparse subset of {1, 2, · · · ,M}

which satisfies y = Ax. Fortunately, it has been shown that solving l1 minimization

problem instead of solving l0 minimization gives a near-optimal solution and some-

times exactly produces the same solution as the l0 minimization for given conditions

[3, 6, 7]. We will briefly review the l1 minimization problem in the following.

There has been extensive research on the equivalence of l0 and l1 minimization

[8, 9, 10, 11, 12], and also research on the l1 minimization approaches in the CS

literature [3, 6, 13, 14, 15, 16, 17, 18, 19, 20]. The l1 minimization problem can be

expressed as

argmin
x

||x||1 s. t. y = Ax, (1.4)
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where we restricted our interest to identity transform as the sparsifying transform

again. In the paper by Candes and Tao [6], the authors introduced a concept known

as restricted isometry property (RIP) to prove many theorems of CS and to explain the

conditions under which CS can successfully reconstruct the signals. RIP characterizes

matrices which are nearly orthogonal when operating on sparse vectors. To make a

quantitative measure on this property, the following definition is introduced.

Definition 1.1.1. (Restricted Isometry Constants [6]): For every integer 1 ≤ S ≤ N ,

we define the S-restricted isometry constants δS to be the smallest quantity such that

AΩ obeys

(1− δS)||c||22 ≤ ||AΩc||22 ≤ (1 + δS)||c||22,

for all subsets Ω of cardinality at most S and all real coefficients c ∈ R|Ω|.

where AΩ is defined as the matrix whose columns are selected as the subset of the

columns of A, i.e., AΩ is the collection of the column vectors {aj : j ∈ Ω}, where ai

denotes the ith column of A.

It can be proved that by using this property, if A satisfies the RIP with δS +

δ2S + δ3S < 1 and ||x||0 = L ≤ S, then the l1 minimization problem will provide

the same solution as the l0 minimization problem [6]. The question now is: Which

matrices satisfy the RIP for the least possible range of N? It is known that random

matrices constructed using random entries from certain probability distribution yield

the RIP with high probability. For a fixed value of δS, the tightest range possible

is N > CRIPL log(M/L) with overwhelming probability for all large N , when the

elements of A are drawn from an independent and identically distributed (i.i.d.)

Gaussian random variable with mean 0 and variance 1
N
.
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The problem of more practical interest is when the measurement is not perfect and

some additive noise is introduced, or when x is not strictly sparse in the transform

domain but can be well approximated by its largest L coefficients. In either of the

cases, the measurement vector can be expressed as

y = Ax+ n.

This is referred to as noisy compressed sensing problem. When the noise signal is

bounded, there exists a theory determining the accuracy of the reconstruction method

that solves the following convex problem

argmin
x

||x||1 s.t. ||y −Ax||2 ≤ ϵ, (1.5)

where ϵ > ||n||2 is a nonnegative scalar which characterizes the noise level and the

fidelity of the measurement to the original signal. Suppose x̂ is a solution to Equation

(1.5), then it is proved that the solution satisfies

||x− x̂||2 ≤ c1||n||2 + c2
||x(L) − x||1√

L
, (1.6)

where x(L) denotes the truncated approximation corresponding to the L largest values

of x (in absolute value), and c1 and c2 are constants [4, 13].

Let us go back to the original problem where the input signal is sparse in another

transform domain rather than the identity transform. We also assume that the acqui-

sition matrix is given as a subset Ω ∈ {1, 2, · · · ,M} of column vectors of the Fourier

encoding matrix F, A = FΩ where FΩ is the N ×M matrix consisting of the rows

of F indexed by Ω. This setting describes the case of the undersampled magnetic

resonance imaging acquisition we are going to discuss in this thesis. Then the goal is
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to search for the coefficients in the Ψ domain with minimum l1 norm that match to

the measurement in domain A. Then the mutual coherence of A and Ψ is defined as

[21]

µ(AΨ) = max
i,j

|(AΨ)ij|. (1.7)

Given a fixed value of mutual coherence, it is shown that l1 minimization problem

with equality constraint can be solved when N > CIµ
2(AΨ)L log(M) [21]. We note

that the minimum value of the mutual coherence is 1 and this value is achieved, for

example, when A is a partial Fourier matrix and Ψ is an identity matrix.

1.2 Outline of Thesis

We have covered the prerequisite knowledge on CS and MRI in this chapter. The

rest of this thesis will mainly deal with the application of the CS on undersampled MRI

reconstruction, especially in cardiac MRI reconstruction problems. Chapter 2 deals

with the CS reconstruction of whole-heart MRI with 3D radial trajectories. Three

dimensional MRI acquisition for whole-heart coverage takes long time due to the large

coverage and the respiratory and cardiac motion. We seek to accelerate the acquisition

of 3D data by using CS reconstruction in conjunction with 3D radial trajectory.

3D radial trajectory has better data acquisition efficiency compared with standard

Cartesian trajectory with true isotropic resolution and better motion property, but the

reconstruction of radial trajectory is not as straightforward as that of Cartesian. An

iterative CS reconstruction method is implemented and the performances of different

sparsifying transforms, i.e., identity transform and wavelet transform are evaluated.

In Chapter 3, the iterative CS reconstruction method for undersampled 3D ra-
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dial trajectory described in Chapter 2 is implemented using the graphic processing

unit (GPU). The computational overhead of the iterative reconstruction for 3D tra-

jectory increases as the size of the 3D data increases, and is proportional to the

number of iterations. The complexity of the reconstruction of 3D radial trajectory

is a lot higher than that of Cartesian trajectory due to gridding and re-gridding op-

erations, resulting in prolonged reconstruction time. Therefore, feasibility of CS for

whole-heart 3D radial trajectory for accelerated acquisition has not been studied until

recently. GPU implementation with highly parallelized execution of the gridding and

re-gridding operations enables faster reconstruction of undersampled radial acquisi-

tion. The speedup in the total reconstruction time of the GPU implementation is

compared with that of the standard C implementation.

In Chapter 4, we present a novel CS reconstruction method for cine MRI which

utilizes a new sparsifying regularization. The clinical workflow of cardiac cine MRI

involves multiple breath-hold (BH) acquisitions and resting period of 20-30 seconds

between BHs. The resting periods are spent for the patient to recover from the

BH without acquiring any MRI data, thus results in substantially low acquisition

efficiency. We seek to utilize this resting period to acquire additional auxiliary free-

breathing data which will be used to sparsify the cardiac phase images for successful

CS reconstruction. The proposed CS reconstruction method and a conventional CS

reconstruction method are used to reconstruct the undersampled BH cine acquisi-

tions, and the performances are compared to evaluate the feasibility of the proposed

acquisition and CS reconstruction strategy.

In Chapter 5, we propose to use CS reconstruction as a motion correction tech-
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nique in FB 3D radial acquisition. Respiratory motion causes aliasing artifacts and

blurring on the resulting image. Conventionally, a respiratory navigator can be used

to monitor the heart position and re-acquire k-space lines if the displacement of heart

from the reference position is greater than a predefined value. This results in a re-

duced scan efficiency and prolongs the scan. Proposed CS reconstruction utilizes a

subset of the acquired k-space data which only contains motion-free k-space lines to

correct the respiratory motion, whereas the motion-corrupted lines are excluded from

the reconstruction.

1.3 Summary of Contributions of This Thesis

In Chapter 2, the CS reconstruction is first implemented for high resolution 3D

radial whole-heart MRI. The scan of the large volumetric whole-heart image with high

spatial resolution requires lengthy acquisition time, which causes low scan throughput,

high cost and patient inconvenience. The CS reconstruction provides improved image

quality for highly undersampled 3D radial trajectory, resulting in reduced scan time

by a factor of 2 to 3 compared to the conventional gridding reconstruction.

In Chapter 3, the CS reconstruction for 3D radial trajectory proposed in Chapter

2 is implemented using GPU programming. The gridding and re-gridding operations

in the reconstruction procedure are of high complexity especially for large size 3D

acquisitions, preventing the practical use of CS reconstruction. The GPU implemen-

tation provides up to 54 times speed-up in the reconstruction time compared with

the standard C++ implementation. The GPU implementation accelerates the CS re-

construction enabling the feasibility of CS reconstruction and accelerated acquisition
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for 3D radial whole-heart imaging.

In Chapter 4, novel accelerated acquisition and CS reconstruction for radial cine

MRI are proposed with the use of new sparsifying regularization. The use of differ-

ence images between the BH and FB images as the sparsifying regularization is first

proposed in this thesis, and it generates sparse images without using other sparsify-

ing transform such as wavelet or finite difference. Acquiring additional FB images

during the resting period without increasing the total scan time is also first proposed

in this thesis. The proposed accelerated acquisition and CS reconstruction allow sim-

ilar image quality with fully-sampled images for a sampling density of 33%, enabling

reduced scan time by a factor of 3.

In Chapter 5, a motion correction technique using CS reconstruction for free-

breathing 3D radial whole-heart MRI is proposed. The proposed motion correction

recovers motion-free images by the CS reconstruction using the undersampled k-space

data which only contains motion-free k-space lines. The proposed method retrospec-

tively discards the motion-corrupted k-space lines without re-acquiring them, thus it

provides a fixed scan time and an improved scan efficiency compared with prospec-

tively navigator-gated acquisition.



Chapter 2

Compressed Sensing

Reconstruction for Whole-Heart

Imaging with 3D Radial

Trajectories

Cardiac MR (CMR) data acquisition is usually performed using two-dimensional

(2D) multi-slice acquisition. Imaging using a single large 3D slab covering from the

base to the apex of the heart can significantly simplify image prescription. Whole-

heart coronary MRI, analogous to coronary multi-detector CT, has replaced multiple

small-slab targeted acquisitions for the individual coronary arteries [22, 23, 24]. A

single breath-hold accelerated 3D cine scan has been previously investigated for eval-

uation of cardiac function [25, 26, 27]. Free-breathing, 3D late Gadolinium enhance-

ment (LGE) imaging has been used to identify fibrosis/scar with improved spatial

12
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resolution or coverage [28, 29]. Recently, 3D perfusion has also been applied to im-

prove spatial coverage [30, 31]. The advantages of 3D acquisition include superior

spatial resolution especially in through plane, ease of image prescription, superior

signal-to-noise ratio (SNR) and easy reformatting of the image in any desired plane.

However, one major disadvantage of 3D imaging is the long data acquisition time.

For coronary MRI, a longer scan time usually makes the scan more susceptible to res-

piratory motion. For LGE, it results in imaging artifacts due to changes in optimal

inversion time as the contrast washes out. For cine and perfusion, it usually results

in lower temporal resolution. Therefore, methods to reduce scan time in 3D imaging

could significantly improve clinical utilization of 3D CMR.

Three dimensional whole-heart data is commonly acquired using Cartesian k-space

sampling scheme, however non-Cartesian samplings, e.g. radial or spiral have better

data acquisition efficiency [32, 33]. Both 3D stack of stars and 3D radial (kooshball)

with isotropic spatial resolution have been previously used in 3D CMR [32, 34, 35]. In

these samplings, a Nyquist sampling is not necessarily needed and an undersampling

does not yield distinct fold-over artifacts. Instead the undersampling usually results

in streaking artifacts. This allows high undersampling with less pronounced imaging

artifacts compared to Cartesian acquisitions at the same sampling density. These

potential benefits have been previously exploited to achieve whole-heart coronary

MRI with isotropic spatial resolution [36]. It has also been extensively investigated to

improve dynamic imaging such as phase contrast, MR angiography and cine imaging

[37, 38, 39].

For single-phase anatomical imaging such as coronary MRI, gridding algorithm is
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commonly used for reconstruction of the 3D radial acquisition [40]. Although the grid-

ding algorithm can efficiently reconstruct data acquired using 3D radial trajectory,

its performance deteriorates significantly for highly undersampled data due to signif-

icant undersampling of outer k-space region [41]. Parallel imaging methods including

SENSE [42] and GRAPPA [43] have been previously applied for 2D radial acquisitions

to reduce the streaking artifacts [44, 45]. Recently, compressed sensing (CS) has been

applied to remove the streaking artifacts for 2D radial acquisitions [41, 46]. In this

approach, additional constraints based on image properties are used to improve the

image reconstruction. The CS reconstruction techniques are usually accompanied by

iterative procedures to avoid the inversion of large size matrices [47]. Although initial

results in 2D have been very promising, there is currently no data on the utility of

such a reconstruction for 3D radial CMR acquisition. The computational overhead of

the iterative CS reconstruction increases as the size of the 3D k-space increases, and

is proportional to the number of iterations that the reconstruction method uses. The

heavy computational overhead of the iterative CS reconstruction for 3D radial acqui-

sition results in prolonged reconstruction time, therefore, the feasibility of CS for 3D

radial acquisition for accelerating 3D CMR has not been previously demonstrated.

In this chapter, we evaluate the performance of an iterative CS reconstruction for

3D radial acquisition and subsequently investigate the efficacy of 3D radial acquisition

with CS reconstruction for whole-heart coronary MRI.
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2.1 Materials and Methods

2.1.1 Three Dimensinal Radial Acquisition

A 3D radial sampling trajectory used in this chapter consists of Ni interleaves,

where each interleaf has Np projection lines of Ns sample points [36]. Each interleaf is

the rotated version of the first interleaf around the kz-axis. Figure 2.1 demonstrates

the end points of the projection lines in one example interleaf. The normalized readout

gradients Gx, Gy and Gz are given as:

Gz(p) =
p− 0.5

Np

− 1, (2.1)

Gx(p, i) = cosϕ(p, i) ·
√

1−G2
z(p), (2.2)

Gy(p, i) = sinϕ(p, i) ·
√
1−G2

z(p), (2.3)

and

ϕ =

√
2(Np − 1)π

Ni

· sin−1(Gz(p)) +
2iπ

Ni

(2.4)

where p and i denote the p-th projection of the i-th interleaf for p = 1, 2, . . . , Np

and i = 1, 2, . . . , Ni. This 3D radial trajectory has highly isotropic coverage of the

3D k-space. The isotropy (or uniformity) of the sampling point distribution can

be quantified by the standard deviation of the distance between adjacent sampling

points on the k-space sphere, and is kept at less than 10% of the mean distance

when the total number of projections Np × Ni is between 100 and 10000 [48]. The

sampling density of a 3D radial acquisition is defined as the ratio of the total number

of k-space samples of the 3D radial acquisition over that of a Nyquist-sampled 3D

Cartesian acquisition with the same resolution and the same FOV.
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Figure 2.1: 3D radial sampling trajectory. Bold points demonstrate the end points
of the projection lines in one example interleaf
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2.1.2 Gridding Algorithm for 3D Radial Trajectory

In this chapter, the reconstruction procedure or the conventional gridding al-

gorithm will be briefly reviewed. The gridding algorithm is a simple and efficient

implementation of the nonuniform Fast Fourier Transform (NUFFT), and is based

on the combination of interpolation of the nonuniform samples to Cartesian grid and

the regular FFT. The basic idea of the gridding algorithm is illustrated in Figure

2.2. A 2D example is shown for illustrative purpose, but expansion to 3D gridding is

straightforward. Each data point of the non-Cartesian trajectory is convolved with a

gridding kernel and the result is re-sampled and accumulated on the Cartesian grid.

Once the convolution interpolation is performed for all the data points, a 3D inverse

Fourier transform is performed to generate the reconstructed 3D image.

The gridding algorithm can be described in mathematical expressions. The non-

Cartesian sampling function U(kx, ky, kz) is given as:

U(kx, ky, kz) =
N∑

n=1

δ(kx − kx,n, ky − ky,n, kz − kz,n), (2.5)

where kx,n, ky,n and kz,n denote the n-th sampling point of the radial trajectory.

The acquired data is thenM(kx, ky, kz)U(kx, ky, kz), whereM(kx, ky, kz) is the actual

continuous k-space of the imaging object. Interpolation of the radial sample points

using a gridding kernel S(kx, ky, kz) is expressed as

M̂(kx, ky, kz) = [(M(kx, ky, kz)U(kx, ky, kz)) ∗ S(kx, ky, kz)]× III

(
kx
∆kx

,
ky
∆ky

,
kz
∆kz

)
,

(2.6)

where III(·) is the sampling fuction on the Cartesian grid. Equation (2.6) can be
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Figure 2.2: Basic idea of gridding algorithm. The radial sample points appear as red
dots. Each data point is convolved with a gridding kernel (the dashed circle denotes
the gridding kernel size) and the result is re-sampled on the Cartesian grid point.
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re-expressed in image domain after the Fourier transform as

m̂(x, y, z) = [(m(x, y, z) ∗ u(x, y, z))s(x, y, z)] ∗ III
(

x

FOVx
,

y

FOVy
,

z

FOVz

)
. (2.7)

In Equation (2.7), the actual image m(x, y, z) is first blurred by the convolution

with the transformed sampling function, and then multiplied by the apodization

function s(x, y, z) of the convolution kernel. The ideal apodization function will be a

rectangular function, but the corresponding convolution kernel in this case is a sinc

function which is infinite in extent. A Kaiser-Bessel function is widely used as a good

trade-off between the kernel size and ability to suppress the aliasing folding back from

the side lobes:

S(k) =
1

L
I0[B(1− (2u/L)2)1/2], (2.8)

where Io is the zero-order modified Bessel function of the first kind and B and L are

constants. The inverse FFT is given by,

s(x) =
sin(π2L2x2 −B2)1/2

(π2L2x2 −B2)1/2
. (2.9)

To compensate for the apodization function, de-apodization can be performed in the

image domain,

m̂(x, y, z) =
1

s(x, y, z)
[(m(x, y, z) ∗ u(x, y, z))s(x, y, z)] ∗ III

(
x

FOVx
,

y

FOVy
,

z

FOVz

)
.

(2.10)

In Equation (2.10), it is important to mitigate the effect of the sampling function

u(x, y, z) for a successful gridding reconstruction. Unlike the Cartesian grid where

the data points are uniformly distributed through k-space, the data points of the

radial trajectory are distributed more densely at the center of k-space and less at the
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edges. Each data point is weighted by the inverse of the sampling density before the

interpolation in order to compensate for the nonuniform sampling density ρ(kx, ky, kz).

This is essential to get an accurate interpolation and to minimize the reconstruction

error resulting from uneven weighting of k-space. The k-space estimate after the

density compensation is given as

M̂(kx, ky, kz) = [(M(kx, ky, kz)
U(kx, ky, kz)

ρ(kx, ky, kz)
∗ S(kx, ky, kz)]× III

(
kx
∆kx

,
ky
∆ky

,
kz
∆kz

)
,

(2.11)

There are different approaches to estimate the sampling density of non-Cartesian

trajectories such as geometry-based calculation, numerical approach, and iterative

methods, etc [49, 50, 51]. For 3D radial trajectory, the geometry-based calculation

provides a sampling density function which is inversely proportional to the square

of the radius from the k-space origin. However, for heavily undersampled radial

trajectory, the simple geometry-based method fails and more sophisticated method

is required.

Since all of the operations in the gridding algorithm are linear, this procedure can

be expressed in a matrix-vector format:

x̂ = DF∗SPy, (2.12)

where x̂ is the reconstructed image, y is the measured 3D kooshball k-space data,

P is a diagonal matrix performing the density compensation, S denotes convolution

matrix, F∗ denotes the inverse Fourier transform, and D is a diagonal matrix per-

forming the de-apodization.
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2.1.3 CS Reconstruction for Undersampled 3D Radial Tra-

jectory

Although the gridding algorithm can efficiently reconstruct an MR image from

a 3D radial trajectory, its performance deteriorates significantly for highly under-

sampled k-space data. Geometry-based DCFs [52, 53] introduce errors in the recon-

structed image for undersampled data. An iterative method to estimate the DCF

[49, 50, 51] is proposed which makes no assumption that the data satisfy the Nyquist

criteria, and provides improved reconstruction for undersampled data. As the sam-

pling density decreases (higher undersampling), however, the kooshball acquisition

will present streak-like artifacts in the reconstruction images no matter which DCF is

used. The gridding algorithm does not successfully reconstruct the image regardless

of the DCF when the data does not satisfy the Nyquist criterion because Equation

(2.12) becomes a poor approximation of the actual image. As an alternative ap-

proach, the acquired k-space signals can be formulated in an encoding matrix format

as y = Ax, where A denotes the encoding matrix and x denotes the actual image.

We note that all the voxels of the 3D image are represented in a single column vector

x for mathematical convenience. A can be considered as taking the reverse steps of

the conventional gridding algorithm without the density compensation:

y = Ax = S∗FDx, (2.13)

where D is a diagonal matrix performing the de-apodization, F denotes the fast

Fourier transform (FFT) matrix, and S∗ denotes convolution matrix from Cartesian

to radial sample points. x is de-apodized and Fourier transformed into the k-space,
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then the Cartesian k-space samples are re-gridded onto the 3D radial sample points

using the gridding kernel. Unlike the conventional gridding algorithm, it is important

to note that the density compensation is not required before the re-gridding because

the density of the Cartesian grid is uniform [53]. Equation (2.13) holds regardless

of the Nyquist criterion, but the encoding matrix is not invertible for undersampled

data, since Equation (2.13) is underdetermined, and there are more than one solution

that satisfy the system equation. CS reconstruction utilizes the sparsity of the image

to reconstruct the undersampled data using a constrained minimization problem:

argmin
x

1

2
||Ax− y||22 + λ||Ψx||1, (2.14)

where λ is a regularization parameter which determines the tradeoff between the

data consistency and the sparsity level of the image, and Ψ is a sparsifying transform

matrix such as wavelet transform or total variation (TV) operator.

To solve Equation (2.14), we adopt an iterative method which alternately enforces

the data consistency and sparsity of the image estimate at each iteration [54]. The

image update at the (t + 1)-th iteration is given by solving the following two sub-

problems:

ut = xt +
1

αt

A∗(y −Axt), (2.15)

and

xt+1 = argmin
x

1

2
||x− ut||22 +

λ

αt

||Ψx||1. (2.16)

Equation (2.15) is called data consistency step as the solution tends to decrease
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the l2-norm error between the measured data and the k-space of the image estimate.

For any unitary sparsifying transform Ψ, Equation (2.16) can be re-expressed with

respect to the transform domain vector zt = Ψxt as

zt+1 = argmin
z

1

2
||Ψ∗z− ut||22 +

λ

αt

||z||1

= argmin
z

1

2
||z−Ψut||22 +

λ

αt

||z||1 (2.17)

Equation (2.17) can be solved by a simple coefficient-wise thresholding function

as:

zt+1
i =

wt
i

|wt
i |
max(|wt

i | −
λ

αt

, 0), (2.18)

where zt+1
i and wt

i denote the i-th coefficient of the transform domain vector zt

and wt = Ψut of the solution of the first sub problem in Equation (2.15), respectively.

The second sub problem is called the thresholding step. For αt, we adopt the step

size from [55], where αt is determined so that αtI approximates the Hessian of the

data consistency term ∇2||Axt − y||22 as below:

αt =
||Axt −Axt−1||22
||xt − xt−1||22

. (2.19)

The overall iterative reconstruction procedure is summarized in Figure 2.3. The

reconstruction starts from an initial image estimate, which in our experiments, was

chosen to be the gridding reconstruction. The image is de-apodized, Fourier trans-

formed into k-space, and then re-gridded onto the radial sample points. The esti-

mated radial samples are subtracted from the actual measurement data, convolved
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Figure 2.3: 3D radial reconstruction using compressed sensing. The iterative process
consists of two steps of data consistency and thresholding. The image is updated to
reduce the l2-norm error between the measured data and the k-space of the image
estimate in the data consistency step, and to enforce the sparsity of the image estimate
in the thresholding step. The final image is obtained as the result of the iterative
process.

onto Cartesian k-space grid, inverse Fourier transformed and an image estimate is

obtained after de-apodization. The image estimate is combined with the intermedi-

ate image from the previous iteration. The combined image is then thresholded in

the transform domain to produce a new image estimate, and the intermediate im-

age is updated. The final image estimate is obtained as the result of the iterative

procedures.

2.1.4 Phantom Study

Two experiments were performed for the phantom study. The first experiment is

to demonstrate the capability of improving the reconstruction quality of 3D radial

acquisitions using the CS reconstruction method. The second experiment is to in-

vestigate the convergence properties of the CS reconstruction method over different

numbers of iterations.

For the first experiment, a high resolution phantom was scanned with a steady-

state free precession (SSFP) sequence using 3D radial trajectories with Ns = 344
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and Ni = 10 for five different sampling densities 7.5, 10, 20, 30 and 40%, which

correspond to the number of projections per interleaf Np of 221, 289, 576, 896 and

1184 respectively. The scan parameters were TR/TE/α = 3.90/1.94/60◦, FOV =

240 × 240 × 240 mm3, spatial resolution = 1.4 × 1.4 × 1.4 mm3. The acquired 3D

radial data were reconstructed by the iterative CS reconstruction method and the con-

ventional 3D gridding algorithm with density compensation, and the reconstructed

images were compared. We used both the identity transform and the Daubechies

4 [56] discrete wavelet transform (DWT) for the sparsity regularization term of the

CS reconstruction. The regularization parameter, λ was varied from 0.01||A∗y||∞

to 0.1||A∗y||∞ as in [55, 57] and manually selected to get the best image qualities;

λ = 0.05||A∗y||∞ gave satisfactory results for most of the cases with both sparsity

regularizations. The DCF for the gridding algorithm was calculated using the iter-

ative procedure proposed in [49]. For both the CS reconstruction and the gridding

algorithm, a Kaiser-Bessel function in Equation (2.8) with window size 4.0 was used

for the convolution kernel [58].

For the second experiment on convergence properties of the reconstruction algo-

rithm, iterative CS reconstructions with both image and wavelet regularizations were

performed on the phantom data set with 7.5% sampling density and the intermediate

images were stored for different number of iterations.

2.1.5 Whole-Heart Coronary MRI

Whole-heart coronary MR images were acquired on 9 healthy volunteers (2 male,

26±11 years). 3D free-breathing ECG-triggered SSFP sequences were used for imag-
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ing the heart with 3D radial trajectories. A respiratory navigator with 7 mm gating

window was used for gating and tracking the respiratory motion [59]. The k-space

data acquired within the gating window were accepted, and the k-space data acquired

outside the gating window were rejected and re-acquired until acquired within the gat-

ing window. Within the 7 mm gating window, the position of the imaging volume

was adaptively adjusted using a tracking factor of 0.6. The data sets were acquired

with Ns = 392 and Ni = 10 for various sampling densities: two data sets with 6.8%,

12.1%, 24.2% and 36.3%, seven data sets with 10%, 20%, 30% and 40%. The scan

parameters were as follows: TR/TE/ = 3.95/1.97/60◦, FOV = 256×256×256 mm3,

spatial resolution = 1.3×1.3×1.3 mm3. The nominal scan time for the data set with

sampling density of 40% was reported to be 5 minutes 13 seconds assuming 100%

navigator gating efficiency. For one volunteer, an additional scan with spatial resolu-

tion of 1.0× 1.0× 1.0 mm3 and sampling density of 40% was acquired. The acquired

3D radial data were reconstructed by the three reconstruction methods (i.e. gridding,

CS with image domain regularization and CS with wavelet domain regularization),

and the reconstructed image quality was compared. The regularization parameter λ

of the iterative CS reconstruction was selected to be λ = 0.05||A∗y||∞. The DCF for

the gridding algorithm was calculated by the same method used in phantom study

and the Kaiser-Bessel function with window size 4.0 was used for the convolution

kernel.

The empirical convergence properties of the CS reconstructions were also observed

similar to the phantom study. The vessel sharpness and the vessel length of the right

coronary artery (RCA) were measured using Soap-Bubble software [60] for quanti-
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tative assessment of the CS reconstruction method. The user defines the vessel of

interest by drawing points along the vessels path in the 3D recosntructed image, and

these points are updated with the center of gravity, representing the vessel center-

line. The centerline points are then regridded using cubic spline interpolation and

the vessel border detedction is performed. The vessel-border is detected with the

Deriche edge-detection filter [61], and the vessel delineation (sharpness) is defined as

the average edge value along the entire vessel border [62]. In this chapter, a relative

vessel sharpness score is used such that the vessel border sharpness is normalized by

the maximum vessel centerline value. The sharpness and the length of the vessels

with CS reconstruction were compared with the gridding algorithm using a paired

t-test. A value of P < 0.05 was considered to be statistically significant.

2.2 Results

2.2.1 Phantom Experiments

Figure 2.4 shows the reconstruction results of an example slice of the 3D radial

acquisition using the aforementioned algorithms with different sampling densities of

7.5%, 10%, 20%, 30%, and 40%. At the bottom left of each image, a selected re-

gion of the phantom is shown at a larger scale. The normalized mean-squared error

(MSE) from the reference image with 100% sampling density is also included at the

bottom right of each image, calculated as MSE = ||xref − xunder||22/||xref ||22 , where

xref denotes the reference image from 100% sampled k-space data and xunder denotes

the reconstructed image from the undersampled k-space data. Both of the CS re-
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constructions show improved image quality compared with the conventional gridding

reconstructions, and the improvement is more distinct with lower sampling densities.

The streaking artifacts degrade the image quality of the conventional gridding recon-
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Figure 2.4: Comparison of conventional 3D gridding reconstruction vs. 3D iterative
CS reconstruction with different sparsity regularizatuions (image domain and wavelet
domain) for a 3D radial acquisition using four different sampling densities (40%, 30%,
20%, 10%, and 7.5%). The number of iterations were 3000 and 500 for CS with
image domain sparsity and wavelet domain sparsity, respectively. For high sampling
densities all three reconstruction methods yield comparable image quality, For lower
densities, both CS CS reconstructions provide superior image qualities compared with
the gridding algorithm, while CS with image domain sparsity shows better results at
sharp edges and CS with wavelet domain sparsity is better at smooth surfaces. The
normalized mean-squared errors are also included at the right bottom of the images.

structions for lower sampling densities (20, 10, and 7.5%), while most of the streaking

artifacts are removed on the CS reconstructed images for the same sampling densi-

ties. Overall, the CS reconstructions have less visible artifact and improved image

homogeneity compared with the conventional gridding reconstructions. In particu-

lar, the image domain regularization provides better image quality at sharp edges,
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Figure 2.5: CS reconstruction of a phantom imaged with 3D radial with sampling
density of 7.5% at different number of iterations, initiated with the conventional grid-
ding reconstruction. The streaking artifacts are gradually removed with some blurring
up to 500 iterations, however, with additional iterations the streaking artifacts are
suppressed with improved sharpness.

while the wavelet domain regularization is generally better at removing streaking ar-

tifacts. The CS reconstruction with image domain regularization provides the least

normalized MSE values at all sampling densities.

Figure 2.5 depicts the resulting images generated by the CS reconstruction algo-

rithm for different number of iterations. The streaking artifacts in the earlier iter-

ations are gradually removed as the number of iterations increases, while the image

loses the sharpness at the edges of the phantom object and becomes slightly more

blurry up to 500 iterations. After additional 2500 iterations the sharpness of the

object is improved and the image looks more refined with preserved edges.
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2.2.2 In Vivo Experiments

Figure 2.6 and 2.7 show example slices of axial and reformatted sagittal views

from 3D whole-heart images with isotropic 1.3 mm spatial resolution reconstructed

by conventional 3D gridding reconstruction,as well as the iterative CS reconstruction

with image and wavelet domain regularizations for four different sampling densi-

ties (6.8, 12.1, 24.2 and 36.3%). The images reconstructed with gridding present

streaking artifacts and high-frequency noise-like artifacts, especially at lower sam-

pling densities. Both CS reconstructions were able to substantially suppress these

artifacts at lower densities. While the wavelet domain regularization provides cleaner

and more homogeneous results in the blood pool, the image domain regularization

provides more detailed and sharper edges. The wavelet domain regularization results

in checkerboard-like artifacts in the reconstructed image with 6.8% sampling density.

Figure 2.8 illustrates the resulting images of the CS reconstruction with image

domain regularization for different number of iterations. The artifacts associated

with undersampling are gradually removed and the image quality improves as the

number of iteration increases. The blurring of the image during the iterations shown

in the phantom (Figure 2.5) was not observed in the in-vivo result. Between 500

and 3000 iterations, there is a slight improvement in the image quality but it was

less prominent than the phantom case. Similar trends were observed for the wavelet

domain regularized CS reconstruction but no visual improvement was observed after

500 iterations.

Figure 2.9 depicts reformatted RCA images from 3D whole-heart data with spa-

tial resolution of 1.0× 1.0× 1.0 mm3 and sampling density of 40%, reconstructed by
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Figure 2.6: Example slices of axial views from 3D whole-heart images reconstructed by
conventional 3D gridding reconstruction and iterative CS reconstruction (with 1000
iterations for image domain regularization and 500 iterations for wavelet domain
regularization) for different sampling densities. For all the sampling densities, CS
reconstructions have less high-frequency streaking artifacts, and the improvement in
the image quality is more distinct at lower sampling densities.
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Figure 2.7: Example slices sagittal views from 3D whole-heart images reconstructed
by conventional 3D gridding reconstruction and iterative CS reconstruction (with
1000 iterations for image domain regularization and 500 iterations for wavelet domain
regularization) for different sampling densities. For all the sampling densities, CS
reconstructions have less high-frequency streaking artifacts, and the improvement in
the image quality is more distinct at lower sampling densities.
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1 iteration 10 iterations 50 iterations

100 iterations 500 iterations 3000 iterations

Figure 2.8: An example slice from 3D data-set (sampling density = 6.8%) of the
coronary arteries reconstructed using CS with image domain regularization at differ-
ent iterations. The high-frequency artifacts are gradually removed throughout the
iterations up to 500 iterations. Slight improvement was observed after 500 iterations,
but it was less prominent that the phantom case (Figure 2.5).
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the iterative CS reconstruction with image domain regularization. The data set is

retrospectively undersampled to get 10% and 20% sampling densities, and the recon-

structed images are shown. Due to the isotropic resolution of the 3D radial acquisition

in all three dimensions, the image can be reformatted retrospectively in an arbitrary

angle to obtain a desirable imaging plane for visualizing the vessels. Table 2.1 sum-

marizes the quantitative results of the 3D whole-heart images from 6 complete data

sets with sampling densities of 10%, 20%, 30% and 40%. The measured vessel lengths

increase as the sampling density increases for all the reconstruction methods, but the

vessel lengths are not significantly different among the three reconstruction methods.

The CS reconstruction with image domain regularization provides higher vessel sharp-

ness for all sampling densities, and the improvements are statistically significant for

sampling densities of 10%, 20% and 30% compared with the gridding reconstruction.

The CS reconstruction with wavelet domain regularization, however, does not show

significant improvement in the vessel sharpness over the gridding reconstruction for

any of the sampling densities.

2.3 Discussion

In this chapter, we have evaluated the feasibility of using CS to improve image

reconstruction for 3D whole-heart coronary MRI.

The 3D radial trajectory intrinsically has more favorable properties for CS re-

construction. Theoretically, random undersampling of the k-space guarantees a very

high degree of incoherence required for CS reconstruction. This is not suitable for

MR images since most of the energy is concentrated in a very small area of the center
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Sampling density Reconstruction method RCA sharpnes RCA length

10%

CS-Image 0.65± 0.05∗,# 7.29± 3.02

CS-Wavelet 0.52± 0.06 7.35± 2.95

Gridding 0.53± 0.03 6.99± 2.82

20%

CS-Image 0.61± 0.03∗,# 7.32± 4.10

CS-Wavelet 0.54± 0.04 7.08± 3.91

Gridding 0.51± 0.04 6.89± 3.61

30%

CS-Image 0.60± 0.05∗ 8.41± 2.82

CS-Wavelet 0.54± 0.03 8.50± 2.76

Gridding 0.54± 0.02 8.52± 2.86

40%

CS-Image 0.64± 0.04 9.07± 3.28

CS-Wavelet 0.59± 0.06 9.13± 3.26

Gridding 0.58± 0.05 8.78± 3.40

Table 2.1: Mean ± standard deviation of normalized vessel sharpness and vessel
length (cm) measured for conventional gridding reconstruction and iterative CS re-
constructions. CS reconstruction with image domain regularization improves the
vessel sharpness for sampling densities 10%, 20% and 30% compared with the grid-
ding reconstruction. (*: P < 0.05 compared with the gridding reconstruction, #:
P < 0.05 compared with the CS reconstruction with wavelet domain regularization)
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40%

Sampling density

20% 10%

Figure 2.9: Reformatted images of the RCA with isotropic resolution of (1.0mm)3

from whole-heart 3D radial data with three sampling densities (40%, 20% and 10%) by
the iterative CS reconstruction with image domain regularization and 1000 iterations.
The scan time with sampling density of 40% was 4 minutes 2 seconds assuming 100%
navigator gating efficiency. The RCA is clearly visualized with the CS reconstruction
for all sampling densities, while slight blurring of the image and residual artifacts are
observed at low sampling density (10%).

of k-space, and missing the central k-space lines due to random undersampling may

result in reconstruction images of inferior quality. In practice, variable density under-

sampling is commonly used for Cartesian trajectories. The sampling density varies

depending on the radius from k-space center so the center of k-space is fully sampled

and the outer region is less sampled (39). The sampling pattern for Cartesian acqui-

sition needs to be carefully designed in order to both have incoherent undersampling

artifacts and capture most of the energy of the image. However, each projection line

of the 3D radial trajectory always goes through the origin of the k-space and the sam-

pling density is inversely proportional to the radius from the origin of the k-space.

Therefore, the inherent sampling property of 3D radial trajectory is suitable for the

CS reconstruction and does not require a careful design of undersampling pattern.

Moreover, undersampling in all three k-space dimension is also an advantage of the
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3D radial trajectory. In Cartesian 3D acquisition, one can only undersample along

two k-space directions as undersampling read-out direction does not help to reduce

the scan time. The projection lines, i.e. the phase-encode lines, in the 3D radial

acquisition, however, are isotropically distributed in the 3D k-space, and one can un-

dersample the k-space lines along arbitrary directions in an isotropic manner. This

potentially enables the 3D radial acquisitions to be further undersampled while keep-

ing the incoherent artifact at a comparable level compared to Cartesian acquisitions

for CS reconstruction.

3D radial trajectories also provide superior performance with respect to respi-

ratory motion compared to 3D Cartesian trajectories. Oversampling of the central

k-space region provides the effect of averaging the low spatial frequency component

of the image and thus alleviates the respiratory motion. The aliasing appears as

streaking artifact, while the respiratory motion will result in severe ghost images and

blurring in the phase-encode direction for Cartesian acquisition. A respiratory nav-

igator with small gating window is widely used to suppress the respiratory motion,

but it decreases the scan efficiency and prolongs the scan time if the breathing pat-

tern of the patient significantly changes during the scan. A self-navigated motion

correction technique with 3D radial acquisition which incorporates the respiratory

navigator into the acquisition was proposed to address this problem [63]. The itera-

tive CS reconstruction can also be incorporated with the motion correction technique

enabling the use of highly undersampled 3D radial trajectories to further accelerate

the acquisition.

We have utilized the identity transform and the Daubechies 4 wavelets as the spar-
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sifying transforms for the CS reconstruction. The baseline assumption for successful

CS reconstruction is that the MR images are sparse in these transform domains.

Wavelets have been applied in many MR reconstruction studies [64, 65] but the use

of image domain sparsity has been limited to applications such as MR angiography

[66, 67]. The 3D radial trajectories are generally oversampled in the read-out di-

rection and this results in an increased FOV larger than the prescribed FOV. The

3D image then contains redundant areas where there is not much signal, making the

image sparse in the image domain itself. Both image domain and wavelet domain reg-

ularizations have provided improved image quality compared with the conventional

gridding algorithm, but exhibited some issues that need to be improved. The CS

reconstruction with image domain regularization has a slow convergence speed with

the iterative algorithm described in this paper. The CS reconstruction with wavelet

domain regularization provides a better convergence speed than the image domain

regularization, but shows checkerboard-like and blocky artifacts at low sampling den-

sities. The two step iterative CS reconstruction algorithm used in this paper enables

simple and efficient coefficient-wise thresholding for the thresholding step in Equation

(2.16) only when the sparsifying transform is given by a unitary matrix. The image

domain (identity transform) and Daubechies wavelet transform satisfy this condi-

tion, while the well-known and commonly used TV regularization does not. Use of

other sparsifying transforms or more advanced techniques that can adaptively cap-

ture object-specific sparsity nature [68, 69] can improve the CS reconstruction, which

requires further investigation.
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2.4 Conclusion

We have implemented an iterative CS reconstruction method for 3D radial ac-

quisitions and evaluated its performance in 3D whole-heart coronary MRI. The CS

reconstruction method improves the image quality of highly undersampled 3D radial

data sets when compared to the conventional gridding reconstruction, thus enabling

higher acceleration and scan time reduction.
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In Chapter 2, we have seen that CS reconstruction enables higher undersampling of

3D radial acquisition compared to the gridding recostruction and this consequently re-

sults in reduced scan time. The CS reconstruction techniques are usually implemented

with iterative procedures that solve the optimization problem with relatively compu-

tationally cheap matrix-vector multiplications [47]. The computational overhead of

the iterative CS reconstruction increases as the size of the 3D k-space increases, and

is proportional to the number of iterations that the reconstruction method uses. The

heavy computational overhead of the iterative CS reconstruction for 3D radial ac-

40
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quisition results in prolonged reconstruction time, therefore, the feasibility of CS for

high resolution 3D radial acquisition for accelerating 3D CMR has not been previously

demonstrated.

Recently, graphics processing units (GPU) have become available for highly com-

putationally intensive applications, and using GPU for general purpose computation

has gathered great interests in many research areas that require heavy computational

overload. The hardware manufacturers are providing parallel computing architec-

tures (such as CUDA and FireStream) that enable researchers to implement GPU

programs using high level programming languages without knowledge of the GPU

hardware structure. Recent studies have shown that GPU-accelerated reconstruc-

tion can be used to achieve reduced and low-latency reconstruction time for various

MR applications: The gridding algorithm for 2D radial and spiral trajectories [70],

the non-Cartesian SENSE and non-Cartesian k-t SENSE reconstruction [71], total

variation regularized reconstruction for undersampled stack-of stars trajectories in

MR angiography [72], and so on. It has been shown that GPU implementations

can provide order of magnitude reduction in the reconstruction time, for example,

GPU-accelerated reconstruction for 2D radial acquisition demonstrated with approxi-

mately 6-32 times speed-up in reconstruction time compared to CPU implementations

[70, 73]. GPU implementations have been shown to greatly accelerate CS reconstruc-

tions of 3D non-Cartesian trajectories such as stack-of-radials and stack-of-spirals

[72, 74]. The stack-of-radials/spirals trajectories, however, are sampled equi-distant

along one k-space dimension, allowing the reconstruction of the MR image to be

the same as multiple 2D non-Cartesian reconstructions with an additional one di-
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mensional inverse Fourier transform on the equidistantly-sampled direction. While

the benefits of GPU implementation on the reconstruction of 2D non-Cartesian tra-

jectories have been previously demonstrated, GPU implementation for a true 3D

non-Cartesian trajectory such as 3D radial sampling is not as straightforward and

has not been previously reported due to the large size of the 3D sampling data and

GPU hardware limitations.

In this chapter, the iterative CS reconstruction for highly undersampled 3D radial

trajectory was implemented using commodity GPU hardware.

3.1 Materials and Methods

3.1.1 GPU Programming Structure

The CS reconstruction for 3D radial trajectory was implemented using Compute

Unified Device Architecture (CUDA, Nvidia, Santa Clara, CA) environment, which

provides a simple extension of the standard C language for GPU programming. Gen-

erally CUDA programs consist of two parts: host program that is executed on CPU,

and device program that is executed on GPU. The code which has little or no paral-

lelism in computation is written in host code using ANSI C language, and the code

which has a large amount of parallelism in computation is written in device code

using a slightly modified C-like language. The functions written in the device code

are called kernels , and each kernel generates a large number of threads as a result

of data parallelism once the kernel is invoked. All the threads generated by a kernel

invocation are called a grid . The threads in a grid are grouped into blocks , which are
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the basic allocation unit for the execution resources on the hardware. All the blocks

in the same grid must have the same number of threads. Blocks can have 1D or 2D

structure, and the threads can have 1D, 2D or 3D structure.

3.1.2 Implementation of CS Reconstruction for 3D Radial

Trajectory

The iterative CS reconstruction for 3D radial trajectory in Chapter 2 involves

FFT/IFFT , the gridding/re-gridding operations and the sparsifying transform and

its inverse operation at every iteration. The gridding and re-gridding operations are

the most computationally intensive part of the iterative CS reconstruction. Since

the width of the convolution window is much smaller than the size of the entire k-

space, the gridding/re-gridding operations for each measured radial point are highly

localized and can be performed in a parallel manner for each measured radial point,

and are well-suited for CUDA implementation. In this chapter, we assigned each 3D

radial data point to one CUDA thread. Each projection line corresponds to one block,

which consists of Ns threads. The grid has 2D block structure (Np, Ni) to represent

all the projection lines and interleaves of the 3D radial trajectory. Figure 3.1 shows a

simplified example of a grid hierarchy and thread assignment of our implementation,

where we have 8 sample points in one projection, 3 projection lines per interleaf, and 2

interleaves. In the gridding operation, contributions from adjacent radial samples are

accumulated to a Cartesian sample point as illustrated in Figure 3.2(a), which results

in accumulative memory writes during the parallelized execution. The accumulative

memory writes can produce incorrect results if more than two threads try to access the
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same memory simultaneously. This was prevented by using CUDA’s atomic operation,

which is capable of reading and writing on a memory address without interruption by

other threads, allowing concurrent threads to correctly perform the required memory

access. The performance of atomic operation in CUDA is greatly improved on recent

”Fermi”-based GPUs offered by Nvidia, which provide up to 20 times faster atomic

operation compared to the their former generation GPUs [75].

Besides the gridding/re-gridding operations, most of the CS reconstruction proce-

dures including FFT/IFFT, wavelet/inverse-wavelet transforms, de-apodization and

thresholding were parallelized and written in device code. cuFFT and cuBLAS pack-

ages were used for FFT/IFFT and other arithmetic operations. Due to the limited

global memory size of current GPU hardware, we could not parallelize the reconstruc-

tion for the multiple coil elements. The reconstruction was performed sequentially for

each coil and the final reconstructed image was obtained as the root-sum-square of

the individual coil images. The CS reconstruction was also implemented in standard

C++ environment for the comparison of the reconstruction time. The FFTw package

(41) was used for FFT/IFFT operations. The GPU and C++ implementations of the

CS reconstruction were based on single precision floating point arithmetic, and they

were executed on a PC with Intel (Santa Clara, CA) Core2 Quad Q9400 CPU (2.66

GHz) , 8.0 GB memory, and NVIDIA GeForce GTX 480 Graphics card (480 cores,

1.5 GB memory) running on a 64 bit Windows 7 operating system.



Chapter 3: GPU Implementation of the Iterative CS Reconstruction for
Undersampled 3D Radial Trajectory 45

Kernel Invocation

Grid

Block

(0,0)

Block

(0,1)

Block

(1,0)

Block

(1,1)

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Block

(2,0)

Block

(2,1)

Figure 3.1: CUDA grid hierarchy and thread assignment: A grid, which consists of
multiple threads, is generated once the device kernel is invoked. Each projection line
of the 3D radial trajectory is assigned to one block of threads. Each thread in a
block corresponds to a 3D radial sample point in the same projection line. The total
number of projections is equal to the total number of blocks. This example shows a
thread assignment of a 3D radial trajectory with (Ns, Np, Ni) = (8, 3, 2).
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3.1.3 Experiments

The CS reconstruction was performed on four different whole heart MRI data sets.

The number of samples per projection and the number of interleaves were kept fixed

as Ns = 392 and Ni = 10, and the data were acquited with four different sampling

densities (10%, 20%, 30% and 40%), which determined the number of projections per

interleaf to be Np = 396, 768, 1152 and 1536, respectively.

The CS reconstruction was also implemented using standard C++ environment,

and the reconstruction was performed on the same MRI data sets. The execution

time for the completion of one iteration of the CS reconstruction with CUDA and

C++ implementations were measured and compared. The execution time for each

component operation, i.e., gridding/re-gridding, FFT/IFFT and thresholding were

also measured and compared. The measurement of the execution time was averaged

over 100 iterations.

3.2 Results

The execution time of the iterative CS reconstruction for 3D radial trajectory was

compared between the CUDA and the C++ implementations. Table 3.1 shows the

average time required for the completion of one iteration of the iterative CS recon-

struction with CUDA and C++ implementations. The reconstruction was performed

on the in-vivo data for 4 different sampling densities (10%, 20%, 30% and 40%), which

correspond to the sampling parameters (Ns, Np, Ni) = (392, 396, 10), (392, 768, 10),

(392, 1152, 10), and (392, 1536, 10), respectively. The measured time is averaged over
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100 iterations. The speed up of the CUDA implementation over the C++ imple-

mentation was reported to be 56.5 ∼ 58.8 for the gridding operation and 111.5 ∼

111.8 for the re-gridding operation. The execution time of gridding operation was

almost twice longer than the execution time of re-gridding operation in CUDA im-

plementation for a given sampling density, while the execution time of gridding and

re-gridding operations were nearly the same for C++ implementation. The gridding

operation in CUDA is hampered by the heavy accumulative memory writes which

the re-gridding operation is free of, and this results in the increased execution time

even if gridding and re-gridding operations have the same thread configuration. It is

mentioned in Section 3.1.2 that the atomic operation of Fermi-based GPU has been

greatly improved, but it is still less efficient than the operations without cumulative

memory access for parallel implementation. The execution time of FFT/IFFT was

kept almost constant over different sampling densities for both CUDA and C++ im-

plementations, as the size of reconstruction matrix was the same for all data sets

(392× 392× 392) Overall, the speed up of the CUDA implementation was 34.3, 43.7,

50.2 and 53.9 for 10%, 20%, 30% and 40% sampling densities, respectively. The to-

tal execution of the CS reconstruction for 20% sampled data takes 85.74 seconds in

C++ implementation and 1.96 seconds in CUDA implementation, yielding 43.7 times

speedup. With a 5 channel phased-array coil and 1000 iterations, the reconstruction

of a 3D radial acquisition will take around 5 days in C++ implementation, while

it takes around two and a half hours in CUDA implementation. The images recon-

structed by CUDA implementation were visually identical to those reconstructed by

C++ implementation for all the 3D radial data sets we have tested.
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3.3 Discussion

For CUDA implementation of the gridding/re-gridding operations in the iterative

CS reconstruction, the computations can be assigned to the device code either by

dividing the 3D radial data points among threads (radial point driven) or by divid-

ing the Cartesian grid points among threads (Cartesian point driven). The radial

point driven assignment is a simple and intuitive approach and has minimum num-

ber of memory reads (writes) in gridding (re-gridding), but results in a large amount

of data sharing among threads and accumulative memory writes in gridding as illus-

trated in Figure 3.2(a). Each CUDA thread assigned to the radial data point will read

the memory to get the measured k-space value for the sample point and distribute

the value to the neighboring Cartesian grid points inside the convolution window.

The Cartesian grid point will have different contributions from different radial sam-

ple points, resulting in cumulative memory access among different CUDA threads. In

our experiment, the execution time of the gridding operation was only twice as long as

the re-gridding operation despite the massive cumulative memory access and atomic

operations. On the other hand, the Cartesian point driven assignment has minimum

number of memory writes (reads) in gridding (re-gridding). However, one must com-

pute the list of the radial points associated with the Cartesian grid point within the

convolution window for every thread, which requires additional computations and/or

additional memory usage. The Cartesian point driven assignment is illustrated in

Figure 3.2(b). Each CUDA thread assigned to the Cartesian grid point will read the

memory to get the measured k-space values from neighboring radial sample points

inside the convolution window, combine the values and write on the memory for the
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(a) (b)

Figure 3.2: Thread assignment strategies for implementation of a gridding algorithm
in CUDA programming: (a) radial point driven assignment, (b) Cartesian point
driven assignment. Cumulative memory writes can be observed in the radial point
driven assignment. The central grid point has a larger workload than the outer grid
point in the Cartesian point driven assignment.

Cartesian point only once. The Cartesian point driven assignment has an uneven

workload distribution over different threads, and it causes poor compute to global

memory access ratio for outer k-space points, especially at low sampling densities.

Each thread assignment strategy has its advantage and disadvantage, and it is not

simple to determine which one is superior to the other. In this study, we used radial

point driven assignment; more study and optimization on the thread allocation and

memory management can be done as a future work for further speed-up of the parallel

implementation.

The proposed implementation of the 3D radial acquisition still takes a long time

to be clinically feasible. For example, we have used 3000 iterations for the CS re-

construction of the phantom data (3443 voxels) and 1000 iterations for the in-vivo

data (3923 voxels), and the final reconstruction times for the data with 20% sampling
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density were around 5 hours and 2.5 hours, while the conventional gridding algorithm

takes a few minutes with the C++ implementation for any case. However, CS re-

construction with fewer iterations (e.g. 100 iterations) still provides improved image

quality compared to the gridding algorithm, and the reconstruction time in this case

is around 10-16 minutes with 20% sampling density with the GPU implementation.

3.4 Conclusion

We have implemented a GPU-accelerated iterative CS reconstruction method for

highly undersampled 3D radial trajectory and compared its performance with C++

implementation. The GPU implementation reduced the reconstruction time substan-

tially, enabling the feasibility of CS reconstruction for 3D radial acquisition.



Chapter 4

Compressed Sensing

Reconstruction for Undersampled

Breath-Hold Radial Cine Imaging

with Auxiliary Free-Breathing

Data

Segmented cine magnetic resonance (MR) imaging (MRI) allows non-invasive and

reproducible evaluation of the cardiac function. Clinically, cine imaging is acquired

in a multi-slice breath-hold acquisition where one or two slices are acquired within a

breath-hold (BH) and the patient will breathe normally for a period of 20-30 second

between BHs. As the spatiotemporal resolution of the cine imaging increases, the

number of heartbeats required for the segmented acquisition and the duration of the

52
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BH increase. To improve the imaging throughput, multiple slices are acquired within

a BH to reduce total scan time spent for evaluation of cardiac function. In patients

with difficulty in breath-holding or pediatric patients, real-time cine or segmented cine

in short BH is used. For multiple-BH acquisitions to cover the entire left ventricle

(LV), majority of time is devoted to resting period between scans so as the patient

recover from BH. In a typical patient for a 10 second BH, 20-30 second is spent in

between BHs, which results in substantially low acquisition efficiency of 30-50%.

Acceleration techniques for dynamic or cine MRI have been widely studied. Un-

aliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD)

utilizes temporal filtering to remove the aliasing undersampling artifacts [76], tempo-

ral sensitivity encoding (TSENSE) exploits coil sensitivity information and temporal

filtering [77], and k-t Broad-use Linear Acquisition Speed-up Technique (k-t BLAST)

utilizes object-specific information obtained from the training data [78]. More re-

cently, compressed sensing (CS) technique [64] has been applied for various MRI

reconstruction problems by using the compressibility of MR images in appropriate

transform domains. Feasibility of the use of CS for reconstruction of dynamic images

exploiting spatial domain and temporal frequency domain as the sparsifying transform

domain (x-f space sparsity) was also presented [79]. Although Cartesian trajectories

are often used for cardiac cine imaging, non-Cartesian trajectory such as radial tra-

jectory [80] can also be used. Radial trajectory has different imaging properties that

may be favorable to the cine imaging: Radial trajectory has inherent advantages for

object motion [81, 82, 83], radial undersampling does not yield a substantial decrease

in spatial resolution as the spatial resolution is mainly determined by the k-space



Chapter 4: Compressed Sensing Reconstruction for Undersampled Breath-Hold
Radial Cine Imaging with Auxiliary Free-Breathing Data 54

coverage [84], and the streaking artifacts in an undersampled radial acquisition are

more tolerable compared to the ghosting artifacts in an undersampled Cartesian ac-

quisition [32]. Acceleration techniques for radial trajectories have also been proposed.

Radial focal undetermined system solver (FOCUSS) [85] asymptotically provides l1

minimized CS reconstruction, GRAPPA [43] operator is used in conjunction with

GROG [45] to reconstruct undersampled non-Cartesian data sets in [86], and total

variation constraint is used for undersampled radial data with multiple coils in [41].

k-t BLAST and k-t FOCUSS have been extended to radial trajectories in [87] and

[88], respectively.

In this chapter, we propose to take advantage of the resting periods between BHs

to acquire additional auxiliary free-breathing (FB) data that can be used in the re-

construction of undersampled radial BH acquisition in order to improve the image

quality without increasing the total scan time. Cardiac function measurements calcu-

lated from accelerated radial cine images, reconstructed using conventional gridding

[40], CS with x-f space sparsity and the proposed accelerated cine reconstruction

using additional auxiliary FB scan are compared to evaluate the feasibility of the

proposed approach.

4.1 Materials and Methods

4.1.1 Radial Cine Acquisition and the CS Reconstruction

The acquisition and the CS reconstruction of the radial cine imaging are illustrated

in Figure 4.1(a). An undersampled BH acquisition is followed by a fully-sampled FB
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acquisition during the resting period between BH acquisitions. The undersampled

radial cine data is reconstructed using CS by minimizing the following objective func-

tion:

J(xi) = ||Axi − yi||22 + λΨ(xi), (4.1)

where xi denotes the i-th cardiac phase image, yi denotes the undersampled radial

k-space measurement for i-th cardiac phase, A is the encoding matrix of the radial

acquisition, and Ψ is a transform operator that sparsifies the image in the transform

domain, and λ is a positive scalar parameter that determines the tradeoff between

the consistency of the measured k-space data and the sparsity level of the recon-

structed image. In our study, the difference image from the additionally-acquired

fully-sampled FB data is used as the sparsifying operator as Ψ(xi) = ||xi − xFB,i||1,

where xFB,i is the i-th cardiac phase image from the fully-sampled FB acquisition.

Each cardiac phase image is sparsified by subtracting the image reconstructed from

the fully-sampled FB acquisition with the same cardiac phase for successful CS re-

construction. The fully-sampled FB images are reconstructed by the conventional

gridding algorithm [40]. The FB images are fully-sampled and thus do not have the

streaking artifacts coming from the undersampling of the radial trajectory. The FB

images are, however, acquired while the patient is breathing normally, and the res-

piratory motion is averaged over multiple cardiac cycles resulting in blurry images.

Figure 4.2 illustrates example cardiac phases from fully-sampled BH and FB acqui-

sition and the difference images. The FB acquisition yields blurry images due to

the respiratory motion compared to the BH acquisition, and the sparseness of the

difference images can be appreciated. The difference images contain non-zero ele-



Chapter 4: Compressed Sensing Reconstruction for Undersampled Breath-Hold
Radial Cine Imaging with Auxiliary Free-Breathing Data 56

ments only in the areas where there are cardiac and/or respiratory motion, because

the static regions from the BH and FB images have similar signals and cancelled out

each other. To minimize the objective function in Equation 4.1, we adopt an iterative

method which alternately enforces the data consistency and the sparsity of the image

estimate at every iteration as in Chapter 2. The intermediate image update at the

(t+ 1)-th iteration is obtained by solving the following two sub-problems:

ui(t) = xi(t) +
1

αt

A∗ (yi −Axi(t)) , (4.2)

which is called the data consistency step and

xi(t+ 1) = argmin
x

1

2
||x− ui(t)||22 +

λ

αt

Ψ(x), (4.3)

which is called the thresholding step. Equation (4.3) can be efficiently solved by a

coefficient-wise thresholding function for the case of the difference operator Ψ(xi) =

||xi − xFB,i||1 as

xni (t+ 1) = xnFB,i +
uni (t)− xnFB,i

|uni (t)− xnFB,i|
max

(
|uni (t)− xnFB,i| −

λ

αt

, 0

)
, (4.4)

where the superscript n denotes the n-th element of the input image vector. for the

step size parameter αt, we adopt the update rule from [55].

4.1.2 Undersampling Pattern

For the undersampled BH acquisition, the radial trajectory is uniformly under-

sampled to have a constant angle between adjacent projection lines, since it has been

shown that uniform undersampling provides superior image quality compared to ran-

dom undersampling with CS reconstruction [89]. The sampling pattern is varied for
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Figure 4.1: a) Illustration of the proposed radial cine acquisition.. The undersampled
BH acquisition is followed by a fully-sampled FB acquisition between BH acquisitions.
The fully-sampled FB data is reconstructed by the conventional gridding algorithm
and then used for the CS reconstruction of the undersampled BH data for each cardiac
phase. b) Undersampling pattern for different cardiac phases of the BH acquisition.
The sampling pattern is rotated by one sampling angle per cardiac phase.
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Figure 4.2: Exemplary cardiac phase images from fully-sampled BH acquisition, fully-
sampled FB acquisition, and the difference images. The images from FB acquisition
are blurred due to the respiratory motion. The difference images are sparse and con-
tain non-zero elements only in the areas where there are respiratory/cardiac motion.

different cardiac phases and it is rotated by 180◦

NFull
per cardiac phase where NFull is

the number of projection lines in the fully-sampled radial trajectory as illustrated in

Figure 4.1(b). This time-varying undersampling is not required for the proposed CS

reconstruction as the proposed method reconstructs each cardiac phase image inde-

pendently and does not utilize any temporal dependency between different cardiac

phases. This sampling pattern is used in order to introduce incoherent aliasing arti-

facts in the temporal frequency domain for the reconstruction of the conventional CS

based on x-f space sparsity.
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4.1.3 In Vivo Study

Ten healthy subjects were imaged with an ECG-triggered steady-state free preces-

sion (SSFP) sequence. The scan parameters were as follows: number of cardiac phases

= 20, field-of-view (FOV) = (320 mm)2, spatial resolution = (1.7 mm)2, TR/TE/α

= 3.1/1.5/55. All BH and FB acquisitions were acquired fully-sampled, and the BH

acquisition was retrospectively undersampled to the undersampling rate of R = 3 and

5, which yield 33% and 20% sampled data sets. Total of four fully-sampled data sets

were acquired for each imaging plane: the first data set was acquired during BH and

the remaining three data sets were acquired during FB. The three FB data sets were

averaged and then used for the reconstruction of xFB,i. The fully sampled dataset ac-

quired during BH, were undersampled retrospectively to evaluate the reconstruction

algorithm. The reference images were obtained from the fully-sampled BH data sets

by using the conventional gridding reconstruction algorithm, and the undersampled

BH data sets were reconstructed by the gridding algorithm, the conventional CS re-

construction using x-f space sparsity and the proposed CS reconstruction with the

auxiliary FB data sets.

4.1.4 Data Analysis

For the quantitative assessment of the study, the sharpness of the blood-myocardium

border was measured and compared on the images reconstructed by the gridding algo-

rithm with fully sampled reference BH data, the conventional CS reconstruction using

x-f space sparsity with the undersampled BH data, and the proposed CS reconstruc-

tion with the undersampled BH data. The sharpness was measured from the signal
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intensity profile of a straight line perpendicularly crossing the blood-myocardium bor-

der. The sharpness score was defined as the reciprocal of the distance (mm) between

the two points which have 20% and 80% of the signal intensity of the profile [90].

The performance of the proposed CS reconstruction was further evaluated by

measuring the cardiac volumes and the ejection fraction of the left ventricle (LV). The

reconstructed cine images were written into DICOM format and transferred to the

ViewForum workstation (Philips Healthcare, Best, the Netherlands) for the analysis.

The LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV) and LV

ejection fraction (LVEF) were measured by a board certified cardiologist with level 3

training in cardiac MRI blinded to the method of reconstruction using a commercially

available software included in the ViewForum workstation.

4.2 Results

Figures 4.3, 4.4 and 4.5 show exemplary cardiac phase images in 2-chamber (2CH),

horizontal long axis (HLA) and short axis (SAX) views reconstructed by conventional

CS algorithm with x-f space sparsity and the proposed CS algorithm. The reference

images reconstructed by the gridding algorithm from fully-sampled data set were also

included for comparison. The BH data are undersampled to have 33% and 20% of

projections from fully-sampled data. While both CS reconstructions remove most

of the streaking artifacts efficiently, the proposed CS reconstruction exhibits sharper

blood-myocardium borders and improved image quality.

The blood-myocardium border sharpness scores are measured on the images recon-

structed by the gridding reconstruction with the fully-sampled BH data, the conven-
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Figure 4.3: Example cardiac phase images in 2-chamber (2CH) views from 33% sam-
pled and 20% sampled data sets reconstructed by the conventional CS reconstruction
with x-f space sparsity (CS x-f), and the proposed CS reconstruction with additional
FB data. The reference images were reconstructed by the conventional gridding al-
gorithm from fully-sampled data set. The proposed CS reconstructions exhibit less
streaking artifacts, improved sharpness and improved image quality compared with
the conventional CS reconstruction.
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Figure 4.4: Example cardiac phase images in horizontal long axis (HLA) views from
33% sampled and 20% sampled data sets reconstructed by the conventional CS recon-
struction with x-f space sparsity (CS x-f), and the proposed CS reconstruction with
additional FB data. The reference images were reconstructed by the conventional
gridding algorithm from fully-sampled data set. The proposed CS reconstructions
exhibit less streaking artifacts, improved sharpness and improved image quality com-
pared with the conventional CS reconstruction.



Chapter 4: Compressed Sensing Reconstruction for Undersampled Breath-Hold
Radial Cine Imaging with Auxiliary Free-Breathing Data 63

Reference Proposed CS

3
3

%
 s

a
m

p
li
n

g
2

0
%

 s
a

m
p

li
n

g

CS x-f

Figure 4.5: Example cardiac phase images in short axis (SAX) views from 33% sam-
pled and 20% sampled data sets reconstructed by the conventional CS reconstruction
with x-f space sparsity (CS x-f), and the proposed CS reconstruction with additional
FB data. The reference images were reconstructed by the conventional gridding al-
gorithm from fully-sampled data set. The proposed CS reconstructions exhibit less
streaking artifacts, improved sharpness and improved image quality compared with
the conventional CS reconstruction.
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Figure 4.6: The blood-myocardium border sharpness scores of the reference images
from the fully-sampled BH data, the proposed CS reconstructions, and the con-
ventional CS reconstructions (CS x-f) with 33% and 20% sampled data sets. (*:
P < 0.05)

tional CS reconstruction using x-f space sparsity with the undersampled BH data and

the proposed CS reconstruction with the undersampled BH data and the additional

FB data. The measured blood-myocardium border sharpness scores are summarized

in Figure 4.6. The sharpness scores for the reference images from the fully-sampled

BH data and the proposed CS reconstructions were both significantly higher than the

conventional CS reconstructions using x-f space sparsity with 33% sampled data set.

The sharpness score for the proposed CS reconstruction with 33% sampled data set

was similar to that of the reference image. The sharpness score for the proposed CS

reconstruction with 20% sampled data set was lower than that of the reference image

but it was significantly higher than that of the conventional CS reconstruction with

20% sampled data set.

The LVEDV, LVESV and LVEF were measured from the SAX images recon-
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structed by the four reconstruction methods (gridding reconstruction with fully-

sampled data, gridding reconstruction with undersampled data, conventional CS re-

construction using x-f space sparsity with undersampled data, and proposed CS

reconstruction with the undersampled data), and the results are summarized in Ta-

ble 4.1. The proposed CS reconstruction and the gridding reconstruction of 33%

sampled data provide LVEDV, LVESV and LVEF values similar to the fully-sampled

images with the confidence interval of 95%, while the conventional CS reconstruc-

tion using x-f sparsity provides under-estimated LVEDV and LVEF values. For 20%

sampled data, only the proposed CS reconstruction provides similar LVEF value to

the fully-sampled reference. It is noted that the LVEDV and LVESV values of the

gridding reconstruction with 20% sampled data were not significantly different from

those of the fully-sampled reference, but the LVEF value was different from that of

the reference. The Bland-Altman plots of the LVEDV, LVESV and LVEF for the

proposed CS reconstructed images vs. the fully-sampled reference images are given

in Figure 4.7 and 4.8. The Bland-Altman analysis indicates that the agreement be-

tween the fully-sampled reference images and the proposed CS reconstructed images

with 95% confidence interval were -0.6±5.8 mL for LVEDV, 1.7±5.3 mL for LVESV

and -1.4±2.9% for LVEF with 33% sampled data sets, and -4±5.1 mL for LVEDV,

-2.2±2.9 mL for LVESV and 0.4±1.9% for LVEF with 20% sampled data sets. Linear

regression is performed on the LV measurements for the proposed CS reconstruction

vs. fully-sampled reference, and the slopes of the regression are reported as 0.9224,

1.029, and 0.9800 for LVEDV, LVESV and LVEF with 33% sampled data, and 0.9477,

0.9587, and 0.9892 for LVEDV, LVESV and LVEF with 20% sampled data, respec-
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Reference Gridding CS x-f Proposed CS

Density 100% 33% 20% 33% 20% 33% 20%

LVEDV 142.2±21.2 140.7±17.3 133.9±21.3 132.6±21.5∗,# 123.8±22.1∗,# 141.6±18.0 134.6±22.0∗

LVESV 56.8±16.7 57.5±16.4 59.0±17.8 58.6±17.5 57.8±17.2# 58.5±17.8 54.6±15.7∗

LVEF 0.61±0.08 0.60±0.09 0.57±0.11∗ 0.57±0.09∗,# 0.54±0.09∗,# 0.59±0.10 0.60±0.07

Table 4.1: Comparison of the measured LVEDV, LVESV (mL) and LVEF (%) from
SAX images reconstructed by the gridding reconstruction, conventional CS recon-
struction with x-f space sparsity (CS x-f) and the proposed CS reconstruction for
33% and 20% undersampled data sets. (*: P < 0.05 from the reference, #: P < 0.05
from the proposed CS)

tively. The corresponding R2 values were 0.8984, 0.9106 and 0.9051 with 33% sampled

data and 0.9393, 0.9708 and 0.9225 with 20% sampled data, respectively.

4.3 Discussion

In this chapter, we have proposed an accelerated radial cine acquisition strategy

and a CS reconstruction algorithm, where the additional FB acquisition acquired

during the resting period is utilized to improve the CS reconstruction of the BH

acquisition. We have evaluated the performance of the proposed CS reconstruction

and compared with the conventional CS reconstruction using x-f space sparsity and

conventional gridding. The reconstructed images show that the proposed CS recon-

struction yields sharper blood-myocardium border scores and provides better image

quality for the assessment of LV volumes and LVEF than the conventional CS recon-

struction.

Many CS reconstruction methods have been proposed to improve the reconstruc-

tion of undersampled MRI data in various applications. Most of the CS reconstruc-
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Figure 4.7: Comparison of LVEDV, LVESV and LVEF measurements of the fully-
sampled reference images and the proposed CS reconstructed images based on cor-
relation and Bland-Altman plots. The proposed CS reconstruction is performed on
33% sampled data sets.
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Figure 4.8: Comparison of LVEDV, LVESV and LVEF measurements of the fully-
sampled reference images and the proposed CS reconstructed images based on cor-
relation and Bland-Altman plots. The proposed CS reconstruction is performed on
20% sampled data sets.
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tion methods utilize a predetermined sparsifying transform such as wavelet, finite

differences and x-f space. It is not possible, however, to predict whether a given

transform can efficiently represent the underlying image characteristic and provide a

sufficiently sparse image. For instance, wavelets cannot capture smooth transitions

sparsely, whereas finite differences have problem with sharp edges. More sophisti-

cated techniques have been proposed that can adaptively capture objective-specific

sparsity nature [68, 69]. The proposed method in this paper utilizes the fully-sampled

FB acquisition of the same cardiac phase for the reconstruction of the undersampled

BH acquisition, therefore can provide object-specific sparse representation in a simple

way to improve the CS reconstruction, based on the basic assumption of segmented

cine acquisition that the cardiac motion is consistent over different cardiac cycles.

The proposed CS reconstruction has provided sharper images, while the conven-

tional CS reconstruction with x-f space sparsity has provided slightly blurry images.

The blurring of the reconstructed images in the conventional CS was not reported

in the original study [91] for an undersampling factor of three (33% sampling). The

results cannot be directly compared because the original paper uses Cartesian tra-

jectories. While it is not difficult to design a random undersampling pattern in ky-t

domain for successful CS reconstruction in Cartesian trajectory since kx direction

(readout direction) is always fully-sampled, it is not straightforward to design an

undersampling pattern in radial trajectory because the readout direction is chang-

ing and all three directions (kx, ky and t) need to be considered at the same time.

The undersampling pattern of kx-ky-t domain for x-f space sparsity has not been

studied for radial trajectories. We have used a rotating sampling pattern by one



Chapter 4: Compressed Sensing Reconstruction for Undersampled Breath-Hold
Radial Cine Imaging with Auxiliary Free-Breathing Data 70

projection angle per cardiac phase in this chapter, which may not be an optimum

choice. The proposed method reconstructs each cardiac phase image independently

and the temporal domain does not require a specific undersampling pattern for the

CS reconstruction.

It is shown that utilizing the fully-sampled FB images is effective to sparsify the

difference images in radial acquisition. It is well-known that radial acquisition has

superior performance with respect to object motion compared with Cartesian acqui-

sition [82, 83]. While the standard two-dimensional Cartesian acquisition spreads

the motion artifacts mainly in the phase-encoding direction resulting in a severe

ghosting artifact in that direction, the radial acquisition changes the phase-encoding

direction over the entire two-dimensional space and the motion artifacts appear as

two-dimensional blurring and streaks which are less objectionable and of lower inten-

sity. We have observed blurred images from the fully-sampled FB acquisitions in most

of our cases, but the streaking artifacts were not significant as shown in Figure 4.2.

Using Cartesian trajectory may not be suitable for the proposed CS reconstruction

since the difference images from the FB images may not be sparse enough for the

successful CS reconstruction due to the severe motion artifact in the fully-sampled

FB images.

The proposed acquisition strategy does not increase the total scan time because

the auxiliary FB acquisition is acquired during the resting period which has not

been used for acquiring data conventionally. The proposed CS reconstruction allows

undersampling of the BH acquisition by a factor of three to five without severely

degrading the quality of the cine images. As the undersampling factor increases, the
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BH duration is reduced accordingly. It is also possible to acquire undersampled data

for multiple slices in one BH.

4.4 Conclusion

The data acquired during rest period between multiple BHs of cine MRI can be

used to improve the image reconstruction of accelerated radial cine MRI without

increasing the total scan time.



Chapter 5

Respiratory Motion Correction

Using Compressed Sensing

Reconstruction for Whole-Heart

MRI with 3D Radial Trajectory

In Chapter 2, we have mentioned that 3D acquisition of the whole-heart image

has many advantages over 2D acquisition: simple image prescription, large coverage,

superior through-plane spatial resolution, higher SNR, easy reformatting of the image

in any desired plane, etc. It is also mentioned that the prolonged data acquisition time

is one of the major disadvantage of the 3D acquisition. For whole-heart coronary MRI,

the acquisition time becomes even longer in order to compensate for the respiratory

motion and the cardiac motion. To image the coronary arteries correctly without

the cardiac motion, electrocardiography (ECG) signal is commonly used to monitor

72



Chapter 5: Respiratory Motion Correction Using Compressed Sensing
Reconstruction for Whole-Heart MRI with 3D Radial Trajectory 73

the cardiac activity over a period of time. The MR data is acquired only in a short

interval around 100 ms during the “quiescent” time in the mid-diastole window within

the cardiac cycle (rest period) [92]. In the rest period, the coronary arteries remain

relatively still, and the acquisition during the rest period over multiple cardiac cycles

will fill the entire k-space resulting in a cardiac motion-free image.

The respiratory motion can be compensated by various methods. The simplest

way is to acquire the data during patient holding his/her breath. Breath-hold (BH)

acquisitions have been commonly used in cardiac cine imaging as discussed in Chapter

4. BH acquisition have been also used for coronary MRIs [93, 94]. Due to the

limited duration of BH acquisition and due to the inconsistency in the heart position

among different BHs, it is not well-suited for 3D acquisition with large FOV and

high spatial resolution. Respiratory gating with the respiratory navigator (NAV)

signal is most commonly used for free breathing acquisitions to freeze the respiratory

motion of the object [59, 95, 96, 97]. It is shown that the motion of the heart is

approximately linearly related with the superior-inferior (SI) motion of the diaphragm

[98, 99] with an average correlation factor of 0.6, although highly patient specific.

A 2D spiral selective RF pulse, which consists of an RF waveform followed by 2D

gradient waveforms, is located on the dome of the right hemidiaphragm to extract

the motion of diaphragm. The k-space data acquisition is performed immediately

after the NAV signal. If the NAV signal is within a certain predefined window (gating

window), the acquired k-space lines are accepted. If the NAV signal is outside the

gating window, the acquired k-space lines are rejected, and the scanner tries to re-

acquire the rejected k-space lines in the subsequent heart beats until the NAV signal
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falls into the gating window. A gating window of 5 mm to 7 mm is commonly used,

which yields an acceptance ratio of 30-80%. The acceptance ratio is also patient-

specific, unpredictable and results in an increased acquisition time by 1.5-3 times

compared with non-gated acquisition.

Self-navigated motion detection/correction methods have also been developed [63,

100, 101]. In self-navigated methods, a low resolution image of the entire heart or a

projection data along SI direction is extracted from the acquired k-space data, and the

respiratory motion is compensated by using this information. In [63], the 3D radial

trajectory is slightly modified to have the first projection line acquired in each heart

beat would be oriented in the SI direction, and the respiratory motion is corrected by

modulating the k-space lines in each cardiac cycle with a linear phase shift according

to the Fourier shift theorem.

Compressed sensing motion correction (CosMo) [102] has been presented for free-

breathing coronary MRI with Cartesian acquisition in order to reduce the scan time

of NAV gated acquisition. The respiratory NAV signal is acquired but only utilized

to determine the acceptance/rejection of the acquired k-space line retrospectively.

The resulting k-space data only contains motion-free k-space lines acquired within

the acceptance window, but the data is undersampled due to the rejected k-space

lines. The rejected k-space lines are estimated by the CS reconstruction, resulting

in motion-free image. In this chapter, we propose to use similar technique for the

reconstruction of 3D radial acquisition to mitigate the effect of respiratory motion

in free-breathing whole-heart acquisition and evaluate the efficacy of the proposed

respiratory motion correction technique with healthy volunteer study.
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5.1 Materials and Methods

5.1.1 Original CosMo Acquisition

The CosMo data acquisition procedure with Cartesian trajectory consists of two

different strategies for the inner k-space region and outer k-space region. The in-

ner k-space region is fully sampled using a conventional prospective diaphragmatic

navigator with a predefined acceptance window with re-acquisition of the discarded

k-space lines to guarantee motion-free acquisition of the inner k-space region. The

outer k-space region is also acquired with the NAV signal, but a wider acceptance

window of 100 mm is used to accept all the acquired k-space lines. The recorded

NAV signal is used to retrospectively select the motion-free k-space lines within the

acceptance window which will be included in the CS reconstruction. If the recorded

NAV signal lies outside of the acceptance window, the corresponding k-space line is

considered as respiratory motion-corrupted, and is excluded from the reconstruction

without re-acquisition. The CS reconstruction is performed only using the fully-

sampled inner k-space region and the motion-free k-space lines in the outer k-space

region, and the respiratory motion is corrected without re-acquiring the missing k-

space data. We note that the inner k-space region, i.e., the central portion of the

k-space, is fully acquired as the center of the k-space contains the majority of the

signal of the underlying object.
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5.1.2 Proposed Acquisition with 3D Radial Trajectory and

CS Reconstruction

The 3D radial sampling trajectory introduced in Chapter 2 was used in this chap-

ter. A diaphragmatic navigator is placed on the dome of right hemidiaphragm to

monitor the respiratory motion. The NAV signals acquired during the preparation

phase are used to determine the reference position of the hemidiaphragm. A standard

NAV gating method with re-acquisition was used but an acceptance window of 100

mm was used to accept all the acquired k-space lines regardless of their NAV posi-

tion. The recorded NAV signal and the k-space data were transferred to a stand-alone

personal computer for retrospective gating and the CS reconstruction.

The acquired k-space data y and the desired image x are formulated as an encoding

matrix format as y = Ax, where A denotes the encoding matrix. As in the previous

chapters, the 3D image is represented in a single column vector for mathematical

convenience. Among all the k-space lines in the 3D radial trajectory, the motion-free

k-space lines within the gating window are denoted as yΩ = AΩx, where Ω is the

index set of the motion-free k-space lines and AΩ denotes the matrix whose columns

are selected as the subset Ω of the columns of A. The matrix A performs the de-

apodization, Fourier transform and the gridding operation as described in Chapter 2.

The CS reconstruction solves the minimization problem using the motion-free k-space

lines only:

argmin
x

1

2
||AΩx− yΩ||22 + λ||Ψx||1, (5.1)

where λ is a regularization parameter which determines the tradeoff between the

data consistency and the sparsity level of the image and Ψ is a sparsifying trans-
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form matrix. The two-stage iterative method consisting of data consistency step and

thresholing step described in the previous chapters was utilized to solve the CS re-

construction problem.

5.1.3 In Vivo Study

Whole-heart coronary MR images were acquired on 7 healthy volunteers (3 male,

29±13 years). 3D free-breathing ECG-triggered SSFP sequences were used for imag-

ing the heart with 3D radial trajectories. A respiratory navigator with 100 mm

gating window was used to track the right hemidiaphragm position and recorded for

retrospective gating. The data sets were acquired with Ns = 392 samples per pro-

jection line and Ni = 10 total interleaves for sampling densities of 30%. The scan

parameters used for this study were as follows: TR/TE/α = 3.20/1.61/90◦, FOV =

260 × 260 × 260 mm3, spatial resolution = 1.4 × 1.4 × 1.4 mm3. The nominal scan

time for the data set with sampling density of 30% was reported to be 169 seconds

assuming 100% navigator gating efficiency.

The acquired 3D radial data were reconstructed by three reconstruction methods:

conventional gridding reconstruction is performed on the free-breathing data sets

containing all the motion-free and motion-corrupted k-space lines (with 100% gating

efficiency), conventional gridding reconstruction is performed on the data sets with

motion-free k-space lines only (with 5 mm retrospective gating window), and the

proposed motion correction method using the CS reconstruction on the data sets

with motion-free k-space lines only.
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5.1.4 Data Analysis

For quantitative assessment of the quality of the proposed motion correction

method, the vessel sharpness and the vessel length of the right coronary artery (RCA)

were measured using Soap-Bubble software [60]. The sharpness score and the length

of the vessels with the proposed method were compared with those of the conven-

tional gridding reconstruction algorithm using a paired t-test. A value of P < 0.05

was considered to be statistically significant.

5.2 Results

Figures 5.1 and 5.2 show example slices of axial and reformatted sagittal views

from 3D whole-heart images with isotropic 1.4mm spatial resolution with different re-

constructions: conventional gridding reconstruction with free-breathing dataset, con-

ventional gridding reconstruction with retrospectively gated dataset, and CS motion

correction reconstruction with retrospectively gate dataset. The sampling density of

the free-breathing dataset is 30%. The retrospectively gated data was generated from

the same free-breathing dataset with 5 mm gating window, resulting in an average

effective sampling density of 18.18% over four volunteer datasets.

The images reconstructed from the free-breathing dataset present aliasing arti-

facts and blurring due to the respiratory motion. The images reconstructed from

retrospectively gated dataset appear sharper, but exhibits streaking artifacts due to

the retrospective undersampling. The CS motion correction reconstruction provides

the sharpest image qualities among the three reconstruction methods. The streaking
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artifacts are substantially suppressed and the blood pool appears clearer and more

homogeneous compared to other reconstruction methods.

Free-breathing Retro. gated Motion corrected

Reconstruction method

Figure 5.1: Example slices sagittal views from 3D whole-heart images reconstructed
by conventional 3D gridding reconstruction and iterative CS reconstruction (with
1000 iterations for image domain regularization and 500 iterations for wavelet domain
regularization) for different sampling densities. For all the sampling densities, CS
reconstructions have less high-frequency streaking artifacts, and the improvement in
the image quality is more distinct at lower sampling densities.

Table 5.1 summarizes the vessel quantitative measurement results of the 3D whole-

heart images from 7 volunteer datasets with sampling densities of 30%. The CS

motion correction improves both the vessel length and the vessel sharpness. The

RCA length was increased by 34% and the RCA sharpness was improved by 12%

compared with free-breathing data without any motion correction. The increase

in vessel length is statistically significant between the free-breathing image and the

motion corrected image. The increase in RCA sharpness of the motion corrected

image is also significantly different from that of the free-breathing image.



Chapter 5: Respiratory Motion Correction Using Compressed Sensing
Reconstruction for Whole-Heart MRI with 3D Radial Trajectory 80

Free-breathing Retro. gated Motion corrected

Reconstruction method

Figure 5.2: Example slices sagittal views from 3D whole-heart images reconstructed
by conventional 3D gridding reconstruction and iterative CS reconstruction (with
1000 iterations for image domain regularization and 500 iterations for wavelet domain
regularization) for different sampling densities. For all the sampling densities, CS
reconstructions have less high-frequency streaking artifacts, and the improvement in
the image quality is more distinct at lower sampling densities.

Reconstruction method RCA length (cm) RCA sharpnes

Free-breathing 5.28± 1.87∗ 0.41± 0.06∗

Retrospective gating 6.67± 1.67 0.42± 0.08

Motioned corrected 7.11± 1.81 0.46± 0.09

Table 5.1: Mean± standard deviation of normalized vessel sharpness and vessel length
(cm) measured for free-breathing data with gridding reconstruction, retrospectively
gated data with gridding reconstruction and retrospectively gate data with CS motion
correction. (*: P < 0.05 compared with motion corrected image)
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5.3 Discussion

In this chapter, we have evaluated the feasibility of using CS to correct the res-

piratory motion of free-breathing 3D whole-heart coronary MRI acquisition. Unlike

the Cartesian trajectory, every k-space line in radial trajectory pass through the ori-

gin of k-space and thus has equal amount of significance in average, thus does not

require two separate acquisition strategies for inner and outer k-space lines as in

original CosMo acquisition with Cartesian trajectory [102]. Although the original

CosMo acquisition with Cartesian trajectory provides a good estimation on the total

scan time, the actual scan time may not be estimated with high accuracy due to the

prospectively gated acquisition of the inner k-space region. The scan time increases

and also becomes less predictable as the portion of inner k-space region increases over

the entire k-space. The proposed motion correction with 3D radial trajectory provide

a truly fixed scan time independent of the patient’s breathing pattern and allow the

planning of the entire scanning procedure to be more predictable. In this chapter, we

used the diaphragmatic NAV to monitor the respiratory motion. It is only used to

accept/reject the k-space lines according to the predefined retrospective gating win-

dow. Conventional self-gating motion correction technique such as [63] utilizes the

projection data along SI direction. The SI motion is extracted from the projection

data, and the motion is compensated on the corresponding motion-corrupted k-space

lines according to the Fourier shift theorem. Thus the self-gated technique is lim-

ited to correct one dimensional rigid motion along the SI direction. The proposed

CS motion correction is not limited to correct one dimensional motion because it

does not explicitly correct the motion on the motion-corrupted data but indirectly
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estimate the motion by CS reconstruction. The proposed method may potentially

correct complex multi-dimensional motions including non-rigid motions although it

has not been shown in this chapter.

5.4 Conclusion

We have implemented a motion correction technique by using compressed sens-

ing reconstruction for 3D radial acquisition, and evaluated its performance to correct

the respiratory motion in free-breathing 3D whole-heart coronary MRI. The pro-

posed motion correction technique successfully suppressed motion-induced artifacts

and improved the image quality of free-breathing undersampled 3D radial data sets

compared to the conventional gridding reconstruction without any motion correc-

tion, thus allowing reduced acquisition time compared with prospective NAV gated

acquisition.
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Glossary of Abbreviations 
 

BH………………………………………………...………………………….breath-hold 

CMR………………………………….……………………..cardiac magnetic resonance 

CS…………………………………………………………………..compressed sensing 

CUDA……………………………….……..…….compute unified device architecture 

DCF……………………………..…..……………….density compensation function 

DWT………………………………..…………………….....discrete wavelet transform 

ECG………………………………..………………..……………..electrocardiography 

FB……………………………………..…………..……………………...free-breathing 

FFT………………………………………..………………………fast Fourier transform 

FOV……………………………………….………………………...…….field of view 

GPU…………………………………………………………….graphics processing unit 

HLA…………………………………………………………...…….horizontal long axis 

LGE………………………………………………………late Gadolinium enhancement 

LV…………………………………………………………………………..left ventricle 

LVEF………………………………………...……………left ventricle ejection fraction 

LVEDV………………………………………………left ventricle end-diastolic volume 

LVESV………………………………….…………….left ventricle end-systolic volume 

MRI……………………………….…………………….….magnetic resonance imaging 

MSE…………………………………………………………………mean-squared error 

NAV…………………………………………………………………………….navigator 

NUFFT………………...…………………..…..…...nonuniform fast Fourier transform 

RCA………………………………..……………………………….right coronary artery 

SAX…………………………………………………………………………….short axis 

SSFP…………………………………………………………..steady state free precession 

2CH……………………………………………...……………………………2-chamber 

 
92 


