374 research outputs found

    Split-screen single-camera stereoscopic PIV application to a turbulent confined swirling layer with free surface

    Get PDF
    An annular liquid wall jet, or vortex tube, generated by helical injection inside a tube is studied experimentally as a possible means of fusion reactor shielding. The hollow confined vortex/swirling layer exhibits simultaneously all the complexities of swirling turbulence, free surface, droplet formation, bubble entrapment; all posing challenging diagnostic issues. The construction of flow apparatus and the choice of working liquid and seeding particles facilitate unimpeded optical access to the flow field. A split-screen, single-camera stereoscopic particle image velocimetry (SPIV) scheme is employed for flow field characterization. Image calibration and free surface identification issues are discussed. The interference in measurements of laser beam reflection at the interface are identified and discussed. Selected velocity measurements and turbulence statistics are presented at Re_λ = 70 (Re = 3500 based on mean layer thickness)

    Dynamic flow distortion investigation in an S-duct using DDES and SPIV data

    Get PDF
    The dynamic flow distortion generated within convoluted aero-engine intakes can affect the performance and operability of the engine. There is a need for a better understanding of the main flow mechanisms which promote flow distortion at the exit of S-shaped intakes. This paper presents a detailed analysis of the main coherent structures in an S-duct flow field based on a Delayed Detached Eddy Simulation (DDES). The DDES capability to capture the characteristics of the highly unsteady flow field is demonstrated against high resolution, synchronous Stereoscopic Particle Image Velocimetry (SPIV) measurements at the Aerodynamic Interface Plane (AIP). The flow field mechanisms responsible for the main AIP perturbations are identified. Clockwise and counter-clockwise stream-wise vortices are alternately generated around the separation region at a frequency of St=0.53, which promotes the swirl switching at the AIP. Spanwise vortices are also shed from the separation region at a frequency of St=1.06, and convect downstream along the separated centreline shear layer. This results in a vertical modulation of the main loss region and a fluctuation of the velocity gradient between the high and low velocity flow at the AIP

    On the mechanism of trailing vortex wandering

    Get PDF
    The mechanism of trailing vortex wandering has long been debated and is often attributed to either wind-tunnel effects or an instability. Using particle image velocimetry data obtained in the wake of a NACA0012 airfoil, we remove the effect of wandering from the measured velocity field and, through a triple decomposition, recover the coherent wandering motion. Based on this wandering motion, the most energetic structures are computed using the proper orthogonal decomposition (POD) and exhibit a helical mode with an azimuthal wavenumber of |m|=1 whose kinetic energy grows monotonically in the downstream direction. To investigate the nature of the vortex wandering, we perform a spatial stability analysis of a matched Batchelor vortex. The primary stability mode is found to be marginally stable and nearly identical in both size and structure to the leading POD mode. The strikingly similar structure, coupled with the measured energy growth, supports the proposition that the vortex wandering is the result of an instability. We conclude that the cause of the wandering is the non-zero radial velocity of the |m|=1 mode on the vortex centreline, which acts to transversely displace the trailing vortex, as observed in experiments. However, the marginal nature of the stability mode prevents a definitive conclusion regarding the specific type of instability

    PIV Measurements of the CEV Hot Abort Motor Plume for CFD Validation

    Get PDF
    NASA s next manned launch platform for missions to the moon and Mars are the Orion and Ares systems. Many critical aspects of the launch system performance are being verified using computational fluid dynamics (CFD) predictions. The Orion Launch Abort Vehicle (LAV) consists of a tower mounted tractor rocket tasked with carrying the Crew Module (CM) safely away from the launch vehicle in the event of a catastrophic failure during the vehicle s ascent. Some of the predictions involving the launch abort system flow fields produced conflicting results, which required further investigation through ground test experiments. Ground tests were performed to acquire data from a hot supersonic jet in cross-flow for the purpose of validating CFD turbulence modeling relevant to the Orion Launch Abort Vehicle (LAV). Both 2-component axial plane Particle Image Velocimetry (PIV) and 3-component cross-stream Stereo Particle Image Velocimetry (SPIV) measurements were obtained on a model of an Abort Motor (AM). Actual flight conditions could not be simulated on the ground, so the highest temperature and pressure conditions that could be safely used in the test facility (nozzle pressure ratio 28.5 and a nozzle temperature ratio of 3) were used for the validation tests. These conditions are significantly different from those of the flight vehicle, but were sufficiently high enough to begin addressing turbulence modeling issues that predicated the need for the validation tests

    The flow structure behind vortex generators embedded in a decelerating turbulent boundary layer

    Get PDF
    The objective of the present work is to analyse the behaviour of a turbulent decelerating boundary layer under the effect of both passive and active jets vortex generators (VGs). The stereo PIV database of Godard and Stanislas [1, 2] obtained in an adverse pressure gradient boundary layer is used for this study. After presenting the effect on the mean velocity field and the turbulent kinetic energy, the line of analysis is extended with two points spatial correlations and vortex detection in instantaneous velocity fields. It is shown that the actuators concentrate the boundary layer turbulence in the region of upward motion of the flow, and segregate the near-wall streamwise vortices of the boundary layer based on their vorticity sign

    Investigation of Endwall Vortex Manipulation in High Lift Turbines Caused By Active Endwall Forcing

    Get PDF
    With the increased demand for lighter, more fuel efficient and smaller gas turbine engines, the impetus to reduce the weight and size of the turbine has become apparent. One approach to reduce this weight is to reduce the number of blades in the turbine. However, to maintain power output, each blade must be capable of supporting a greater amount of lift. While several high-lift turbine profiles have been detailed in literature, most of these profiles have increased endwall losses, despite their desirable mid-span characteristics. To mitigate this endwall loss, a number of active and passive flow approaches have been studied and reported. The current effort documents significant manipulation and reduction in strength of endwall flow features via active control in the AFRL Low Speed Wind Tunnel Test Facility. The manipulation of the pressure side leg of the horseshoe vortex, formed at the leading edge of the turbine profile, has been shown to reduce overall pressure loss near the endwall in certain active flow control conditions. The active flow took the form of a localized low-momentum pulsed jet directly under the pressure side leg of the horseshoe vortex. Total pressure loss measurements have been collected and mapped at six planes within and beyond the passage. To supplement the total pressure loss measurements, high speed stereographic particle image velocimetry data were collected to study the effects of localized forcing of the endwall flow structure. The combination of the velocity measurements at several planes throughout the passage and the total pressure loss measurements led to a deeper understanding of the fluid dynamic mechanisms responsible for the reduction in endwall losses

    Flow Field Characterization of an Angled Supersonic Jet Near a Bluff Body

    Get PDF
    An experiment was performed to acquire data from a hot supersonic jet in cross flow for the purpose of validating computational fluid dynamics (CFD) turbulence modeling relevant to the Orion Launch Abort System. Hot jet conditions were at the highest temperature and pressure that could be acquired in the test facility. The nozzle pressure ratio was 28.5, and the nozzle temperature ratio was 3. These conditions are different from those of the flight vehicle, but sufficiently high to model the observed turbulence features. Stereo Particle Image Velocimetry (SPIV) data and capsule pressure data are presented. Features of the flow field are presented and discusse
    corecore