85 research outputs found

    Gut microbiota and colorectal cancer

    Get PDF

    Potassium channels in cell cycle and cell proliferation

    No full text
    Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression

    Myeloid-Derived Suppressor Cells Induce Podocyte Injury Through Increasing Reactive Oxygen Species in Lupus Nephritis

    Get PDF
    The expansion of myeloid-derived suppressor cells (MDSCs) has been documented in murine models and patients with lupus nephritis (LN), but the exact role of MDSCs in this process remains largely unknown. In this study, we investigated whether MDSCs are involved in the process of podocyte injury in the development of LN. In toll-like receptor-7 (TLR-7) agonist imiquimod-induced lupus mice, we found the severe podocyte injury in glomeruli of lupus mice and significant expansion of MDSCs in spleens and kidneys of lupus mice. The function of TLR-7 activated MDSCs was enhanced including the increased generation of reactive oxygen species (ROS) in vivo and in vitro. Moreover, the ROS production of MDSCs induced podocyte injury through activating the p-38MAPK and NF-kB signaling. Furthermore, we verified that podocyte injury was indeed correlated with expansion of MDSCs and their ROS secretion in LN of pristane-induced lupus mice. These findings first indicate that the podocyte injury in LN was associated with the increased MDSCs in kidney and MDSCs may be a promising therapeutic target of LN in the future

    iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways

    Get PDF
    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity.postprin

    VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells

    Get PDF
    Abstract Background Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF165a and VEGF165b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. Method To test this hypothesis we investigated the physiological effect of VEGF165a and VEGF165b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. Results VEGF165a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF165b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF165a and VEGF165b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF165a and VEGF165b on paracellular permeability and the effect of VEGF165a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). Conclusion This study demonstrates that the novel isoform VEGF165a and VEGF165b induce differing effects on permeability in pulmonary microvascular endothelial cells

    Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide, with known antiapoptotic functions. Our previous in vitro study has demonstrated the ameliorative role of PACAP-38 in chicken hair cells under oxidative stress conditions, but its effects on living hair cells is now yet known. Therefore, the aim of the present study was to investigate in vivo the protective role of PACAP-38 in hair cells found in zebrafish (Danio rerio) sense organs-neuromasts. To induce oxidative stress the 5-day postfertilization (dpf) zebrafish larvae were exposed to 1.5 mM H2O2 for 15 min or 1 h. This resulted in an increase in caspase-3 and p-38 MAPK level in the hair cells as well as in an impairment of the larvae basic behavior. To investigate the ameliorative role of PACAP-38, the larvae were incubated with a mixture of 1.5 mM H2O2 and 100 nM PACAP-38 following 1 h preincubation with 100 nM PACAP-38 only. PACAP-38 abilities to prevent hair cells from apoptosis were investigated. Whole-mount immunohistochemistry and confocal microscopy analyses revealed that PACAP-38 treatment decreased the cleaved caspase-3 level in the hair cells, but had no influence on p-38 MAPK. The analyses of basic locomotor activity supported the protective role of PACAP-38 by demonstrating the improvement of the fish behavior after PACAP-38 treatment. In summary, our in vivo findings demonstrate that PACAP-38 protects zebrafish hair cells from oxidative stress by attenuating oxidative stress-induced apoptosis.Peer reviewe

    Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain

    Get PDF
    AbstractDiabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer′s disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological disorders associated with diabetes

    The viability of using epigenetic drugs as a treatment of patients in sepsis - a translational perspective

    Get PDF
    Sepsis is a serious and potentially lethal clinical condition characterized by dysregulated immune and systemic inflammatory responses (SIRS) to an infection. Although sepsis has a high mortality rate (reaching 25% in Europe and North America), the clinical interventions available are still limited. In the bottom of this exacerbation of the immune response, that evolves to immunosuppression and immune paralysis, lies epigenetic mechanisms. In sepsis, the balance between activated and repressed immune related genes is at lost, and to recover that epigenetic based drugs promises to be the future of sepsis treatment. Histone deacetylase inhibitors (HDAC’s inhibitors) are drugs based in the epigenetic mechanism of acetylation and deacetylation of histones, and they have already been tested - phases three and four of clinical trials - as treatment for other diseases, such as multiple myeloma, and cutaneous t-cell lymphoma. Furthermore, experimental studies in sepsis models shows that HDAC’s inhibitors are a promising suppressor of the exacerbated inflammatory response. Therefore, as the recent works shows, epigenetic drugs should be considered a viable sepsis therapy in the future. The focus of this review is to present the most recent scientific advances in the basic and clinical areas of epigenetic as a sepsis treatment, opening opportunities for the use of epigenetic in treating this condition.Sepse é uma condição clínica grave e potencialmente letal caracterizada por desreguladas respostas imunes e inflamatórias sistêmicas (SIRS) a uma infecção. Embora a sepse tenha uma alta taxa de mortalidade (atingindo 25% na Europa e América do Norte), as intervenções clínicas disponíveis ainda são limitadas. Por trás dessa exacerbação da resposta imunológica, que evolui para a imunossupressão e paralisia imune, residem mecanismos epigenéticos. Na sepse, o equilíbrio entre genes imunes ativados e reprimidos relacionados é perdido, e reaver drogas baseadas na epigenética promete ser o futuro do tratamento da sepse. Inibidores da histona desacetilase (inibidores de HDAC) são drogas baseadas no mecanismo epigenético de acetilação e desacetilação de histonas, e eles já têm sido testados - fases três e quatro de ensaios clínicos - como tratamento para outras doenças, tais como o mieloma múltiplo, e linfoma cutâneo de células T. Além disso, os estudos experimentais em modelos de sepse mostram que os inibidores de HDAC são promissores supressores da resposta inflamatória exacerbada. Portanto, como os trabalhos recentes mostraram, drogas epigenéticas poderiam ser consideradas uma viável terapia para a sepse no futuro. O foco desta revisão é apresentar os mais recentes avanços científicos nas áreas básicas e clínicas de epigenética como um tratamento da sepse, abrindo oportunidades para o uso da epigenética no tratamento desta condição

    Indian Spices for Healthy Heart - An Overview

    Get PDF
    Spices were some of the most valuable items of trade in the ancient and medieval world. Herbalist and folk practitioners have used plant remedies for centuries, but only recently have scientist begun to study the powers of common herbs and spices. In the current set-up, the anti-proliferative, anti-hypercholesterolemic, anti-diabetic, anti-inflammatory effects of spices have overriding importance, as the key health concern of mankind nowadays is diabetes, cardio-vascular diseases, arthritis and cancer. Spices or their active compounds could be used as possible ameliorative or preventive agents for these health disorders. Spices are rich in antioxidants, and scientific studies suggest that they are also potent inhibitors of tissue damage and inflammation caused by high levels of blood sugar and circulating lipids. Because spices have very low calorie content and are relatively inexpensive, they are reliable sources of antioxidants and other potential bioactive compounds in diet. This review outlines the role of some spices used in the Indian kitchen for its flavour and taste which are potential to maintain a healthy heart
    • …
    corecore