23,832 research outputs found

    3D Tracking Using Multi-view Based Particle Filters

    Get PDF
    Visual surveillance and monitoring of indoor environments using multiple cameras has become a field of great activity in computer vision. Usual 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using geometrical relationships across cameras. As 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions), 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. To overcome this problem, this paper proposes a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This method allows to estimate the probability of a certain volume being occupied by a moving object, and thus to segment and track multiple people across the monitored area. The proposed method is developed on the basis of simple, binary 2D moving region segmentation on each camera, considered as different state observations. In addition, the method is proved well suited for integrating additional 2D low-level cues to increase system robustness to occlusions: in this line, a naĂŻve color-based (HSI) appearance model has been integrated, resulting in clear performance improvements when dealing with complex scenarios

    Color-based 3D particle filtering for robust tracking in heterogeneous environments

    Full text link
    Most multi-camera 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using both geometrical relationships across cameras and/or observed appearance of objects. However, 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions, etc.) and, therefore, 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. In this paper, we propose a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This novel method (direct 3D operation) allows the estimation of the probability of a certain volume being occupied by a moving object, using 2D motion detection and color features as state observations of the Particle Filter framework. For this purpose, an efficient color descriptor has been implemented, which automatically adapts itself to image noise, proving able to deal with changes in illumination and shape variations. The ability of the proposed framework to correctly track multiple 3D objects over time is tested on a real indoor scenario, showing satisfactory results

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∌2 particles/m 2 is required to achieve 100% convergence success for large-scale (∌100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software
    • 

    corecore