15 research outputs found

    Evaluation of Open Source Static Analysis Security Testing (SAST) Tools for C

    Get PDF
    The goal of SAST-tools is to help developers coding software in a more secure fashion by pointing early at suspicious constructs, insecure API usage or dangerous run-time errors. There exists a variety of tools which claim more or less to do a "security analysis". The goal of this evaluation is to measure to which extent open source static analysis-tools can find vulnerabilities in C language based code. Therefore we investigate which kind of bugs exist as vulnerabilities in C language based software found in a major linux distribution. Then we evaluate several open source static analysis tools for C on a major benchmark data set which includes the vulnerabilities we identified before. It comes out that there is a great variety in the precision and recall of the tools. We show that pure "linters" miss almost all of the vulnerabilities, however sound tools like Frama-C perform best when it comes down to finding difficult-to-spot numeric errors and buffer overflows

    Model-Driven Information Flow Security Engineering for Cyber-Physical Systems

    Get PDF

    Agile Processes in Software Engineering and Extreme Programming: 18th International Conference, XP 2017, Cologne, Germany, May 22-26, 2017, Proceedings

    Get PDF
    agile software development; lean development; scrum; project management; software developmen

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Applying patterns in embedded systems design for managing quality attributes and their trade-offs

    Get PDF

    Applying patterns in embedded systems design for managing quality attributes and their trade-offs

    Get PDF
    Embedded systems comprise one of the most important types of software-intensive systems, as they are pervasive and used in daily life more than any other type, e.g., in cars or in electrical appliances. When these systems operate under hard constraints, the violation of which can lead to catastrophic events, the system is classified as a critical embedded system (CES). The quality attributes related to these hard constraints are named critical quality attributes (CQAs). For example, the performance of the software for cruise-control or self-driving in a car are critical as they can potentially relate to harming human lives. Despite the growing body of knowledge on engineering CESs, there is still a lack of approaches that can support its design, while managing CQAs and their trade-offs with noncritical ones (e.g., maintainability and reusability). To address this gap, the state-of-research and practice on designing CES and managing quality trade-offs were explored, approaches to improve its design identified, and the merit of these approaches empirically investigated. When designing software, one common approach is to organize its components according to well-known structures, named design patterns. However, these patterns may be avoided in some classes of systems such as CES, as they are sometimes associated with the detriment of CQAs. In short, the findings reported in the thesis suggest that, when applicable, design patterns can promote CQAs while supporting the management of trade-offs. The thesis also reports on a phenomena, namely pattern grime, and factors that can influence the extent of the observed benefits

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Renforcement formel et automatique de politiques de sécurité dans des applications Android par réécriture

    Get PDF
    Autant les applications Android ont réussi à positionner Android parmi les systèmes d'exploitation les plus utilisés, autant elles ont facilité aux créateurs de maliciels de s'introduire et de compromettre ses appareils. Une longue liste de menaces causées par les applications téléchargées vise l'intégrité du système et la vie privée de ses utilisateurs. Malgré l'évolution incessante du système Android pour améliorer son mécanisme de sécurité, le niveau de sophistication des logiciels malveillants a augmenté et s'adapte continuellement avec les nouvelles mesures. L'une des principales faiblesses menaçant la sécurité de ce système est le manque abyssal d'outils et d'environnements permettant la spécification et la vérification formelle des comportements des applications avant que les dommages ne soient causés. À cet égard, les méthodes formelles semblent être le moyen le plus naturel et le plus sûr pour une spécification et une vérification rigoureuses et non ambiguës de telles applications. Notre objectif principal est de développer un cadre formel pour le renforcement de politiques de sécurité dans les applications Android. L'idée est d'établir une synergie entre le paradigme orienté aspect et les méthodes formelles. L'approche consiste à réécrire le programme de l'application en ajoutant des tests de sécurité à certains points soigneusement sélectionnés pour garantir le respect de la politique de sécurité. La version réécrite du programme préserve tous les bons comportements de la version originale qui sont conformes à la politique de sécurité et agit contre les mauvais.As much as they have positioned Android among the most widely used operating systems, Android applications have helped malware creators to break in and infect its devices. A long list of threats caused by downloaded applications targets the integrity of the system and the privacy of its users. While the Android system is constantly evolving to improve its security mechanism, the malware's sophistication level is skyrocketing and continuously adapting with the new measures. One of the main weaknesses threatening smartphone security is the abysmal lack of tools and environments that allow formal specification and verification of application behaviors before damage is done. In this regard, formal methods seem to be the most natural and secure way for rigorous and unambiguous specification and verification of such applications. Our ultimate goal is to formally enforce security policies on Android applications. The main idea is to establish a synergy between the aspect-oriented paradigm and formal methods such as the program rewriting technique. The approach consists of rewriting the application program by adding security tests at certain carefully selected points to ensure that the security policy is respected. The rewritten version of the program preserves all the good behaviors of the original one that comply with the security policy and acts against the bad ones
    corecore