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Abstract— This work presents Sigma-FP, a novel 3D recon-
struction method to obtain the floor plan of a multi-room
environment from a sequence of RGB-D images captured by a
wheeled mobile robot. For each input image, the planar patches
of visible walls are extracted and subsequently characterized
by a multivariate Gaussian distribution in the convenient Plane
Parameter Space. Then, accounting for the probabilistic nature
of the robot localization, we transform and combine the planar
patches from the camera frame into a 3D global model,
where the planar patches include both the plane estimation
uncertainty and the propagation of the robot pose uncertainty.
Additionally, processing depth data, we detect openings (doors
and windows) in the wall, which are also incorporated in the
3D global model to provide a more realistic representation.
Experimental results, in both real-world and synthetic environ-
ments, demonstrate that our method outperforms state-of-the-
art methods, both in time and accuracy, while just relying on
Atlanta world assumption.

Index Terms— Mapping, RGB-D Perception, 3D Floor Plan
Reconstruction, Probability and Statistical Methods

I. INTRODUCTION

High-level scene understanding is essential for the oper-
ation of mobile robots in human-centered environments. In
this context, a complete world representation involves not
only capturing the geometry and semantics of objects [1],
but also identifying the structural elements of the scene
(i.e. walls, floor, ceiling and even doors and windows) [2].
Building a model of such structural elements, commonly
referred in the literature as 3D floor plan, is of great value
for the robot navigation and exploration [3], [4] as well as
for enhancing object positioning in semantic mapping [1],
[5], among other robotic tasks.

The generation of 3D floor plans is usually performed by
extracting primitive shapes such as cuboids or planes from
data acquired with on board cameras [6], [7] and/or range
sensors [8], [9]. The limitations of current techniques involve
(i) the requirement of a large amount of input data (e.g. a
dense point cloud of the entire environment) which hinders
the online building of the floor plan [10], [9], (ii) the lack
of detail in the reconstruction, disregarding wall thickness
or the presence of doors and windows [11], [12], or (iii)
the assumption of orthogonal planes [13], [14]. Moreover,
a major challenge when transferring these techniques into

*This work was supported by the research projects HOUNDBOT (P20-
01302) and ARPEGGIO (PID2020-117057), and the Spanish grant program
FPU19/00704.

1Jose-Luis Matez-Bandera (corresponding author), Javier Monroy and
Javier Gonzalez-Jimenez are with the Machine Perception and In-
telligent Robotics (MAPIR) Group, Malaga Institute for Mechatron-
ics Engineering and Cyber-Physical Systems (IMECH.UMA). University
of Malaga. Spain. josematez@uma.es, jgmonroy@uma.es,
javiergonzalez@uma.es

Fig. 1: Incremental reconstruction of a 3D floor plan from a
sequence of RGB-D images using Sigma-FP. The extracted planes
and their openings are integrated image-by-image in a global model
by considering both the uncertainty in the robot localization and the
uncertainty in the plane extraction. Finally, the optional step Global
Map Refinement is carried out to enhance the floor plan.

the real-world is to account for the unavoidable uncertainty
in the robot localization during the data acquisition process.
This represents one of main source of errors and failures in
current 3D floor plan reconstruction methods [6].

In this work, we propose Sigma-FP, an incremental plane-
based method for the 3D reconstruction of multi-room floor
plans that delimits openings (i.e. doors and windows) as
shown in Figure 1. Our proposal takes a sequence of RGB-D
images captured by a wheeled mobile robot, whose local-
ization is given with some Gaussian uncertainty. Following
an image-by-image basis, and exploiting the convenient
Plane Parameter Space (PPS) [15], we extract a set of
planar patches from the visible walls, and their respective
openings. Planar patches are characterized by a multivariate
Gaussian distribution in the PPS, which are then conveniently
transformed from the camera frame into the world frame –
where they are fused into a 3D global model–, propagating
the uncertainty in both the plane extraction and the robot
localization. This enables a sound integration between the
robot localization and the floor plan reconstruction, also
providing a coherent framework to account for the error
and drift in the localization. Moreover, our approach is able
to work under relaxed constraints in the room geometry,
just considering the Atlanta world assumption (i.e. walls are
orthogonal to the vertical axis) [16].

For evaluation, we carry out a set of experiments in both
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real-world and synthetic environments with different robots,
comparing our proposal with state-of-the-art methods. The
results demonstrate that our method generalizes properly
in the reconstruction of 3D floor plans while reducing the
error and enabling an incremental online reconstruction. In
summary, our work provides the following contributions:

1) The inclusion of the probabilistic nature of the robot
localization in the generation of 3D floor plans, prop-
agating the robot uncertainty to the extracted planes.

2) A functional method that increasingly reconstructs the
3D floor plan of a multi-room scenario from a sequence
of RGB-D images, which features:

• A significant level of details in the reconstruction,
including windows and doors in the scene.

• A relaxation of the room geometry constraints,
considering only the Atlanta world assumption.

3) The code of Sigma-FP, which is available as a ROS
package, as well as a demonstration video, can be
found at https://MAPIRlab.github.io/Sigma
-FP.

II. RELATED WORK

In the context of mobile robotics, contributions to the
reconstruction of the structural elements of an indoor en-
vironment can be divided into two main groups according
to their scope: layout estimation, focusing on single-room
contexts, and floor plan reconstruction, covering multi-room
environments. Next, we review the most important works of
each group, while for an in-depth overview of the state-of-
the-art, the reader is referred to [17], [18].

A. Layout Estimation

Layout estimation refers to the problem of extracting the
enclosing structure of a single room, usually from a single
RGB/RGB-D image. For example, Lee et al. [14] and Yan et
al. [13] presented deep learning networks to estimate the
room layout from a single monocular RGB image under the
Manhattan world (MW) assumption [19]. Zhang et al. [20]
presented a similar approach but considering also depth
information from an RGB-D camera, reducing consider-
ably the error in estimated layout, while Howard-Jenkins et
al. [21] focused on relaxing the constraints imposed on the
room shape by reformulating the problem as an instance
detection task. The latter consists in extracting 3D planes
using a Region-based Convolutional Neural Network frame-
by-frame from a sequence of posed RGB-D images and later
combining the planes in a single 3D model.

B. Floor Plan Reconstruction

The reconstruction of floor plans aims to generate a 2D/3D
global model of a multi-room environment based on the
extraction of primitives from a sequence of RGB-D images
or even, a curated point cloud of the whole environment.
Works under this category include these of Chen et al. [11],
based on the initial generation a complete point cloud of
the environment from a sequence of RGB-D scans, which
is latter processed by a Deep Neural Network to obtain a

2D floor plan only of the walls, or the work from Liu et
al. [10] presenting a similar approach which also includes
2D openings (doors and windows). Also noticeable are the
contributions that require an uncluttered point cloud as input,
from which a 2D vector-graphics floor plan [9], [12], a
3D floor plan [22], [9], or even BIM models [8], [12] are
generated. However, these works share a common drawback
in terms of usability due to the consideration of strong
assumptions such as boxy world (i.e. each room is composed
by just four orthogonal walls) [23] or Manhattan world
(walls lie only along the two perpendicular directions) [12].
Furthermore, the generation of the global model is usually
performed offline over the complete point cloud and not
frame-by-frame, which precludes its use in applications such
as semantic mapping. To the best of the authors’ knowledge,
the recent work from Solarte et al. [6] is the first one
addressing the sequential reconstruction of multi-room envi-
ronments. Yet, as opposed to our proposal, they rely on 360-
images, lack the detection of openings, and do not handle
uncertainty, which limits its applicability in real-world.

Our approach is placed in a middle point between both
scopes, i.e. from layout estimation works, we seize the con-
cept of working image-by-image while from floor plan re-
construction, our method is suitable for multi-room environ-
ments. However, Sigma-FP distances from previous works
in that we jointly consider the following aspects: (i) the fact
that we seek to obtain the floor plan of environments without
the strong assumption of MW or boxy world, (ii) being able
to achieve it sequentially image-by-image instead of needing
of a complete point cloud of the environment by registering
high-level features of the world, i.e. planes [24], (iii) dealing
with both the uncertainty in the robot localization and in the
plane extraction and (iv) accounting to 3D openings such as
doors and windows.

III. METHOD OVERVIEW

Given a wheeled mobile robot equipped with an RGB-
D camera, whose localization over time is known with
some uncertainty, we aim to incrementally generate a plane-
based 3D floor plan of the environment. To do so, for each
input image, we propose to extract planar patches of the
visible walls and their respective openings (i.e. doors and
windows). Then, the recognized patches are transformed
from the camera frame to a global frame, where they are
fused with previously detected patches to build a global 3D
model (see Figure 2). Next, we provide a detailed description
of the different stages of our proposal.

A. Plane Extraction and Characterization

For each input RGB-D image, we first carry out a per-pixel
semantic segmentation of the RGB image with an off-the-
shelf deep network that provides candidate pixels to belong
to walls that eventually will define the floor plan of the
building. Since this segmentation is not error-free, we treat
the output of this network as observations that will be further
filtered. In a second step, we exploit the spatial organization
of the depth image by considering that each point pi of the
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Fig. 2: From a sequence of RGB-D images and relying on an off-the-shelf robot localization method, for each image, Sigma-FP robustly
extracts a set of wall candidates which are characterized by a Gaussian distribution, its openings and a set of features. The extracted
planes are transformed into a global frame, where their uncertainty are also propagated. Finally, the transformed planes are integrated into
a global 3D model. At the end of the floor plan reconstruction, an optional step can be performed to refine the result.

point cloud defines a planar patch (πpi
) composed of the

point itself and its neighbors within a specific radius. Each
point is then annotated with both the normal vector (npi )
(pointing towards the interior of the environment, i.e. towards
the camera location) and the distance-to-origin (dpi

). Finally,
to perform the plane segmentation over the candidate planar
patches, we transform the point cloud from the Cartesian
space into the Plane Parameter Space (PPS) [15], a more
suitable space where the segmentation of planes can be
performed with higher robustness to noise.

Given a plane in the Cartesian space defined by π =
[nπ, dπ]

T with nπ = [nx, ny, nz]
T , its representation in the

PPS is a point pπ computed as follows:

pπ =


α

β

d

 =


tan−1

(
ny

nx

)
cos−1(nz)

dπ

 , (1)

where α and β are the azimuth and elevation angles of the
normal vector, respectively, and d is the distance-to-origin of
the plane.

Exploiting that planes in the Cartesian space are repre-
sented by single points in the PPS, and that different planar
patches belonging to the same plane should satisfy that
their associated points in the PPS are close to each other,
the fusion and segmentation of wall planes is done in this
convenient space (see Figure 3). Note that ideally, two planar
patches from the same plane are represented by the same
point in the PPS. In practice, due to noise and other errors,
the resulting points are not equal but similar.

Walls’ segmentation is then performed by applying a spa-
tial density clustering algorithm (DBSCAN [25]) in the PPS.
This plane extraction approach is more robust to noise, while
less computationally expensive for multi-plane scenarios (as
it is our case) than other widely employed approaches such
as RANSAC [9].

Based on the fact that in indoor environments, the vast

(a) wall-filtered input
point cloud.

(b) Plane segmentation
in the PPS.

(c) Point cloud of
clustered wall planes.

Fig. 3: Overview of the plane segmentation process. The wall-
filtered input point cloud refers to the point cloud generated after the
per-pixel semantic segmentation of the RGB image. Note that the
clusterized point cloud shows fewer points than the input because
points belonging to a cluster with few points are considered as
outliers and then removed.

majority of walls are orthogonal to the floor and ceiling,
we adopt the Atlanta world (AW) assumption. This means
that a plane representing a wall must meet β ≜ 90◦ while
α ∈ [−π, π]. This assumption is less restrictive than the MW,
considered in recent works [12], [22].

Finally, provided that the planar patch segmentation results
in K clusters, for each cluster we define a wall CΩk com-
posed of a set of features. Concretely, a multivariate Gaussian
distribution fitted over its parameters in the PPS referenced
w.r.t. the robot frame, i.e. Rπk∼N (Rαk,

Rdk; µRπk
, ΣRπk

),
its dimensions (maximum and minimum bounds) in the
Cartesian space, the number of planar patch candidates in
the cluster, and the openings detected in the plane (ex-
plained in Section III-C). Note that the wall segmentation
is expressed w.r.t. the robot frame because the camera-
robot transformation is known and uncertainty-free, hence
previously to the segmentation, we transform the point cloud
from the camera frame to the robot frame.

B. Handling Uncertainty

In this work, we consider the uncertainty in the camera
pose when acquiring the images, which derives from the
uncertainty in the robot localization. We assume that the
camera-robot relative pose (RTC) is fixed and exactly known

Authors' accepted manuscript IEEE Robotics and Automation Letters - The final publication is available at https://dx.doi.org/10.1109/LRA.2022.3220156



XW

YW

YR
XR

π
nπ

XR

XWWα
θR

tan-1�yR/xR�

Wd Rd

Rα

Fig. 4: Transformation of the parameters of a plane π from the
robot frame to the world frame.

(error-free), leading to WTC =W TR
RTC , where W , R and

C stand for the world, robot and camera frames, respectively.
Moreover, the robot-world transform is assumed to be given
by a generic localization method (e.g. [26], [27]) or a
SLAM algorithm (e.g. [28], [29]). Concretely, we assume
that the estimated robot pose (i.e. position (xR, yR) and
orientation θR) is represented by a Gaussian distribution
TR ∼ N (xR, yR, θR;µTR

, ΣTR
), which is a standard rep-

resentation for the robot pose. Note that the robot pose is
referred w.r.t. the world frame, although the superscript W
is omitted to simplify the notation.

To propagate the uncertainty from the camera pose to
the planes detected in the images, we must transform the
Gaussian distributions representing planes in the PPS w.r.t
the robot frame, to the global world frame. The conversion
between both spaces (see Figure 4) is given by:[
Wα
W d

]
= f(TR,

Rπ) =

 Rα+ θR

Rd+ δ cos
(

Wα− tan−1

(
yR
xR

))
(2)

where cos(·) is the cosine function and δ =
√

x2
R + y2R.

Accounting for their Gaussian nature, the mean value of
the plane coordinates in PPS w.r.t the global frame (µWπ)
can be computed by applying Eq. (2) directly, while for the
case of the covariance matrix, it must include the propagation
of the robot pose uncertainty, computed as:

ΣWπ = JTR
ΣTR

JTTR
+ JRπ ΣRπ JTRπ, (3)

where JTR
and JRπ are Jacobians of f(·,·) evaluated at

(µTR
, µRπ), respectively. The resulting Jacobians are:

JTR
=

[
0 0 1

xRcos(γ)−yRsin(γ)
δ

xRsin(γ)+yRcos(γ)
δ −δsin(γ)

]
,

(4)

JRπ =

[
1 0

−δsin(γ) 1

]
, (5)

where sin(·) and cos(·) refer to the sine and cosine functions,

respectively, γ = Wα− tan−1

(
yR
xR

)
and δ =

√
x2
R + y2R.

C. Opening Detection

The detection of openings, such as doors or windows, is
of paramount importance to obtain realistic floor plans. Yet,
it is a challenging task because openings may not necessarily
be seen from a convenient perspective and their observation
on depth maps is prone to noise. To address this problem,
for each image we first obtain the visible wall planes in
it (see Section III-A), and then compute their projection
onto the depth image (ĨD

π ). Openings are finally detected by
comparing the projections with the real depth image masked
to the respective walls (ID

π ).
Since, in general, wall planes are not parallel to the image

plane, in order to estimate ĨD
π it is required to apply an

image rectification over the wall projection. The latter is
carried out by computing the 2D homography between the
projection of the wall and the physical wall using the Direct
Linear Transformation (DLT) method [30]. Then, since the
correspondences between the boundaries of the wall and
their projection in the image plane are known, and also
the wall pose w.r.t. the camera frame, we can estimate
how the wall should be projected on the depth sensor by
performing a linear interpolation from the depth value of the
wall boundaries in the rectified image. Next, to obtain ĨD

π ,
we undo the image rectification with the inverse homography
matrix. By subtracting ĨD

π from ID
π , both occlusions and

openings are highlighted as shown in Figure 5. Since we are
only interested in openings, we impose that ID

π − ĨD
π > 0,

hence ID
open(π) = max(0, ID

π − ĨD
π ).

The openings we are looking for are doors and win-
dows, which are mostly rectangular in real-world. For this
reason, we impose a constraint to just search for quadri-
lateral regions in ID

open(π). Each extracted region Ir is
annotated with the coordinates, in pixels, of its four corners
(Icr,1, Icr,2,

Icr,3,
Icr,4) in the image plane. Finally, their

positions in the 3D world are determined to incorporate them
into the global floor plan. To do so, using the inverse intrinsic
matrix of the camera we compute the 3D projection line Cℓcr
w.r.t. the camera frame for each corner Icr:
Cℓcr = λPT (PPT )−1 Icr

= λ


f 0 0

0 f 0

x0 y0 1

0 0 0

 1

f2

 1 0 −x0

0 1 −y0

−x0 −y0 f2 + x2
0 + y2

0


︸ ︷︷ ︸

(PPT )−1

Icr

=
λ

f


1 0 −x0

0 1 −y0

0 0 f

0 0 0

 Icr = λ


Icr,x−x0

f
Icr,y−y0

f

1

0

 , (6)

where P is the projection matrix, f is the focal length of the
camera, (x0, y0) is the camera center and λ is the parameter
of the parametric line. As Cℓcr is given in homogeneous
coordinates, a zero in its fourth element means a 3D line.

Since the opening must belong to the plane Cπ, we can
obtain the 3D back-projected point Ccr by computing the
intersection between Cℓcr and Cπ: Ccr = Cℓcr ∩ Cπ (see
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Fig. 5: Overview of the openings’ detection process. From each extracted plane, we estimate its rectified projection in the depth sensor (ĨD′
π )

based on the knowledge of the camera parameters, the robot pose and the wall plane representation. Through the estimation of the
homography between the wall and its projection, we recover the projection of the wall with perspective (ĨD

π ). Subtracting the real depth
observation (ID

π ) and the estimation (ĨD
π ), we obtain regions with occlusions or openings. Then, considering just openings, we extract

quadrilateral regions representing doors and windows. Next, openings are projected into the 3D world and integrated in the global model.
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Fig. 6: Illustration of the projection of the openings corners in
the image plane into the 3D space. The corners in the 3D world
corresponds to the intersection between each projection line Cℓcr
and the plane Cπ.
Figure 6). Then, this 3D point is transformed to the world
frame.

D. Data Association and Integration

An incremental reconstruction of the 3D floor plan re-
quires to sequentially integrate new extracted planar patches
into the global model. Thus, for every set of walls WΩt

segmented at time instant t, we must verify whether the walls
already exists in the set of observed walls WΩ1:t−1 or not.
If a wall matches an existing one, we merge their features,
otherwise the wall is initialized in the global representation.

For the sake of clarity, from now on we omit the super-
script W since all the variables are referred to the world
frame. To discern whether two walls Ωj and Ωk represent
the same physical wall, we carry out a twofold assessment:
plane representation similarity (sj,k) and minimum euclidean
distance (dj,k) between their planar patches (πj and πk).
Measuring the similarity enables to determine whether both
planar patches belong to the same infinite plane. However,
given the fact that two different physical walls can be defined
by the same infinite plane (see Figure 7), we additionally
measure the minimum distance between planar patches to
avoid merging planar patches with the same support plane
but that represent different physical walls. Concretely, we
consider that two walls match when sj,k < τs and dj,k < τd,
where τs and τd are the similarity and minimum distance
thresholds, respectively.

Room 1 Room 2 Room 3

Wall 1 Wall 2
Ω1 Ω2π∞

Fig. 7: Sample scenario where two different physical walls (Ω1 and
Ω2) are represented by the same infinite plane π∞.

The similarity is measured by computing the Bhat-
tacharyya1 distance between the Gaussian distributions of
their plane representation in the PPS (πj and πk) as follows:

si,j =
1

8
(µj − µk)

T Σ−1 (µj − µk) +
1

2
ln

(
detΣ√

detΣj detΣk

)
,

(7)

where Σ =
Σj+Σk

2 .
The association step is performed following an all-vs-

all approach, thus N walls can be matched together. For
each set of matched planes, we obtain a representative wall
through a linear combination of their multivariate Gaussian
distributions πn∼N (µπn

, Σπn
), n = 1, . . . , N , which are

considered independent of each other. Then, the resulting
Gaussian distribution is computed as a weighted sum and is
defined by:

µπ =

N∑
n=1

anµπn , Σπ =

N∑
n=1

a2nΣπn . (8)

where an = ρn∑N
l=1 ρl

, being ρn the number of points in the
cluster, i.e. that give rise to the wall, and satisfying that∑N

n=1 an = 1. Note that as the first variable of the Gaussian
distribution is angular, its mean cannot be computed through
the arithmetical average, but is determined as follows:

α = atan2

(
1

N

N∑
n=1

sin(αn),
1

N

N∑
n=1

cos(αn)

)
, (9)

where atan2(·) denotes the 2-argument arctangent function.

1Note that the use of the Bhattacharyya distance is just a choice of
the authors, but other statistical distances such as Mahalanobis distance
or Kullback–Leibler divergence are also valid.
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TABLE I: Comparison of plane’s and opening’s estimation errors
for the simulated environments. Best results are marked in bold.
Note that this evaluation is not feasible in real-world environments
because of the lack of a ground-truth.

Walls Openings

Method Scene α-error (rad.) d-error (m.) IoU

Sigma-FP
Small 0.031± 0.039 0.054± 0.045 0.842± 0.049

Non-MW 0.030 ± 0.012 0.131 ± 0.089 0.710± 0.177

Large 0.019± 0.012 0.069 ± 0.066 0.763± 0.074

Sigma-FP + GR
Small 0.019± 0.005 0.046 ± 0.039 0.856 ± 0.060

Non-MW 0.030 ± 0.012 0.131 ± 0.089 0.725 ± 0.187

Large 0.019± 0.012 0.069 ± 0.066 0.781 ± 0.072

Gankhuyag et al. [12]
Small 0.0 ± 0.0 0.160± 0.050 –

Non-MW 0.090± 0.125 0.630± 0.760 –
Large 0.0 ± 0.0 0.320± 0.211 –

Floor-SP [11]
Small 0.0 ± 0.0 0.076± 0.063 –

Non-MW 0.176± 0.231 0.302± 0.421 –
Large 0.0 ± 0.0 0.184± 0.098 –

Concerning the remaining features of the wall, the number
of points in the cluster that votes for the same wall is updated
by ρ =

∑N
n=1 ρn, and the dimensions of the fused wall are

determined as the convex hull of the all integrated planar
patches. Finally, the integration of openings is carried out in
a two-step process. First, we determine the openings from the
different walls which refers to the same physical opening by
measuring its similarity using the Intersection over Union
(IoU) function. Then, matched openings are integrated by
computing their global convex hull, and unmatched openings
are included unmodified.
E. Global Map Refinement

Once the complete floor plan is generated, we perform
an optional refinement stage which comprises: i) outliers
removal, ii) adjacent walls intersection and iii) height regular-
ization. Concretely, given the fact that during the inspection
each extracted planar patch votes for a wall in the scene,
we consider that a represented wall is an outlier when it is
poorly voted compared to adjacent walls.

Depending on the intended use of the floor plan recon-
struction, it could be necessary to refine the representation
of the walls, for example when exploited as a BIM model [8].
In this sense, we include a step that computes the intersection
between adjacent walls to enhance the walls’ extent. Also,
assuming that the ceiling is represented by a single plane,
we extend the height of the walls to the maximum height
detected (an example of the result in Figure 1).

IV. EXPERIMENTAL VALIDATION

A. Setup, Datasets and Baseline

To evaluate the performance of our proposal, we carry out
a set of experiments comparing Sigma-FP with two state-of-
the-art methods, Floor-SP [11] and Gankhuyag et al. [12].
It should be noted that both methods require the entire point
cloud of the environment in advance, and that comparison
with [6] has been discarded because of the requirement of
360-images, which are not easily available.

Comparison is performed over synthetic and real-
world data to account for quantitative and qualitative re-
sults. For the former, we employ the synthetic dataset
Robot@VirtualHome [31], analyzing three representative
scenes (i.e. a small, a non-MW and a large environment).

TABLE II: Performance of the evaluated methods for floor plan
reconstruction and opening detection. First column refers to the
dataset (R@VH: Robot@VirtualHome, MAPIR: MAPIR-Lab and
OL-S: OpenLORIS-Scene). Best results are marked in bold.

Walls Openings
Method Precision Recall F1-score Precision Recall F1-score

R
@

V
H

Sigma-FP 88.50% 93.33% 90.39% 95.76% 72.73%82.55%

Sigma-FP + GR 90.22% 91.11% 89.99% 95.76% 72.73%82.55%

Gankhuyag et al. [12] 86.05% 60.00% 68.62% – – –
Floor-SP [11] 94.53% 76.33% 82.53% – – –

M
A

PI
R

Sigma-FP 91.67% 100.00% 95.65% 100.00%77.78%87.50%

Sigma-FP + GR 100.00%100.00%100.00% 100.00%77.78%87.50%

Gankhuyag et al. [12] 100.00% 72.73% 84.21% – – –
Floor-SP [11] 53.33% 72.73% 61.54% – – –

O
L

-S

Sigma-FP 93.75% 88.24% 90.91% 100.00%62.50%76.92%

Sigma-FP + GR 93.75% 88.24% 90.91% 100.00%62.50%76.92%

Gankhuyag et al. [12] 81.82% 52.94% 64.29% – – –
Floor-SP [11] 46.43% 76.47% 57.78% – – –

For the evaluation with real-world data, we consider the
household scene from OpenLORIS [32], and a set of data
collected by teleoperating a mobile robot in our lab.

To complete the setup, we rely on the Panoptic FPN [33]
implemented in Detectron2 [34] to preprocess the RGB
images and to obtain a per-pixel segmentation of walls
candidates, and the well-known Adaptive Monte Carlo Lo-
calization (AMCL) [27] method to obtain a probabilistic
localization of the robot.
B. Quantitative Results

Table I shows the results for the compared methods on the
three selected environments from Robot@VirtualHome [31],
depicting the errors in the plane parameters (α, d), as well
as the IoU for the openings. It can be seen that our proposal
generalizes properly for all three environments, keeping the
error values relatively low in comparison with Floor-SP [11]
and Gankhuyag et al. [12]. An exception to the latter is the
α-error for both MW scenes (i.e. Small and Large), as they
meet the MW assumption imposed by [12] and the prior
assumption of MW from Floor-SP. In contrast, when this
assumption is not met (i.e. Non-MW scene), the α-error is
particularly significant. Thus, generally speaking, it can be
said that our method reduces considerably the error in the
plane representation of the walls compared to both state-
of-the-art methods. Moreover, Table I illustrates through the
intersection over union values that our method is able to
recognize properly the openings in the environment.

Extending the comparison to also account for the real-
world scenarios, we analyze the precision results in Table II,
noticing that the three evaluated methods show an overall
good performance. Since precision does not account for the
number of detected walls, we also compute the recall. In this
sense, Sigma-FP outperforms significantly the other methods,
overcoming the second-best method by a 17%. A combined
measure of precision and recall is the F1-score, where our
method demonstrates a strong overall performance. Related
to the openings’ detection, our proposal exhibits a high
value of F1-score, which means that is able to identify
and represent properly most of the openings in the scene.
However, since our proposed opening detection phase is
carried out in the image plane, it is required that both the
wall and the opening are simultaneously visible in the image.
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TABLE III: Processing time of the main stages of the evaluated
methods. Note that depicted times for both Floor-SP and [12] do
not account for the point cloud registration.

Sigma-FP Gankhuyag et al. [12] Floor-SP [11]

O
nl

in
e

Semantic Segmentation 126.11 ms – –
Plane Extraction 115.09 ms – –

Opening Detection 12.27 ms – –
Plane Matching 11.21 ms – –

Offline Processing 29.49 ms 29.48 s 237.72 s

In this sense, openings that are not properly observed cannot
be detected, which is reflected directly in the recall results.

Table III completes the comparison by illustrating the time
performances of the three evaluated methods. As long as the
semantic segmentation network does not act as a bottleneck,
our method is able to work in parallel to the neural network
(except for the first image), achieving an online operation
at ∼7 Hz, a sufficient frequency for a robot inspecting an
indoor environment. Operating online allows the robot to
generate the floor plan incrementally, which can be used
at any moment. In contrast, the point cloud-based methods
require finishing both the inspection of the environment and
the data generation. Hence, given the fact that the methods
work with large amount of data, the processing time is
considerable higher while the map is not available during
the inspection.
C. Qualitative Results

Figure 8 illustrates the 3D floor plans obtained by the
evaluated methods for a set of representative environments,
including non-MW scenes. An important aspect that can be
observed is that Sigma-FP is able to represent both sides of a
wall, which together with the 3D openings enhance the qual-
ity of the representation in comparison to the state-of-the-art
methods. Another aspect to highlight from Sigma-FP is that
it is able to represent properly non-MW scenarios, contrary
to Floor-SP, which tends to over-segment a single wall into
multiple sections or the method described in [12], which
directly is unable to reconstruct non-MW scenes. From the
results obtained by Floor-SP, it should be mentioned that this
method generates closed-loop rooms and hence, it generates
walls that does not exist. Referring to the method from [12],
as it detects walls based on a 2D density map, in cases where
walls are significantly occluded it fails to detect the walls.
D. Case Study: Uncertainty in Sequential Reconstruction

To demonstrate the importance of considering the uncer-
tainty in the robot pose for sequential 3D floor plan recon-
struction, we carried out a set of experiments in the MAPIR-
UMA Lab using Sigma-FP working with three different
localization methods: AMCL [27], Scan Matching [26] and
ORB-SLAM2 [29]. For the latter, we fixed the covariance
matrix of the estimated pose since in the available imple-
mentation such matrix is not provided. As it can be seen
in Figure 9, when the uncertainty is available, Sigma-FP
weights incoming observations accordingly, relying more on
those with less uncertainty and obtaining a more accurate
reconstruction. In contrast, using ORB-SLAM2, all observa-
tions are integrated equally, resulting in a floor plan with a
higher level of error.

V. CONCLUSIONS AND FUTURE WORK

In this work, we propose a method to generate a 3D
floor plan of a multi-room environment from a sequence
of RGB-D images captured by a wheeled mobile robot.
Our method operates in an image-by-image basis, extracting
for each image the visible planar patches of walls, which
are characterized by multivariate Gaussian distributions. The
integration of the planar patches into a 3D global model is
achieved by considering the probabilistic localization of the
robot with uncertainty, and the corresponding propagation
to the planar patches’ representation. Moreover, our method
accounts for openings like doors and windows, and relaxes
the common geometry assumptions of Manhattan world or
boxy world, to just Atlanta world, i.e. walls are orthogonal
to the vertical axis, broading the application range.

Results demonstrate that our method successfully recon-
struct the 3D floor plan of scenes with different settings,
achieving low error and a relatively low computational load
in comparison with other approaches. For future work, we
plan to incorporate the robot localization problem in the
method formulation and not using the localization estimation
just as a service, hence making information to flow bidirec-
tionally to improve the localization. Furthermore, we plan to
integrate Sigma-FP with place categorization algorithms to
extend the semantic information of the 3D floor plan, using
this information to segment the floor plan into rooms.
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Fig. 8: 3D floor plan reconstructions for simulated and real-word environments. The walls’ height have been set to a fixed value for
visualization, while their colors are selected randomly to facilitate the identification of the different walls. For real-world scenes, a 2D
occupancy grid-map is included as reference.

(a) AMCL [27] (b) Scan Matching [26] (c) ORB-SLAM2 [29]

Fig. 9: Comparison of Sigma-FP working in the MAPIR-UMA Lab
under different localization methods.
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