394 research outputs found

    λΆ„μ‚°λœ λ‘œν„°λ‘œ κ΅¬λ™λ˜λŠ” λΉ„ν–‰ μŠ€μΌˆλ ˆν†€ μ‹œμŠ€ν…œμ˜ λ””μžμΈ μƒνƒœμΆ”μ • 및 μ œμ–΄

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀,2020. 2. 이동쀀.In this thesis, we present key theoretical components for realizing flying aerial skeleton system called LASDRA (large-size aerial skeleton with distributed rotor actuation). Aerial skeletons are articulated aerial robots actuated by distributed rotors including both ground connected type and flying type. These systems have recently attracted interest and are being actively researched in several research groups, with the expectation of applying those for aerial manipulation in distant/narrow places, or for the performance with entertaining purpose such as drone shows. Among the aerial skeleton systems, LASDRA system, proposed by our group has some significant advantages over the other skeleton systems that it is capable of free SE(3) motion by omni-directional wrench generation of each link, and also the system can be operated with wide range of configuration because of the 3DOF (degrees of freedom) inter-link rotation enabled by cable connection among the link modules. To realize this LASDRA system, following three components are crucial: 1) a link module that can produce omni-directional force and torque and enough feasible wrench space; 2) pose and posture estimation algorithm for an articulated system with high degrees of freedom; and 3) a motion generation framework that can provide seemingly natural motion while being able to generate desired motion (e.g., linear and angular velocity) for the entire body. The main contributions of this thesis is theoretically developing these three components, and verifying these through outdoor flight experiment with a real LASDRA system. First of all, a link module for the LASDRA system is designed with proposed constrained optimization problem, maximizing the guaranteed feasible force and torque for any direction while also incorporating some constraints (e.g., avoiding inter-rotor air-flow interference) to directly obtain feasible solution. Also, an issue of ESC-induced (electronic speed control) singularity is first introduced in the literature which is inevitably caused by bi-directional thrust generation with sensorless actuators, and handled with a novel control allocation called selective mapping. Then for the state estimation of the entire LASDRA system, constrained Kalman filter based estimation algorithm is proposed that can provide estimation result satisfying kinematic constraint of the system, also along with a semi-distributed version of the algorithm to endow with system scalability. Lastly, CPG-based motion generation framework is presented that can generate natural biomimetic motion, and by exploiting the inverse CPG model obtained with machine learning method, it becomes possible to generate certain desired motion while still making CPG generated natural motion.λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λΉ„ν–‰ μŠ€μΌˆλ ˆν†€ μ‹œμŠ€ν…œ LASDRA (large-size aerial skeleton with distributed rotor actuation) 의 κ΅¬ν˜„μ„ μœ„ν•΄ μš”κ΅¬λ˜λŠ” 핡심 기법듀을 μ œμ•ˆν•˜λ©°, 이λ₯Ό μ‹€μ œ LASDRA μ‹œμŠ€ν…œμ˜ μ‹€μ™Έ 비행을 톡해 κ²€μ¦ν•œλ‹€. μ œμ•ˆλœ 기법은 1) μ „λ°©ν–₯으둜 힘과 토크λ₯Ό λ‚Ό 수 있고 μΆ©λΆ„ν•œ κ°€μš© λ ŒμΉ˜κ³΅κ°„μ„ 가진 링크 λͺ¨λ“ˆ, 2) 높은 μžμœ λ„μ˜ λ‹€κ΄€μ ˆκ΅¬μ‘° μ‹œμŠ€ν…œμ„ μœ„ν•œ μœ„μΉ˜ 및 μžμ„Έ μΆ”μ • μ•Œκ³ λ¦¬μ¦˜, 3) μžμ—°μŠ€λŸ¬μš΄ μ›€μ§μž„μ„ λ‚΄λŠ” λ™μ‹œμ— 전체 μ‹œμŠ€ν…œμ΄ 속도, 각속도 λ“± μ›ν•˜λŠ” μ›€μ§μž„μ„ 내도둝 ν•  수 μžˆλŠ” λͺ¨μ…˜ 생성 ν”„λ ˆμž„μ›Œν¬λ‘œ κ΅¬μ„±λœλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μš°μ„  링크 λͺ¨λ“ˆμ˜ λ””μžμΈμ„ μœ„ν•΄ μ „λ°©ν–₯으둜 보μž₯λ˜λŠ” 힘과 ν† ν¬μ˜ 크기λ₯Ό μ΅œλŒ€ν™”ν•˜λŠ” ꡬ속 μ΅œμ ν™”λ₯Ό μ‚¬μš©ν•˜κ³ , μ‹€μ œ μ μš©κ°€λŠ₯ν•œ ν•΄λ₯Ό μ–»κΈ° μœ„ν•΄ λͺ‡κ°€μ§€ ꡬ속쑰건(λ‘œν„° κ°„ 곡기 흐름 κ°„μ„­μ˜ νšŒν”Ό λ“±)을 κ³ λ €ν•œλ‹€. λ˜ν•œ μ„Όμ„œκ°€ μ—†λŠ” μ•‘μΈ„μ—μ΄ν„°λ‘œ μ–‘λ°©ν–₯ μΆ”λ ₯을 λ‚΄λŠ” κ²ƒμ—μ„œ μ•ΌκΈ°λ˜λŠ” ESC 유발 특이점 (ESC-induced singularity) μ΄λΌλŠ” 문제λ₯Ό 처음으둜 μ†Œκ°œν•˜κ³ , 이λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ 선택적 맡핑 (selective mapping) μ΄λΌλŠ” 기법을 μ œμ‹œν•œλ‹€. 전체 LASDRA μ‹œμŠ€ν…œμ˜ μƒνƒœμΆ”μ •μ„ μœ„ν•΄ μ‹œμŠ€ν…œμ˜ 기ꡬ학적 ꡬ속쑰건을 λ§Œμ‘±ν•˜λŠ” κ²°κ³Όλ₯Ό 얻을 수 μžˆλ„λ‘ ꡬ속 칼만 ν•„ν„° 기반의 μƒνƒœμΆ”μ • 기법을 μ œμ‹œν•˜κ³ , μ‹œμŠ€ν…œ ν™•μž₯성을 κ³ λ €ν•˜μ—¬ 반 λΆ„μ‚° (semi-distributed) κ°œλ…μ˜ μ•Œκ³ λ¦¬μ¦˜μ„ ν•¨κ»˜ μ œμ‹œν•œλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μžμ—°μŠ€λŸ¬μš΄ μ›€μ§μž„μ˜ 생성을 μœ„ν•˜μ—¬ CPG 기반의 λͺ¨μ…˜ 생성 ν”„λ ˆμž„μ›Œν¬λ₯Ό μ œμ•ˆν•˜λ©°, 기계 ν•™μŠ΅ 방법을 톡해 CPG μ—­μ—°μ‚° λͺ¨λΈμ„ μ–»μŒμœΌλ‘œμ¨ 전체 μ‹œμŠ€ν…œμ΄ μ›ν•˜λŠ” μ›€μ§μž„μ„ λ‚Ό 수 μžˆλ„λ‘ ν•œλ‹€.1 Introduction 1 1.1 Motivation and Background 1 1.2 Research Problems and Approach 3 1.3 Preview of Contributions 5 2 Omni-Directional Aerial Robot 7 2.1 Introduction 7 2.2 Mechanical Design 12 2.2.1 Design Description 12 2.2.2 Wrench-Maximizing Design Optimization 13 2.3 System Modeling and Control Design 20 2.3.1 System Modeling 20 2.3.2 Pose Trajectory Tracking Control 22 2.3.3 Hybrid Pose/Wrench Control 22 2.3.4 PSPM-Based Teleoperation 24 2.4 Control Allocation with Selective Mapping 27 2.4.1 Infinity-Norm Minimization 27 2.4.2 ESC-Induced Singularity and Selective Mapping 29 2.5 Experiment 38 2.5.1 System Setup 38 2.5.2 Experiment Results 41 2.6 Conclusion 49 3 Pose and Posture Estimation of an Aerial Skeleton System 51 3.1 Introduction 51 3.2 Preliminary 53 3.3 Pose and Posture Estimation 55 3.3.1 Estimation Algorithm via SCKF 55 3.3.2 Semi-Distributed Version of Algorithm 59 3.4 Simulation 62 3.5 Experiment 65 3.5.1 System Setup 65 3.5.2 Experiment of SCKF-Based Estimation Algorithm 66 3.6 Conclusion 69 4 CPG-Based Motion Generation 71 4.1 Introduction 71 4.2 Description of Entire Framework 75 4.2.1 LASDRA System 75 4.2.2 Snake-Like Robot & Pivotboard 77 4.3 CPG Model 79 4.3.1 LASDRA System 79 4.3.2 Snake-Like Robot 80 4.3.3 Pivotboard 83 4.4 Target Pose Calculation with Expected Physics 84 4.5 Inverse Model Learning 86 4.5.1 LASDRA System 86 4.5.2 Snake-Like Robot 89 4.5.3 Pivotboard 90 4.6 CPG Parameter Adaptation 93 4.7 Simulation 94 4.7.1 LASDRA System 94 4.7.2 Snake-Like Robot & Pivotboard 97 4.8 Conclusion 101 5 Outdoor Flight Experiment of the F-LASDRA System 103 5.1 System Setup 103 5.2 Experiment Results 104 6 Conclusion 111 6.1 Summary 111 6.2 Future Works 112Docto

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Robot Navigation in Unseen Spaces using an Abstract Map

    Full text link
    Human navigation in built environments depends on symbolic spatial information which has unrealised potential to enhance robot navigation capabilities. Information sources such as labels, signs, maps, planners, spoken directions, and navigational gestures communicate a wealth of spatial information to the navigators of built environments; a wealth of information that robots typically ignore. We present a robot navigation system that uses the same symbolic spatial information employed by humans to purposefully navigate in unseen built environments with a level of performance comparable to humans. The navigation system uses a novel data structure called the abstract map to imagine malleable spatial models for unseen spaces from spatial symbols. Sensorimotor perceptions from a robot are then employed to provide purposeful navigation to symbolic goal locations in the unseen environment. We show how a dynamic system can be used to create malleable spatial models for the abstract map, and provide an open source implementation to encourage future work in the area of symbolic navigation. Symbolic navigation performance of humans and a robot is evaluated in a real-world built environment. The paper concludes with a qualitative analysis of human navigation strategies, providing further insights into how the symbolic navigation capabilities of robots in unseen built environments can be improved in the future.Comment: 15 pages, published in IEEE Transactions on Cognitive and Developmental Systems (http://doi.org/10.1109/TCDS.2020.2993855), see https://btalb.github.io/abstract_map/ for access to softwar

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Design and Fabrication of Origami Elements for use in a Folding Robot Structure

    Get PDF
    The aim of the research is to investigate the methodology of the design and fabrication of folding robots that depend on the origami structures. The use of origami structures as a foundation to build reconfigurable and morphing robots that could assist in search and rescue (SAR) tasks are investigated. The design of the origami folding structures divided into three stages: consideration of the geometry of the origami structure, the hinge design, and the actuation system. The result of investigating three origami structures shows the ability to use the unit cell of the origami ball structure as a self-folding element. Furthermore, the novel type of origami structure for manipulation was created according to this result. This novel structure was designed to be a soft manipulation robot arm. Two approaches are used to design and fabricate flexure hinge. The first is by using a 3D printed multi-material technique. By this technique, the hinge printed using soft and solid material at the same time, which is Tango plus flx930 for soft material and Vero for solid material. The soft material act as a flexure hinge. Therefore, three tests were operated for it to calculate the tensile force, fatigue limit, and the required bend force. The second approach is by using acrylic and Kapton materials. Two types of actuation systems were studied: the external actuation system and embedded actuation system. The external actuation system was used for the Origami structure for manipulation, while the embedded actuation system was used for the self-folding structure. The shape memory alloy wires in torsion (TSW) and bending (BSW) was used in an embedded actuation system. A unit cell of origami ball was fabricated as a self-folding element by using three approaches: manually, acrylic, and Kapton and 3D printing. It is actuated by using shape memory alloy wire. Furthermore, an origami structure for manipulation was fabricated and actuated using an external actuation system. This novel type of origami structure provided an excellent bend motion ability
    • …
    corecore