4,284 research outputs found

    The Asymmetric Thick Disk: A Star Count and Kinematic Analysis. II The Kinematics

    Full text link
    We report a kinematic signature associated with the observed asymmetry in the distribution of thick disk/inner halo stars interior to the Solar circle described in Paper I. In that paper we found a statistically significant excess (20% to 25 %) of stars in quadrant I (l ~ 20 deg to 55 deg) both above and below the plane (b ~ +/- 25 deg to +/- 45 deg) compared to the complementary region in quadrant IV. We have measured Doppler velocities for 741 stars, selected according to the same magnitude and color criteria, in the direction of the asymmetry and in the corresponding fields in quadrant IV. We have also determined spectral types and metallicities measured from the same spectra. We not only find an asymmetric distribution in the V_LSR velocities for the stars in the two regions, but the angular rate of rotation, w, for the stars in quadrant I reveals a slower effective rotation rate compared to the corresponding quadrant IV stars. We use our [Fe/H] measurements to separate the stars into the three primary population groups, halo, thick disk, and disk, and conclude that it is primarily the thick disk stars that show the slower rotation in quadrant I. A solution for the radial, tangential and vertical components of the V_LSR velocities, reveals a significant lag of ~ 80 to 90 km/s in the direction of Galactic rotation for the thick disk stars in quadrant I, while in quadrant IV, the same population has only a ~ 20 km/s lag. The results reported here support a rotational lag among the thick disk stars due to a gravitational interaction with the bar as the most likely explanation for the asymmetry in both the star counts and the kinematics. The affected thick disk stars, however, may be associated with the recently discovered Canis Major debris stream or a similar merger event (abridged).Comment: Accepted for publication in the Astronomical Journa

    Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos

    Full text link
    Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation energies have been measured via the (3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well suited for a direct measurement of the complete sub-MeV solar electron-neutrino spectrum (including pp neutrinos) where definitive effects of flavor conversion are expected

    Validation of scramjet exhaust simulation technique at Mach 6

    Get PDF
    Current design philosophy for hydrogen-fueled, scramjet-powered hypersonic aircraft results in configurations with strong couplings between the engine plume and vehicle aerodynamics. The experimental verification of the scramjet exhaust simulation is described. The scramjet exhaust was reproduced for the Mach 6 flight condition by the detonation tube simulator. The exhaust flow pressure profiles, and to a large extent the heat transfer rate profiles, were then duplicated by cool gas mixtures of Argon and Freon 13B1 or Freon 12. The results of these experiments indicate that a cool gas simulation of the hot scramjet exhaust is a viable simulation technique except for phenomena which are dependent on the wall temperature relative to flow temperature

    Simulation of a hydrocarbon fueled scramjet exhaust

    Get PDF
    Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code

    The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres

    Get PDF
    Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a \cobold 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Method: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th ii 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has am non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.Comment: A&A, in pres

    Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293-2422

    Full text link
    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly-formed stars, for example to identify the presence of rotation and infall. IRAS 16293-2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.46" x 0.29", i.e. \sim 55 ×\times 35~AU) images of compact emission from the C17^{17}O (3-2) and C34^{34}S (7-6) transitions at 337~GHz (0.89~mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C17^{17}O (3-2) and C34^{34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS16293A. Our combined eSMA and SMA observations show that the velocity field on the 50--400~AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293-2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.Comment: Accepted for publication in ApJ, 18 pages, 10 figure

    Modified margin convergence: over-under lacing suture technique

    Get PDF
    The principle of margin convergence can be applied to rotator cuff repair to enhance the security of fixation by decreasing the mechanical strain at the margins of the tear. We describe a suture technique, over-under lacing, that reproduces the same margin convergence, with equal tissue tension across the entire surface area of the cuff. A consecutive series of patients affected by massive U-shaped rotator cuff tears were treated by this repair technique. Preoperative diagnosis, tear assessment, and grading of fatty infiltration of the cuff muscles were based on arthro-computed tomography evaluation. The technique passes 2 sutures from the medial to lateral margin of the tear, with a knotless suture anchor for tendon-to-bone fixation. The proposed technique seems to reduce tensile strain on the repaired tendon, can reconstruct the rotator cuff cable, and can attain the balanced pull of the tendon in a medial-to-lateral fashion. The over-under lacing suture technique is both simple and reproducible. This technique may achieve the goals of margin convergence with satisfactory preliminary clinical results for patients with massive rotator cuff tears

    The Insensitivity of Consumption to News About Income

    Get PDF
    This paper uses a variance bounds test to see whether consumption is too sensitive to news about income to be consistent with a standard permanent income model, under the maintained hypothesis that income has a unit root. It is found that, if anything, consumption is less sensitive than the model would predict. This implication is robust to the representative consumer having private information about his future income that the econometrician does not have, to wealth shocks, and to transitory consumption. This suggests the importance in future research on the model of allowing for factors that tend to make consumption smooth.

    Early Primary Percutaneous Coronary Intervention in Patients with ST-segment Elevation Acute Myocardial Infarction from the Cluj Area

    Get PDF
    Background: The seriousness of acute myocardial infarction (AMI) and the importance of its early detection and intervention are well known. Rapid reperfusion of the infarct area positively influences the immediate and long-term prognosis of patients with ST-segment elevation AMI. Material and method: Patients with acute myocardial infarction who underwent primary percutaneous transluminal coronary angioplasty (during the first 12 hours after the onset of chest pain) in the cardiac catheterization laboratory of the Cluj-Napoca “Nicolae Stancioiu” Heart Institute between November 2008 and February 2010 were followed prospectively in order to measure time-to-treatment intervals. Results: Our sample of 321 AMI patients included mostly males (73.8% of cases, 95% CI: 68.6-78.5; p<0.001) and patients from the urban area (67.6% of cases, 95% CI: 62.1-72.6; p<0.001) aged between 50 and 79 years. Total ischemia time (from onset of precordial pain to primary angioplasty) was 338.9 minutes on average (between 100 and 720 minutes); ambulance waiting time was 22.1 minutes (3-150 minutes); transport to first hospital took 49.9 minutes (5-276 minutes) while transport to a cardiology hospital averaged 247 minutes from the onset of pain (maximum 660 minutes). The door-to-balloon time was 91.9 minutes while early intervention was possible in 27.4% (95% CI: 22.7-32.7%) of AMI cases. Conclusions: Time-to-treatment intervals allowed early reperfusion in only one third of AMI patients due to lack of access to specialised cardiology hospitals in rural areas and inconsistencies regarding the attitude towards AMI cases across counties
    corecore