1,051 research outputs found

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy-Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with non-invasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    Design considerations for engineering autonomous underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007Autonomous Underwater Vehicles (AUVs) have been established as a viable tool for Oceanographic Sciences. Being untethered and independent, AUVs fill the gap in Ocean Exploration left by the existing manned submersible and remotely operated vehicles (ROV) technology. AUVs are attractive as cheaper and efficient alternatives to the older technologies and are breaking new ground in many applications. Designing an autonomous vehicle to work in the harsh environment of the deep ocean comes with its set of challenges. This paper discusses how the current engineering technologies can be adapted to the design of AUVs. Recently, as the AUV technology has matured, we see AUVs being used in a variety of applications ranging from sub-surface sensing to sea-floor mapping. The design of the AUV, with its tight constraints, is very sensitive to the target application. Keeping this in mind, the goal of this thesis is to understand how some of the major issues affect the design of the AUV. This paper also addresses the mechanical and materials issues, power system design, computer architecture, navigation and communication systems, sensor considerations and long term docking aspects that affect AUV design. With time, as the engineering sciences progress, the AUV design will have to change in order to optimize its performance. Thus, the fundamental issues discussed in this paper can assist in meeting the challenge of maintaining AUV design on par with modern technology.This work was funded by the NSF Center for Subsurface Sensing and Imaging Systems (CenSSIS) Engineering Research Center (ENC) grant no. EEC-99868321

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy–Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with noninvasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    Underwater 3D Structures As Semantic Landmarks in SONAR Mapping

    Get PDF

    Decoupled Sampling-Based Motion Planning for Multiple Autonomous Marine Vehicles

    Get PDF
    There is increasing interest in the deployment and operation of multiple autonomous marine vehicles (AMVs) for a number of challenging scientific and commercial operational mission scenarios. Some of the missions, such as geotechnical surveying and 3D marine habitat mapping, require that a number of heterogeneous vehicles operate simultaneously in small areas, often in close proximity of each other. In these circumstances safety, reliability, and efficient multiple vehicle operation are key ingredients for mission success. Additionally, the deployment and operation of multiple AMVs at sea are extremely costly in terms of the logistics and human resources required for mission supervision, often during extended periods of time. These costs can be greatly minimized by automating the deployment and initial steering of a vehicle fleet to a predetermined configuration, in preparation for the ensuing mission, taking into account operational constraints. This is one of the core issues addressed in the scope of the Widely Scalable Mobile Underwater Sonar Technology project (WiMUST), an EU Horizon 2020 initiative for underwater robotics research. WiMUST uses a team of cooperative autonomous ma- rine robots, some of which towing streamers equipped with hydrophones, acting as intelligent sensing and communicat- ing nodes of a reconfigurable moving acoustic network. In WiMUST, the AMVs maintain a fixed geometric formation through cooperative navigation and motion control. Formation initialization requires that all the AMVs start from scattered positions in the water and maneuver so as to arrive at required target configuration points at the same time in a completely au- tomatic manner. This paper describes the decoupled prioritized vehicle motion planner developed in the scope of WiMUST that, together with an existing system for trajectory tracking, affords a fleet of vehicles the above capabilities, while ensuring inter- vehicle collision and streamer entanglement avoidance. Tests with a fleet of seven marine vehicles show the efficacy of the system planner developed.Peer reviewe

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields

    Get PDF
    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7–9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834–875 (2010)]United States. Office of Naval Research (Grant N00014-14-1- 0214

    3-D Coverage Path Planning for Underwater Terrain Mapping

    Get PDF
    This thesis presents an autonomous approach of 3-D coverage of underwater terrain using multi-level coverage trees. An autonomous underwater vehicle (AUV) equipped with multi-beam sonar sensors, Doppler velocity log (DVL) and inertial measurement unit (IMU) sensors is used to achieve this goal. The underwater 3-D search space is represented by a multi-level coverage tree which is generated online based on the obstacle information collected by the AUV. The nodes of the tree correspond to safe sub-areas for AUV navigation which are identified based on obstacle density in neighborhood of free cells. Standard tree traversal strategies like depth-first-search (DFS) and breath-first-search (BFS) are then used for visiting all the nodes of the tree thus securing complete coverage of the 3-D space. The terrain data collected by the AUV during tree coverage is used offline for the 3-D reconstruction of seabed using alpha shapes algorithm. The performance of this method is validated using a high-fidelity underwater simulator UWSim based on Robot Operating System (ROS). The simulations show that the proposed methodology achieves complete coverage and accurate reconstruction of 3-D underwater terrain
    • …
    corecore