868 research outputs found

    TechNews digests: Jan - Nov 2006

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Camera-Based Distance Sensor

    Get PDF
    While working on a robotics project at the electrical contracting company for which we work, we discovered a gap in the electronic distance sensor market in terms of range, accuracy, precision, and cost. We designed and constructed a prototype for an electronic distance sensing component which utilizes a camera, laser, and image processor to measure distances. The laser is pointed at a surface and an image of the laser dot is captured. An image processing algorithm determines the pixel position of the dot in the image, and this position is compared to a lookup table of known values to determine the distance to the dot. In measuring our prototype’s performance, we found that it was capable of measuring distances up to 5 meters with greater than 90% accuracy. We also discuss some possible ways to improve the viability of the technology, including ways to improve the refresh rate as well as the reliability

    Mobile health (mHealth) diagnosis and prognosis: a biomedical imaging approach

    Full text link

    Real-Time Indoor Localization using Visual and Inertial Odometry

    Get PDF
    This project encompassed the design of a mobile, real-time localization device for use in an indoor environment. A system was designed and constructed using visual and inertial odometry methods to meet the project requirements. Stereoscopic image features were detected through a C++ Sobel filter implementation and matched. An inertial measurement unit (IMU) provided raw acceleration and rotation coordinates which were transformed into a global frame of reference. A Kalman filter produced motion approximations from the input data and transmitted the Kalman position state coordinates via a radio transceiver to a remote base station. This station used a graphical user interface to map the incoming coordinates

    TechNews digests: Jan - Nov 2005

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    Get PDF
    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely

    Decoupling algorithms from schedules for easy optimization of image processing pipelines

    Get PDF
    Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imaging pipelines that separates the algorithm from its schedule, enabling high-performance without sacrificing code clarity. This decoupling simplifies the algorithm specification: images and intermediate buffers become functions over an infinite integer domain, with no explicit storage or boundary conditions. Imaging pipelines are compositions of functions. Programmers separately specify scheduling strategies for the various functions composing the algorithm, which allows them to efficiently explore different optimizations without changing the algorithmic code. We demonstrate the power of this representation by expressing a range of recent image processing applications in an embedded domain specific language called Halide, and compiling them for ARM, x86, and GPUs. Our compiler targets SIMD units, multiple cores, and complex memory hierarchies. We demonstrate that it can handle algorithms such as a camera raw pipeline, the bilateral grid, fast local Laplacian filtering, and image segmentation. The algorithms expressed in our language are both shorter and faster than state-of-the-art implementations.National Science Foundation (U.S.) (Grant 0964004)National Science Foundation (U.S.) (Grant 0964218)National Science Foundation (U.S.) (Grant 0832997)United States. Dept. of Energy (Award DE-SC0005288)Cognex CorporationAdobe System
    corecore