10 research outputs found

    Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge

    Get PDF
    International Brain Tumor Segmentation (BraTS) challengeGliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.This work was supported in part by the 1) National Institute of Neurological Disorders and Stroke (NINDS) of the NIH R01 grant with award number R01-NS042645, 2) Informatics Technology for Cancer Research (ITCR) program of the NCI/NIH U24 grant with award number U24-CA189523, 3) Swiss Cancer League, under award number KFS-3979-08-2016, 4) Swiss National Science Foundation, under award number 169607.Article signat per 427 autors/es: Spyridon Bakas1,2,3,†,‡,∗ , Mauricio Reyes4,† , Andras Jakab5,†,‡ , Stefan Bauer4,6,169,† , Markus Rempfler9,65,127,† , Alessandro Crimi7,† , Russell Takeshi Shinohara1,8,† , Christoph Berger9,† , Sung Min Ha1,2,† , Martin Rozycki1,2,† , Marcel Prastawa10,† , Esther Alberts9,65,127,† , Jana Lipkova9,65,127,† , John Freymann11,12,‡ , Justin Kirby11,12,‡ , Michel Bilello1,2,‡ , Hassan M. Fathallah-Shaykh13,‡ , Roland Wiest4,6,‡ , Jan Kirschke126,‡ , Benedikt Wiestler126,‡ , Rivka Colen14,‡ , Aikaterini Kotrotsou14,‡ , Pamela Lamontagne15,‡ , Daniel Marcus16,17,‡ , Mikhail Milchenko16,17,‡ , Arash Nazeri17,‡ , Marc-Andr Weber18,‡ , Abhishek Mahajan19,‡ , Ujjwal Baid20,‡ , Elizabeth Gerstner123,124,‡ , Dongjin Kwon1,2,† , Gagan Acharya107, Manu Agarwal109, Mahbubul Alam33 , Alberto Albiol34, Antonio Albiol34, Francisco J. Albiol35, Varghese Alex107, Nigel Allinson143, Pedro H. A. Amorim159, Abhijit Amrutkar107, Ganesh Anand107, Simon Andermatt152, Tal Arbel92, Pablo Arbelaez134, Aaron Avery60, Muneeza Azmat62, Pranjal B.107, Wenjia Bai128, Subhashis Banerjee36,37, Bill Barth2 , Thomas Batchelder33, Kayhan Batmanghelich88, Enzo Battistella42,43 , Andrew Beers123,124, Mikhail Belyaev137, Martin Bendszus23, Eze Benson38, Jose Bernal40 , Halandur Nagaraja Bharath141, George Biros62, Sotirios Bisdas76, James Brown123,124, Mariano Cabezas40, Shilei Cao67, Jorge M. Cardoso76, Eric N Carver41, Adri Casamitjana138, Laura Silvana Castillo134, Marcel Cat138, Philippe Cattin152, Albert Cerigues ´ 40, Vinicius S. Chagas159 , Siddhartha Chandra42, Yi-Ju Chang45, Shiyu Chang156, Ken Chang123,124, Joseph Chazalon29 , Shengcong Chen25, Wei Chen46, Jefferson W Chen80, Zhaolin Chen130, Kun Cheng120, Ahana Roy Choudhury47, Roger Chylla60, Albert Clrigues40, Steven Colleman141, Ramiro German Rodriguez Colmeiro149,150,151, Marc Combalia138, Anthony Costa122, Xiaomeng Cui115, Zhenzhen Dai41, Lutao Dai50, Laura Alexandra Daza134, Eric Deutsch43, Changxing Ding25, Chao Dong65 , Shidu Dong155, Wojciech Dudzik71,72, Zach Eaton-Rosen76, Gary Egan130, Guilherme Escudero159, Tho Estienne42,43, Richard Everson87, Jonathan Fabrizio29, Yong Fan1,2 , Longwei Fang54,55, Xue Feng27, Enzo Ferrante128, Lucas Fidon42, Martin Fischer95, Andrew P. French38,39 , Naomi Fridman57, Huan Fu90, David Fuentes58, Yaozong Gao68, Evan Gates58, David Gering60 , Amir Gholami61, Willi Gierke95, Ben Glocker128, Mingming Gong88,89, Sandra Gonzlez-Vill40, T. Grosges151, Yuanfang Guan108, Sheng Guo64, Sudeep Gupta19, Woo-Sup Han63, Il Song Han63 , Konstantin Harmuth95, Huiguang He54,55,56, Aura Hernndez-Sabat100, Evelyn Herrmann102 , Naveen Himthani62, Winston Hsu111, Cheyu Hsu111, Xiaojun Hu64, Xiaobin Hu65, Yan Hu66, Yifan Hu117, Rui Hua68,69, Teng-Yi Huang45, Weilin Huang64, Sabine Van Huffel141, Quan Huo68, Vivek HV70, Khan M. Iftekharuddin33, Fabian Isensee22, Mobarakol Islam81,82, Aaron S. Jackson38 , Sachin R. Jambawalikar48, Andrew Jesson92, Weijian Jian119, Peter Jin61, V Jeya Maria Jose82,83 , Alain Jungo4 , Bernhard Kainz128, Konstantinos Kamnitsas128, Po-Yu Kao79, Ayush Karnawat129 , Thomas Kellermeier95, Adel Kermi74, Kurt Keutzer61, Mohamed Tarek Khadir75, Mahendra Khened107, Philipp Kickingereder23, Geena Kim135, Nik King60, Haley Knapp60, Urspeter Knecht4 , Lisa Kohli60, Deren Kong64, Xiangmao Kong115, Simon Koppers32, Avinash Kori107, Ganapathy Krishnamurthi107, Egor Krivov137, Piyush Kumar47, Kaisar Kushibar40, Dmitrii Lachinov84,85 , Tryphon Lambrou143, Joon Lee41, Chengen Lee111, Yuehchou Lee111, Matthew Chung Hai Lee128 , Szidonia Lefkovits96, Laszlo Lefkovits97, James Levitt62, Tengfei Li51, Hongwei Li65, Wenqi Li76,77 , Hongyang Li108, Xiaochuan Li110, Yuexiang Li133, Heng Li51, Zhenye Li146, Xiaoyu Li67, Zeju Li158 , XiaoGang Li162, Wenqi Li76,77, Zheng-Shen Lin45, Fengming Lin115, Pietro Lio153, Chang Liu41 , Boqiang Liu46, Xiang Liu67, Mingyuan Liu114, Ju Liu115,116, Luyan Liu112, Xavier Llado´ 40, Marc Moreno Lopez132, Pablo Ribalta Lorenzo72, Zhentai Lu53, Lin Luo31, Zhigang Luo162, Jun Ma73 , Kai Ma117, Thomas Mackie60, Anant Madabhushi129, Issam Mahmoudi74, Klaus H. Maier-Hein22 , Pradipta Maji36, CP Mammen161, Andreas Mang165, B. S. Manjunath79, Michal Marcinkiewicz71 , Steven McDonagh128, Stephen McKenna157, Richard McKinley6 , Miriam Mehl166, Sachin Mehta91 , Raghav Mehta92, Raphael Meier4,6 , Christoph Meinel95, Dorit Merhof32, Craig Meyer27,28, Robert Miller131, Sushmita Mitra36, Aliasgar Moiyadi19, David Molina-Garcia142, Miguel A.B. Monteiro105 , Grzegorz Mrukwa71,72, Andriy Myronenko21, Jakub Nalepa71,72, Thuyen Ngo79, Dong Nie113, Holly Ning131, Chen Niu67, Nicholas K Nuechterlein91, Eric Oermann122, Arlindo Oliveira105,106, Diego D. C. Oliveira159, Arnau Oliver40, Alexander F. I. Osman140, Yu-Nian Ou45, Sebastien Ourselin76 , Nikos Paragios42,44, Moo Sung Park121, Brad Paschke60, J. Gregory Pauloski58, Kamlesh Pawar130, Nick Pawlowski128, Linmin Pei33, Suting Peng46, Silvio M. Pereira159, Julian Perez-Beteta142, Victor M. Perez-Garcia142, Simon Pezold152, Bao Pham104, Ashish Phophalia136 , Gemma Piella101, G.N. Pillai109, Marie Piraud65, Maxim Pisov137, Anmol Popli109, Michael P. Pound38, Reza Pourreza131, Prateek Prasanna129, Vesna Pr?kovska99, Tony P. Pridmore38, Santi Puch99, lodie Puybareau29, Buyue Qian67, Xu Qiao46, Martin Rajchl128, Swapnil Rane19, Michael Rebsamen4 , Hongliang Ren82, Xuhua Ren112, Karthik Revanuru139, Mina Rezaei95, Oliver Rippel32, Luis Carlos Rivera134, Charlotte Robert43, Bruce Rosen123,124, Daniel Rueckert128 , Mohammed Safwan107, Mostafa Salem40, Joaquim Salvi40, Irina Sanchez138, Irina Snchez99 , Heitor M. Santos159, Emmett Sartor160, Dawid Schellingerhout59, Klaudius Scheufele166, Matthew R. Scott64, Artur A. Scussel159, Sara Sedlar139, Juan Pablo Serrano-Rubio86, N. Jon Shah130 , Nameetha Shah139, Mazhar Shaikh107, B. Uma Shankar36, Zeina Shboul33, Haipeng Shen50 , Dinggang Shen113, Linlin Shen133, Haocheng Shen157, Varun Shenoy61, Feng Shi68, Hyung Eun Shin121, Hai Shu52, Diana Sima141, Matthew Sinclair128, Orjan Smedby167, James M. Snyder41 , Mohammadreza Soltaninejad143, Guidong Song145, Mehul Soni107, Jean Stawiaski78, Shashank Subramanian62, Li Sun30, Roger Sun42,43, Jiawei Sun46, Kay Sun60, Yu Sun69, Guoxia Sun115 , Shuang Sun115, Yannick R Suter4 , Laszlo Szilagyi97, Sanjay Talbar20, Dacheng Tao26, Dacheng Tao90, Zhongzhao Teng154, Siddhesh Thakur20, Meenakshi H Thakur19, Sameer Tharakan62 , Pallavi Tiwari129, Guillaume Tochon29, Tuan Tran103, Yuhsiang M. Tsai111, Kuan-Lun Tseng111 , Tran Anh Tuan103, Vadim Turlapov85, Nicholas Tustison28, Maria Vakalopoulou42,43, Sergi Valverde40, Rami Vanguri48,49, Evgeny Vasiliev85, Jonathan Ventura132, Luis Vera142, Tom Vercauteren76,77, C. A. Verrastro149,150, Lasitha Vidyaratne33, Veronica Vilaplana138, Ajeet Vivekanandan60, Guotai Wang76,77, Qian Wang112, Chiatse J. Wang111, Weichung Wang111, Duo Wang153, Ruixuan Wang157, Yuanyuan Wang158, Chunliang Wang167, Guotai Wang76,77, Ning Wen41, Xin Wen67, Leon Weninger32, Wolfgang Wick24, Shaocheng Wu108, Qiang Wu115,116 , Yihong Wu144, Yong Xia66, Yanwu Xu88, Xiaowen Xu115, Peiyuan Xu117, Tsai-Ling Yang45 , Xiaoping Yang73, Hao-Yu Yang93,94, Junlin Yang93, Haojin Yang95, Guang Yang170, Hongdou Yao98, Xujiong Ye143, Changchang Yin67, Brett Young-Moxon60, Jinhua Yu158, Xiangyu Yue61 , Songtao Zhang30, Angela Zhang79, Kun Zhang89, Xuejie Zhang98, Lichi Zhang112, Xiaoyue Zhang118, Yazhuo Zhang145,146,147, Lei Zhang143, Jianguo Zhang157, Xiang Zhang162, Tianhao Zhang168, Sicheng Zhao61, Yu Zhao65, Xiaomei Zhao144,55, Liang Zhao163,164, Yefeng Zheng117 , Liming Zhong53, Chenhong Zhou25, Xiaobing Zhou98, Fan Zhou51, Hongtu Zhu51, Jin Zhu153, Ying Zhuge131, Weiwei Zong41, Jayashree Kalpathy-Cramer123,124,† , Keyvan Farahani12,†,‡ , Christos Davatzikos1,2,†,‡ , Koen van Leemput123,124,125,† , and Bjoern Menze9,65,127,†,∗Preprin

    QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation -- analysis of ranking metrics and benchmarking results

    Get PDF
    Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. Developing metrics to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a metric developed during the BraTS 2019-2020 task on uncertainty quantification (QU-BraTS), and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This metric (1) rewards uncertainty estimates that produce high confidence in correct assertions, and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentages of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QUBraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, and hence highlight the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTSResearch reported in this publication was partly supported by the Informatics Technology for Cancer Research (ITCR) program of the National Cancer Institute (NCI) of the National Institutes of Health (NIH), under award numbers NIH/NCI/ITCR:U01CA242871 and NIH/NCI/ITCR:U24CA189523. It was also partly supported by the National Institute of Neurological Disorders and Stroke (NINDS) of the NIH, under award number NIH/NINDS:R01NS042645.Document signat per 92 autors/autores: Raghav Mehta1 , Angelos Filos2 , Ujjwal Baid3,4,5 , Chiharu Sako3,4 , Richard McKinley6 , Michael Rebsamen6 , Katrin D¨atwyler6,53, Raphael Meier54, Piotr Radojewski6 , Gowtham Krishnan Murugesan7 , Sahil Nalawade7 , Chandan Ganesh7 , Ben Wagner7 , Fang F. Yu7 , Baowei Fei8 , Ananth J. Madhuranthakam7,9 , Joseph A. Maldjian7,9 , Laura Daza10, Catalina Gómez10, Pablo Arbeláez10, Chengliang Dai11, Shuo Wang11, Hadrien Raynaud11, Yuanhan Mo11, Elsa Angelini12, Yike Guo11, Wenjia Bai11,13, Subhashis Banerjee14,15,16, Linmin Pei17, Murat AK17, Sarahi Rosas-González18, Illyess Zemmoura18,52, Clovis Tauber18 , Minh H. Vu19, Tufve Nyholm19, Tommy L¨ofstedt20, Laura Mora Ballestar21, Veronica Vilaplana21, Hugh McHugh22,23, Gonzalo Maso Talou24, Alan Wang22,24, Jay Patel25,26, Ken Chang25,26, Katharina Hoebel25,26, Mishka Gidwani25, Nishanth Arun25, Sharut Gupta25 , Mehak Aggarwal25, Praveer Singh25, Elizabeth R. Gerstner25, Jayashree Kalpathy-Cramer25 , Nicolas Boutry27, Alexis Huard27, Lasitha Vidyaratne28, Md Monibor Rahman28, Khan M. Iftekharuddin28, Joseph Chazalon29, Elodie Puybareau29, Guillaume Tochon29, Jun Ma30 , Mariano Cabezas31, Xavier Llado31, Arnau Oliver31, Liliana Valencia31, Sergi Valverde31 , Mehdi Amian32, Mohammadreza Soltaninejad33, Andriy Myronenko34, Ali Hatamizadeh34 , Xue Feng35, Quan Dou35, Nicholas Tustison36, Craig Meyer35,36, Nisarg A. Shah37, Sanjay Talbar38, Marc-Andr Weber39, Abhishek Mahajan48, Andras Jakab47, Roland Wiest6,46 Hassan M. Fathallah-Shaykh45, Arash Nazeri40, Mikhail Milchenko140,44, Daniel Marcus40,44 , Aikaterini Kotrotsou43, Rivka Colen43, John Freymann41,42, Justin Kirby41,42, Christos Davatzikos3,4 , Bjoern Menze49,50, Spyridon Bakas∗3,4,5 , Yarin Gal∗2 , Tal Arbel∗1,51 // 1Centre for Intelligent Machines (CIM), McGill University, Montreal, QC, Canada, 2Oxford Applied and Theoretical Machine Learning (OATML) Group, University of Oxford, Oxford, England, 3Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA, 4Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA, 5Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 6Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland, 7Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA, 8Department of Bioengineering, University of Texas at Dallas, Texas, USA, 9Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA, 10Universidad de los Andes, Bogotá, Colombia, 11Data Science Institute, Imperial College London, London, UK, 12NIHR Imperial BRC, ITMAT Data Science Group, Imperial College London, London, UK, 13Department of Brain Sciences, Imperial College London, London, UK, 14Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India, 15Department of CSE, University of Calcutta, Kolkata, India, 16 Division of Visual Information and Interaction (Vi2), Department of Information Technology, Uppsala University, Uppsala, Sweden, 17Department of Diagnostic Radiology, The University of Pittsburgh Medical Center, Pittsburgh, PA, USA, 18UMR U1253 iBrain, Université de Tours, Inserm, Tours, France, 19Department of Radiation Sciences, Ume˚a University, Ume˚a, Sweden, 20Department of Computing Science, Ume˚a University, Ume˚a, Sweden, 21Signal Theory and Communications Department, Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain, 22Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand, 23Radiology Department, Auckland City Hospital, Auckland, New Zealand, 24Auckland Bioengineering Institute, University of Auckland, New Zealand, 25Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA, 26Massachusetts Institute of Technology, Cambridge, MA, USA, 27EPITA Research and Development Laboratory (LRDE), France, 28Vision Lab, Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA, 29EPITA Research and Development Laboratory (LRDE), Le Kremlin-Bicˆetre, France, 30School of Science, Nanjing University of Science and Technology, 31Research Institute of Computer Vision and Robotics, University of Girona, Spain, 32Department of Electrical and Computer Engineering, University of Tehran, Iran, 33School of Computer Science, University of Nottingham, UK, 34NVIDIA, Santa Clara, CA, US, 35Biomedical Engineering, University of Virginia, Charlottesville, USA, 36Radiology and Medical Imaging, University of Virginia, Charlottesville, USA, 37Department of Electrical Engineering, Indian Institute of Technology - Jodhpur, Jodhpur, India, 38SGGS ©2021 Mehta et al.. License: CC-BY 4.0. arXiv:2112.10074v1 [eess.IV] 19 Dec 2021 Mehta et al. Institute of Engineering and Technology, Nanded, India, 39Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center, 40Department of Radiology, Washington University, St. Louis, MO, USA, 41Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA, 42Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 43Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA, 44Neuroimaging Informatics and Analysis Center, Washington University, St. Louis, MO, USA, 45Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA, 46Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland, 47Center for MR-Research, University Children’s Hospital Zurich, Zurich, Switzerland, 48Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India, 49Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland, 50Department of Informatics, Technical University of Munich, Munich, Germany, 51MILA - Quebec Artificial Intelligence Institute, Montreal, QC, Canada, 52Neurosurgery department, CHRU de Tours, Tours, France, 53 Human Performance Lab, Schulthess Clinic, Zurich, Switzerland, 54 armasuisse S+T, Thun, Switzerland.Preprin

    QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results

    Full text link
    Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at: this https URL

    U-Net and its variants for medical image segmentation: theory and applications

    Full text link
    U-net is an image segmentation technique developed primarily for medical image analysis that can precisely segment images using a scarce amount of training data. These traits provide U-net with a very high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in all major image modalities from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. As the potential of U-net is still increasing, in this review we look at the various developments that have been made in the U-net architecture and provide observations on recent trends. We examine the various innovations that have been made in deep learning and discuss how these tools facilitate U-net. Furthermore, we look at image modalities and application areas where U-net has been applied.Comment: 42 pages, in IEEE Acces

    Evaluation of deep learning transformers models for brain stroke lesions automatic segmentation

    Get PDF
    Brain stroke represents a leading cause in long-term disability worldwide, stroke rehabilitation research is focused on the understating of the relationship between brain, behavior, and recovery, using as a basis brain changes generated after a stroke, this allows for precise diagnostic and possible predictions in terms of functional outcomes. Neuroimaging represents the main resource for brain stroke research and therapies, it is of particular interest high-resolution T1- weighted (T1w) anatomical MRIs, which are used to evaluate/examine structural brain changes after stroke episodes. Several techniques have been developed in order to accurately calculate or approximate the percentage between lesions and critical brain structures, this step constitutes a paramount step for precise lesion annotation. Despite the technological progress or advance, to date, manual lesion tracing by a team of experts in neuroimaging remains as the gold standard to draw valid clinical inferences for lesion segmentation. The following work proposes a review of the machine and deep learning models that have been developed focusing in the transformers algorithm which is a state of the art method based on the self attention mechanism that has outperformed recurrent neural networks in terms of evaluation metrics such as the dice value, being able to capture long distant dependencies which is a fundamental step when processing 3D volumes, formed by a stacked 2D MRI images. The models were tested using the ATLAS dataset (Anatomical tracing of lesions after stroke) which is an open source data set of T1-weighted MRIs with manual segmented brain lesions.Brain stroke represents a leading cause in long-term disability worldwide, stroke rehabilitation research is focused on the understating of the relationship between brain, behavior, and recovery, using as a basis brain changes generated after a stroke, this allows for precise diagnostic and possible predictions in terms of functional outcomes. Neuroimaging represents the main resource for brain stroke research and therapies, it is of particular interest high-resolution T1- weighted (T1w) anatomical MRIs, which are used to evaluate/examine structural brain changes after stroke episodes. Several techniques have been developed in order to accurately calculate or approximate the percentage between lesions and critical brain structures, this step constitutes a paramount step for precise lesion annotation. Despite the technological progress or advance, to date, manual lesion tracing by a team of experts in neuroimaging remains as the gold standard to draw valid clinical inferences for lesion segmentation. The following work proposes a review of the machine and deep learning models that have been developed focusing in the transformers algorithm which is a state of the art method based on the self attention mechanism that has outperformed recurrent neural networks in terms of evaluation metrics such as the dice value, being able to capture long distant dependencies which is a fundamental step when processing 3D volumes, formed by a stacked 2D MRI images. The models were tested using the ATLAS dataset (Anatomical tracing of lesions after stroke) which is an open source data set of T1-weighted MRIs with manual segmented brain lesions

    Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture

    Get PDF
    Brain tumor segmentation seeks to separate healthy tissue from tumorous regions. This is an essential step in diagnosis and treatment planning to maximize the likelihood of successful treatment. Magnetic resonance imaging (MRI) provides detailed information about brain tumor anatomy, making it an important tool for effective diagnosis which is requisite to replace the existing manual detection system where patients rely on the skills and expertise of a human. In order to solve this problem, a brain tumor segmentation & detection system is proposed where experiments are tested on the collected BraTS 2018 dataset. This dataset contains four different MRI modalities for each patient as T1, T2, T1Gd, and FLAIR, and as an outcome, a segmented image and ground truth of tumor segmentation, i.e., class label, is provided. A fully automatic methodology to handle the task of segmentation of gliomas in pre-operative MRI scans is developed using a U-Net-based deep learning model. The first step is to transform input image data, which is further processed through various techniques—subset division, narrow object region, category brain slicing, watershed algorithm, and feature scaling was done. All these steps are implied before entering data into the U-Net Deep learning model. The U-Net Deep learning model is used to perform pixel label segmentation on the segment tumor region. The algorithm reached high-performance accuracy on the BraTS 2018 training, validation, as well as testing dataset. The proposed model achieved a dice coefficient of 0.9815, 0.9844, 0.9804, and 0.9954 on the testing dataset for sets HGG-1, HGG-2, HGG-3, and LGG-1, respectively

    U-net and its variants for medical image segmentation: A review of theory and applications

    Get PDF
    U-net is an image segmentation technique developed primarily for image segmentation tasks. These traits provide U-net with a high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in nearly all major image modalities, from CT scans and MRI to Xrays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. Given that U-net’s potential is still increasing, this narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends. We also discuss the many innovations that have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review the different image modalities and application areas that have been enhanced by U-net

    Methods for the analysis and characterization of brain morphology from MRI images

    Get PDF
    Brain magnetic resonance imaging (MRI) is an imaging modality that produces detailed images of the brain without using any ionizing radiation. From a structural MRI scan, it is possible to extract morphological properties of different brain regions, such as their volume and shape. These measures can both allow a better understanding of how the brain changes due to multiple factors (e.g., environmental and pathological) and contribute to the identification of new imaging biomarkers of neurological and psychiatric diseases. The overall goal of the present thesis is to advance the knowledge on how brain MRI image processing can be effectively used to analyze and characterize brain structure. The first two works presented in this thesis are animal studies that primarily aim to use MRI data for analyzing differences between groups of interest. In Paper I, MRI scans from wild and domestic rabbits were processed to identify structural brain differences between these two groups. Domestication was found to significantly reshape brain structure in terms of both regional gray matter volume and white matter integrity. In Paper II, rat brain MRI scans were used to train a brain age prediction model. This model was then tested on both controls and a group of rats that underwent long-term environmental enrichment and dietary restriction. This healthy lifestyle intervention was shown to significantly affect the predicted brain age trajectories by slowing the rats’ aging process compared to controls. Furthermore, brain age predicted on young adult rats was found to have a significant effect on survival. Papers III to V are human studies that propose deep learning-based methods for segmenting brain structures that can be severely affected by neurodegeneration. In particular, Papers III and IV focus on U-Net-based 2D segmentation of the corpus callosum (CC) in multiple sclerosis (MS) patients. In both studies, good segmentation accuracy was obtained and a significant correlation was found between CC area and the patient’s level of cognitive and physical disability. Additionally, in Paper IV, shape analysis of the segmented CC revealed a significant association between disability and both CC thickness and bending angle. Conversely, in Paper V, a novel method for automatic segmentation of the hippocampus is proposed, which consists of embedding a statistical shape prior as context information into a U-Net-based framework. The inclusion of shape information was shown to significantly improve segmentation accuracy when testing the method on a new unseen cohort (i.e., different from the one used for training). Furthermore, good performance was observed across three different diagnostic groups (healthy controls, subjects with mild cognitive impairment and Alzheimer’s patients) that were characterized by different levels of hippocampal atrophy. In summary, the studies presented in this thesis support the great value of MRI image analysis for the advancement of neuroscientific knowledge, and their contribution is mostly two-fold. First, by applying well-established processing methods on datasets that had not yet been explored in the literature, it was possible to characterize specific brain changes and disentangle relevant problems of a clinical or biological nature. Second, a technical contribution is provided by modifying and extending already-existing brain image processing methods to achieve good performance on new datasets
    corecore