54 research outputs found

    Ontological representation of time-of-flight camera data to support vision-based AmI

    Get PDF
    Proceedings of: 4th International Workshop on Sensor Networks and Ambient Intelligence, 19-23 March 2012, Lugano ( Switzerland)Recent advances in technologies for capturing video data have opened a vast amount of new application areas. Among them, the incorporation of Time-of-Flight (ToF) cameras on Ambient Intelligence (AmI) environments. Although theperformance of tracking algorithms have quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted for smart environments. This paper presents an extension of a previous system in the area of videobased AmI to incorporate ToF information to enhance sceneinterpretation. The framework is founded on an ontologybased model of the scene, which is extended to incorporate ToF data. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application.This work was supported in part by Projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029- C02-02.Publicad

    Automatic Analysis of Lens Distortions in Image Registration

    Get PDF
    Geometric image registration by estimating homographies is an important processing step in a wide variety of computer vision applications. The 2D registration of two images does not require an explicit reconstruction of intrinsic or extrinsic camera parameters. However, correcting images for non-linear lens distortions is highly recommended. Unfortunately, standard calibration techniques are sometimes difficult to apply and reliable estimations of lens distortions can only rarely be obtained. In this paper we present a new technique for automatically detecting and categorising lens distortions in pairs of images by analysing registration results. The approach is based on a new metric for registration quality assessment and facilitates a PCA-based statistical model for classifying distortion effects. In doing so the overall importance for lens calibration and image corrections can be checked, and a measure for the efficiency of accordant correction steps is given

    Realistic Face Animation for Audiovisual Speech Applications: A Densification Approach Driven by Sparse Stereo Meshes

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceBeing able to produce realistic facial animation is crucial for many speech applications in language learning technologies. Reaching realism needs to acquire and to animate dense 3D models of the face which are often acquired with 3D scanners. However, acquiring the dy- namics of the speech from 3D scans is difficult as the acquisition time generally allows only sustained sounds to be recorded. On the contrary, acquiring the speech dynamics on a sparse set of points is easy using a stereovision recording a talker with markers painted on his/her face. In this paper, we propose an approach to animate a very realistic dense talking head which makes use of a reduced set of 3D dense meshes ac- quired for sustained sounds as well as the speech dynamics learned on a talker painted with white markers. The contributions of the paper are twofold: We first propose an appropriate principal component anal- ysis (PCA) with missing data techniques in order to compute the basic modes of the speech dynamics despite possible unobservable points in the sparse meshes obtained by the stereovision system. We then propose a method for densifying the modes, that is a method for computing the dense modes for spatial animation from the sparse modes learned by the stereovision system. Examples prove the effectiveness of the approach and the high realism obtained with our method

    Stability Analysis of Cell Dynamics in Leukemia

    Get PDF
    Cataloged from PDF version of article.In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations

    Stability analysis of cell dynamics in leukemia

    Get PDF
    In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations. © 2012 EDP Sciences

    Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    Get PDF
    This article belongs to the Special Issue Sensors and Wireless Sensor Networks for Novel Concepts of Things, Interfaces and Applications in Smart SpacesRecent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.This work was supported in part by Projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.Publicad
    • 

    corecore