271 research outputs found

    Automated Multimodal Data Capture for Photorealistic Construction Progress Monitoring in Virtual Reality

    Get PDF
    Construction monitoring is vital for the timely delivery of projects. However manual data collection and fusion methods are arduous. We propose a framework for autonomous multimodal data collection and VR visualisation. Based on “work-in-progress” results we demonstrate its capabilities in-the-lab and validate its functionality on a real site. We explore how such a framework could complement construction-centric deep learning and 4D as-built datasets to aid human decision-making using V

    Camera Marker Networks for Pose Estimation and Scene Understanding in Construction Automation and Robotics.

    Full text link
    The construction industry faces challenges that include high workplace injuries and fatalities, stagnant productivity, and skill shortage. Automation and Robotics in Construction (ARC) has been proposed in the literature as a potential solution that makes machinery easier to collaborate with, facilitates better decision-making, or enables autonomous behavior. However, there are two primary technical challenges in ARC: 1) unstructured and featureless environments; and 2) differences between the as-designed and the as-built. It is therefore impossible to directly replicate conventional automation methods adopted in industries such as manufacturing on construction sites. In particular, two fundamental problems, pose estimation and scene understanding, must be addressed to realize the full potential of ARC. This dissertation proposes a pose estimation and scene understanding framework that addresses the identified research gaps by exploiting cameras, markers, and planar structures to mitigate the identified technical challenges. A fast plane extraction algorithm is developed for efficient modeling and understanding of built environments. A marker registration algorithm is designed for robust, accurate, cost-efficient, and rapidly reconfigurable pose estimation in unstructured and featureless environments. Camera marker networks are then established for unified and systematic design, estimation, and uncertainty analysis in larger scale applications. The proposed algorithms' efficiency has been validated through comprehensive experiments. Specifically, the speed, accuracy and robustness of the fast plane extraction and the marker registration have been demonstrated to be superior to existing state-of-the-art algorithms. These algorithms have also been implemented in two groups of ARC applications to demonstrate the proposed framework's effectiveness, wherein the applications themselves have significant social and economic value. The first group is related to in-situ robotic machinery, including an autonomous manipulator for assembling digital architecture designs on construction sites to help improve productivity and quality; and an intelligent guidance and monitoring system for articulated machinery such as excavators to help improve safety. The second group emphasizes human-machine interaction to make ARC more effective, including a mobile Building Information Modeling and way-finding platform with discrete location recognition to increase indoor facility management efficiency; and a 3D scanning and modeling solution for rapid and cost-efficient dimension checking and concise as-built modeling.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113481/1/cforrest_1.pd

    Global-referenced navigation grids for off-road vehicles and environments

    Full text link
    [EN] The presence of automation and information technology in agricultural environments seems no longer questionable; smart spraying, variable rate fertilizing, or automatic guidance are becoming usual management tools in modern farms. Yet, such techniques are still in their nascence and offer a lively hotbed for innovation. In particular, significant research efforts are being directed toward vehicle navigation and awareness in off-road environments. However, the majority of solutions being developed are based on occupancy grids referenced with odometry and dead-reckoning, or alternatively based on GPS waypoint following, but never based on both. Yet, navigation in off-road environments highly benefits from both approaches: perception data effectively condensed in regular grids, and global references for every cell of the grid. This research proposes a framework to build globally referenced navigation grids by combining three-dimensional stereo vision with satellite-based global positioning. The construction process entails the in-field recording of perceptual information plus the geodetic coordinates of the vehicle at every image acquisition position, in addition to other basic data as velocity, heading, or GPS quality indices. The creation of local grids occurs in real time right after the stereo images have been captured by the vehicle in the field, but the final assembly of universal grids takes place after finishing the acquisition phase. Vehicle-fixed individual grids are then superposed onto the global grid, transferring original perception data to universal cells expressed in Local Tangent Plane coordinates. Global referencing allows the discontinuous appendage of data to succeed in the completion and updating of navigation grids along the time over multiple mapping sessions. This methodology was validated in a commercial vineyard, where several universal grids of the crops were generated. Vine rows were correctly reconstructed, although some difficulties appeared around the headland turns as a consequence of unreliable heading estimations. Navigation information conveyed through globally referenced regular grids turned out to be a powerful tool for upcoming practical implementations within agricultural robotics. (C) 2011 Elsevier B.V. All rights reserved.The author would like to thank Juan Jose Pena Suarez and Montano Perez Teruel for their assistance in the preparation of the prototype vehicle, Veronica Saiz Rubio for her help during most of the field experiments, Ratul Banerjee for his contribution in the development of software, and Luis Gil-Orozco Esteve for granting permission to perform multiple tests in the vineyards of his winery Finca Ardal. Gratitude is also extended to the Spanish Ministry of Science and Innovation for funding this research through project AGL2009-11731.Rovira Más, F. (2011). Global-referenced navigation grids for off-road vehicles and environments. Robotics and Autonomous Systems. 60(2):278-287. https://doi.org/10.1016/j.robot.2011.11.007S27828760

    V-SLAM-AIDED PHOTOGRAMMETRY TO PROCESS FISHEYE MULTI-CAMERA SYSTEMS SEQUENCES

    Get PDF
    The advent of mobile mapping systems (MMSs) and computer vision algorithms has enriched a wide range of navigation and mapping tasks such as localisation, 3D motion estimation and 3D mapping. This study focuses on Visual Simultaneous Localisation and Mapping (V-SLAM) in the context of two in-houses MMSs: Ant3D, a patented five-fisheye multi-camera rig and GeoRizon, a high-resolution stereo fisheye rig. The aim is to leverage V-SLAM to enhance the systems performance in near-real-time and non-real-time 3D reconstruction applications. The research investigates both Monocular and Stereo V-SLAM applied to both MMSs and tackles the challenge of combining the V-SLAM estimated trajectory of one or a pair of cameras with known multi-camera relative orientation. We propose a state-of-the-art code that serves as a flexible and extensible platform for MMSs image acquisition and processing, along with an adapted version of the well-established ORB-SLAM3.0. Evaluation is performed in a cultural heritage challenging setup: the Minguzzi spiral staircase in the Duomo di Milano Cathedral. Performed tests highlight that introducing V-SLAM trajectories as well as pre-calibrated interior orientation and multi-camera constraints improve speed, applicability and accuracy of 3D surveys

    Evolutionary Optimization Techniques for 3D Simultaneous Localization and Mapping

    Get PDF
    Mención Internacional en el título de doctorMobile robots are growing up in applications to move through indoors and outdoors environments, passing from teleoperated applications to autonomous applications like exploring or navigating. For a robot to move through a particular location, it needs to gather information about the scenario using sensors. These sensors allow the robot to observe, depending on the sensor data type. Cameras mostly give information in two dimensions, with colors and pixels representing an image. Range sensors give distances from the robot to obstacles. Depth Cameras mix both technologies to expand their information to three-dimensional information. Light Detection and Ranging (LiDAR) provides information about the distance to the sensor but expands its range to planes and three dimensions alongside precision. So, mobile robots use those sensors to scan the scenario while moving. If the robot already has a map, the sensors measure, and the robot finds features that correspond to features on the map to localize itself. Men have used Maps as a specialized form of representing the environment for more than 5000 years, becoming a piece of important information in today’s daily basics. Maps are used to navigate from one place to another, localize something inside some boundaries, or as a form of documentation of essential features. So naturally, an intuitive way of making an autonomous mobile robot is to implement geometrical information maps to represent the environment. On the other hand, if the robot does not have a previous map, it should build it while moving around. The robot computes the sensor information with the odometer sensor information to achieve this task. However, sensors have their own flaws due to precision, calibration, or accuracy. Furthermore, moving a robot has its physical constraints and faults that may occur randomly, like wheel drifting or mechanical miscalibration that may make the odometers fail in the measurement, causing misalignment during the map building. A novel technique was presented in the mid-90s to solve this problem and overpass the uncertainty of sensors while the robot is building the map, the Simultaneous Localization and Mapping algorithm (SLAM). Its goal is to build a map while the robot’s position is corrected based on the information of two or more consecutive scans matched together or find the rigid registration vector between them. This algorithm has been broadly studied and developed for almost 25 years. Nonetheless, it is highly relevant in innovations, modifications, and adaptations due to the advances in new sensors and the complexity of the scenarios in emerging mobile robotics applications. The scan matching algorithm aims to find a pose vector representing the transformation or movement between two robot observations by finding the best possible value after solving an equation representing a good transformation. It means searching for a solution in an optimum way. Typically this optimization process has been solved using classical optimization algorithms, like Newton’s algorithm or solving gradient and second derivatives formulations, yet this requires an initial guess or initial state that helps the algorithm point in the right direction, most of the time by getting this information from the odometers or inertial sensors. Although, it is not always possible to have or trust this information, as some scenarios are complex and reckon sensors fail. In order to solve this problem, this research presents the uses of evolutionary optimization algorithms, those with a meta-heuristics definition based on iterative evolution that mimics optimization processes that do not need previous information to search a limited range for solutions to solve a fitness function. The main goal of this dissertation is to study, develop and prove the benefits of evolutionary optimization algorithms in simultaneous localization and mapping for mobile robots in six degrees of freedom scenarios using LiDAR sensor information. This work introduces several evolutionary algorithms for scan matching, acknowledge a mixed fitness function for registration, solve simultaneous localization and matching in different scenarios, implements loop closure and error relaxation, and proves its performance at indoors, outdoors and underground mapping applications.Los robots móviles están creciendo en aplicaciones para moverse por entornos interiores y exteriores, pasando de aplicaciones teleoperadas a aplicaciones autónomas como explorar o navegar. Para que un robot se mueva a través de una ubicación en particular, necesita recopilar información sobre el escenario utilizando sensores. Estos sensores permiten que el robot observe, según el tipo de datos del sensor. Las cámaras en su mayoría brindan información en dos dimensiones, con colores y píxeles que representan una imagen. Los sensores de rango dan distancias desde el robot hasta los obstáculos. Las Cámaras de Profundidad mezclan ambas tecnologías para expandir su información a información tridimensional. Light Detection and Ranging (LiDAR) proporciona información sobre la distancia al sensor, pero amplía su rango a planos y tres dimensiones así como mejora la precisión. Por lo tanto, los robots móviles usan esos sensores para escanear el escenario mientras se mueven. Si el robot ya tiene un mapa, los sensores miden y el robot encuentra características que corresponden a características en dicho mapa para localizarse. La humanidad ha utilizado los mapas como una forma especializada de representar el medio ambiente durante más de 5000 años, convirtiéndose en una pieza de información importante en los usos básicos diarios de hoy en día. Los mapas se utilizan para navegar de un lugar a otro, localizar algo dentro de algunos límites o como una forma de documentación de características esenciales. Entonces, naturalmente, una forma intuitiva de hacer un robot móvil autónomo es implementar mapas de información geométrica para representar el entorno. Por otro lado, si el robot no tiene un mapa previo, deberá construirlo mientras se desplaza. El robot junta la información del sensor de distancias con la información del sensor del odómetro para lograr esta tarea de crear un mapa. Sin embargo, los sensores tienen sus propios defectos debido a la precisión, la calibración o la exactitud. Además, mover un robot tiene sus limitaciones físicas y fallas que pueden ocurrir aleatoriamente, como el desvío de las ruedas o una mala calibración mecánica que puede hacer que los contadores de desplazamiento fallen en la medición, lo que provoca una desalineación durante la construcción del mapa. A mediados de los años 90 se presentó una técnica novedosa para resolver este problema y superar la incertidumbre de los sensores mientras el robot construye el mapa, el algoritmo de localización y mapeo simultáneos (SLAM). Su objetivo es construir un mapa mientras se corrige la posición del robot en base a la información de dos o más escaneos consecutivos emparejados o encontrar el vector de correspondencia entre ellos. Este algoritmo ha sido ampliamente estudiado y desarrollado durante casi 25 años. No obstante, es muy relevante en innovaciones, modificaciones y adaptaciones debido a los avances en sensores y la complejidad de los escenarios en las aplicaciones emergentes de robótica móvil. El algoritmo de correspondencia de escaneo tiene como objetivo encontrar un vector de pose que represente la transformación o el movimiento entre dos observaciones del robot al encontrar el mejor valor posible después de resolver una ecuación que represente una buena transformación. Significa buscar una solución de forma óptima. Por lo general, este proceso de optimización se ha resuelto utilizando algoritmos de optimización clásicos, como el algoritmo de Newton o la resolución de formulaciones de gradientes y segundas derivadas, pero esto requiere una conjetura inicial o un estado inicial que ayude al algoritmo a apuntar en la dirección correcta, la mayoría de las veces obteniendo esta información de los sensores odometricos o sensores de inercia, aunque no siempre es posible tener o confiar en esta información, ya que algunos escenarios son complejos y los sensores fallan. Para resolver este problema, esta investigación presenta los usos de los algoritmos de optimización evolutiva, aquellos con una definición meta-heurística basada en la evolución iterativa que imita los procesos de optimización que no necesitan información previa para buscar dentro de un rango limitado el grupo de soluciones que resuelve una función de calidad. El objetivo principal de esta tesis es estudiar, desarrollar y probar los usos de algoritmos de optimización evolutiva en localización y mapeado simultáneos para robots móviles en escenarios de seis grados de libertad utilizando información de sensores LiDAR. Este trabajo introduce varios algoritmos evolutivos que resuelven la correspondencia entre medidas, soluciona el problema de SLAM, implementa una fusion de funciones objetivos y demuestra sus ventajas con pruebas en escenarios reales tanto en interiores, exteriores como mapeado de escenarios subterraneos.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Gerardo Fernández López.- Secretario: María Dolores Blanco Rojas.- Vocal: David Álvarez Sánche

    Sigma-FP: Robot Mapping of 3D Floor Plans with an RGB-D Camera under Uncertainty

    Get PDF
    This work presents Sigma-FP, a novel 3D reconstruction method to obtain the floor plan of a multi-room environment from a sequence of RGB-D images captured by a wheeled mobile robot. For each input image, the planar patches of visible walls are extracted and subsequently characterized by a multivariate Gaussian distribution in the convenient Plane Parameter Space. Then, accounting for the probabilistic nature of the robot localization, we transform and combine the planar patches from the camera frame into a 3D global model, where the planar patches include both the plane estimation uncertainty and the propagation of the robot pose uncertainty. Additionally, processing depth data, we detect openings (doors and windows) in the wall, which are also incorporated in the 3D global model to provide a more realistic representation. Experimental results, in both real-world and synthetic environments, demonstrate that our method outperforms state-of-the art methods, both in time and accuracy, while just relying on Atlanta world assumption

    Efficient and elastic LiDAR reconstruction for large-scale exploration tasks

    Get PDF
    High-quality reconstructions and understanding the environment are essential for robotic tasks such as localisation, navigation and exploration. Applications like planners and controllers can make decisions based on them. International competitions such as the DARPA Subterranean Challenge demonstrate the difficulties that reconstruction methods must address in the real world, e.g. complex surfaces in unstructured environments, accumulation of localisation errors in long-term explorations, and the necessity for methods to be scalable and efficient in large-scale scenarios. Guided by these motivations, this thesis presents a multi-resolution volumetric reconstruction system, supereight-Atlas (SE-Atlas). SE-Atlas efficiently integrates long-range LiDAR scans with high resolution, incorporates motion undistortion, and employs an Atlas of submaps to produce an elastic 3D reconstruction. These features address limitations of conventional reconstruction techniques that were revealed in real-world experiments of an initial active perceptual planning prototype. Our experiments with SE-Atlas show that it can integrate LiDAR scans at 60m range with ∼5 cm resolution at ∼3 Hz, outperforming state-of-the-art methods in integration speed and memory efficiency. Reconstruction accuracy evaluation also proves that SE-Atlas can correct the map upon SLAM loop closure corrections, maintaining global consistency. We further propose four principled strategies for spawning and fusing submaps. Based on spatial analysis, SE-Atlas spawns new submaps when the robot transitions into an isolated space, and fuses submaps of the same space together. We focused on developing a system which scales against environment size instead of exploration length. A new formulation is proposed to compute relative uncertainties between poses in a SLAM pose graph, improving submap fusion reliability. Our experiments show that the average error in a large-scale map is approximately 5 cm. A further contribution was incorporating semantic information into SE-Atlas. A recursive Bayesian filter is used to maintain consistency in per-voxel semantic labels. Semantics is leveraged to detect indoor-outdoor transitions and adjust reconstruction parameters online
    corecore