312 research outputs found

    An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display

    Get PDF
    In recent years, many experimental and theoretical research groups worldwide have actively worked on demonstrating the use of liquid crystals (LCs) as adaptive lenses for image generation, waveform shaping, and non-mechanical focusing applications. In particular, important achievements have concerned the development of alternative solutions for 3D vision. This work focuses on the design and evaluation of the electro-optic response of a LC-based 2D/3D autostereoscopic display prototype. A strategy for achieving 2D/3D vision has been implemented with a cylindrical LC lens array placed in front of a display; this array acts as a lenticular sheet with a tunable focal length by electrically controlling the birefringence. The performance of the 2D/3D device was evaluated in terms of the angular luminance, image deflection, crosstalk, and 3D contrast within a simulated environment. These measurements were performed with characterization equipment for autostereoscopic 3D displays (angular resolution of 0.03 )

    The Modelling of Stereoscopic 3D Scene Acquisition

    Get PDF
    The main goal of this work is to find a suitable method for calculating the best setting of a stereo pair of cameras that are viewing the scene to enable spatial imaging. The method is based on a geometric model of a stereo pair cameras currently used for the acquisition of 3D scenes. Based on selectable camera parameters and object positions in the scene, the resultant model allows calculating the parameters of the stereo pair of images that influence the quality of spatial imaging. For the purpose of presenting the properties of the model of a simple 3D scene, an interactive application was created that allows, in addition to setting the cameras and scene parameters and displaying the calculated parameters, also displaying the modelled scene using perspective views and the stereo pair modelled with the aid of anaglyphic images. The resulting modelling method can be used in practice to determine appropriate parameters of the camera configuration based on the known arrangement of the objects in the scene. Analogously, it can, for a given camera configuration, determine appropriate geometrical limits of arranging the objects in the scene being displayed. This method ensures that the resulting stereoscopic recording will be of good quality and observer-friendly

    Future Directions in Astronomy Visualisation

    Full text link
    Despite the large budgets spent annually on astronomical research equipment such as telescopes, instruments and supercomputers, the general trend is to analyse and view the resulting datasets using small, two-dimensional displays. We report here on alternative advanced image displays, with an emphasis on displays that we have constructed, including stereoscopic projection, multiple projector tiled displays and a digital dome. These displays can provide astronomers with new ways of exploring the terabyte and petabyte datasets that are now regularly being produced from all-sky surveys, high-resolution computer simulations, and Virtual Observatory projects. We also present a summary of the Advanced Image Displays for Astronomy (AIDA) survey which we conducted from March-May 2005, in order to raise some issues pertitent to the current and future level of use of advanced image displays.Comment: 13 pages, 2 figures, accepted for publication in PAS

    Analyzing autostereoscopic environment confgurations for the design of videogames

    Get PDF
    Stereoscopic devices are becoming more popular every day. The 3D visualization that these displays ofer is being used by videogame designers to enhance the user’s game experience. Autostereoscopic monitors ofer the possibility of obtaining this 3D visualization without the need for extra device. This fact makes them more attractive to videogame developers. However, the confguration of the cameras that make it possible to obtain an immersive 3D visualization inside the game is still an open problem. In this paper, some system confgurations that create autostereoscopic visualization in a 3D game engine were evaluated to obtain a good accommodation of the user experience with the game. To achieve this, user tests that take into account the movement of the player were carried out to evaluate diferent camera confgurations, namely, dynamic and static converging optical axis and parallel optical axis. The purpose of these tests is to evaluate the user experience regarding visual discomfort resulting from the movement of the objects, with the purpose of assessing the preference for one confguration or the other. The results show that the users tend to have a preference trend for the parallel optical axis confguration set. This confguration seems to be optimal because the area where the moving objects are focused is deeper than in the other confgurations

    New visual coding exploration in MPEG: Super-MultiView and free navigation in free viewpoint TV

    Get PDF
    ISO/IEC MPEG and ITU-T VCEG have recently jointly issued a new multiview video compression standard, called 3D-HEVC, which reaches unpreceded compression performances for linear,dense camera arrangements. In view of supporting future highquality,auto-stereoscopic 3D displays and Free Navigation virtual/augmented reality applications with sparse, arbitrarily arranged camera setups, innovative depth estimation and virtual view synthesis techniques with global optimizations over all camera views should be developed. Preliminary studies in response to the MPEG-FTV (Free viewpoint TV) Call for Evidence suggest these targets are within reach, with at least 6% bitrate gains over 3DHEVC technology

    A comprehensive taxonomy for three-dimensional displays

    Get PDF
    Even though three-dimensional (3D) displays have been introduced in relatively recent times in the context of display technology, they have undergone a rapid evolution, to the point that a plethora of equipment able to reproduce dynamic three-dimensional scenes in real time is now becoming commonplace in the consumer market. This paper’s main contributions are (1) a clear definition of a 3D display, based on the visual depth cues supported, and (2) a hierarchical taxonomy of classes and subclasses of 3D displays, based on a set of properties that allows an unambiguous and systematic classification scheme for three-dimensional displays. Five main types of 3D displays are thus defined –two of those new–, aiming to provide a taxonomy that is largely backwards-compatible, but that also clarifies prior inconsistencies in the literature. This well-defined outline should also enable exploration of the 3D display space and devising of new 3D display systems.Fundação para a Ciência e Tecnologi
    corecore