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Abstract 
This project encompassed the design and development of a mobile, real-time localization 

device for use in an indoor environment. The device has potential uses for military and first 

responders where it is desirable to know the relative location of a moving body, such as a person 

or robot, within the indoor environment at any given point in time. A system was designed and 

constructed using visual and inertial odometry methods to meet the project requirements. 

Stereoscopic image features were detected through a C++ Sobel filter implementation and 

matched. An inertial measurement unit (IMU) provided raw acceleration and rotation coordinates 

which were transformed into a global frame of reference. Corresponding global frame 

coordinates were extracted from the image feature matches and weighed against the inertial 

coordinates by a non-linear Kalman filter. The Kalman filter produced motion approximations from 

the input data and transmitted the Kalman position state coordinates via a radio transceiver to a 

remote base station. This station used a graphical user interface to map the incoming coordinates.  
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Executive Summary  
Technology for localization and tracking in outdoor environments has improved 

significantly in recent years, due in great part to the advent of satellite navigation systems such as 

GPS. Indoor navigation systems on the other hand have been slower to develop due to the lack of 

a de facto standard method that produces accurate results. Indoor localization has potential uses 

in various public indoor environments such as shopping malls, hotels, museums, airports, trains, 

subways, and bus stations. With further advances in technology, indoor positioning may also find 

use by emergency first responders and military personnel. The technology may also be used in 

robotics, providing safe navigation for mobile robotic systems.  

 While satellite navigation is effective for outdoor navigation, the metallic infrastructure of 

many public buildings attenuates the satellite signal strength enough to mitigate any relevant 

information it might carry.  Other RF based localization technologies, such as WIFI triangulation, 

suffer from similar signal degradation issues. Compass based systems are ineffective due to the 

magnetic interference caused by the metallic framework of larger buildings. Various technologies 

for indoor localization exist, such as inertial measurement, visual odometry, LIDAR, and dead-

reckoning. However, these technologies by themselves often prove to be unreliable in effective 

indoor localization. Visual odometry, or localization by means of camera systems, provides 

accurate linear movement approximation, but tends to be inaccurate with respect to turns and 

other rotational movement. Conversely, Inertial odometry, or localization with accelerometers 

and gyroscopes, provides accurate rotational movement, but fails in long term linear movement 

approximations due to compounded accelerometer drift associated with gravity.  

 This project presents a cost effective mobile design which combines both visual and 

inertial odometry to perform localization within an indoor environment in real-time. The design is 

intended to be placed on either a human or an otherwise mobile platform which will traverse an 

indoor environment. A remote user will be able to locate the mobile platform at any given time 

with respect to its starting position. The device acquires environment and motion data through a 

stereoscopic camera system and an inertial measurement unit (IMU). This data is stored and 

manipulated by a central processor running an embedded Linux Operating System, which 

provides the core functionality to the system. The extracted coordinates are transmitted in real-

time via a radio transceiver to a remote user, who can see a plot of the platform’s location and 

trajectory through a custom MATLAB GUI (Graphical User Interface). 

Design 
 A top–level diagram of the intended design is provided below. The crux of the design lies 

in the fusion of the independent visual and inertial odometry coordinates. This sensor fusion 

intends to combine the strengths of the two respective odometry systems, while mitigating their 

weaknesses. Once images are captured, information movement is extracted and transformed to 

global coordinates. The raw acceleration and rotation data from the inertial measurement unit is 

transformed to the same frame of reference as the visual odometry data. Once the data is fused, 

the accurate linear movement from visual odometry can be correlated with accurate rotational 

movement from the inertial measurement unit so as to more precisely reconstruct the motion of 

the mobile platform.  
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The stereoscopic camera takes a pair of left and right image frames at user-defined frame 

rate. These images are run through a blob filter in order to find similar sections in the image. A 

non-maximum suppression algorithm is then used to find areas of interest, or features, in these 

image sections.  The original images are run through a Sobel filter, which is used to create 

descriptions of each of the detected features. Once features have been detected, they are matched 

between respective left and right frames, as well as the image frames from the previous time step. 

Circular matching is performed, in which features from the current time step’s left image are 

matched along a horizontal corridor to the current time step’s right frame – and from there to the 

previous time step’s right frame, then to the previous time step’s left frame, and finally back to the 

current time step’s left frame. This is done so as to ensure that the same features are being matched 

across time. Once features have been matched, the platform’s motion is reconstructed using 

RANSAC (RAndom SAmple Consensus). RANSAC takes a small number of randomly selected, 

successfully matched features, and forms a hypothesis of the system’s motion based on these 

features. This hypothesis is then tested against other successfully matched features, and if enough 

points fit, it is accepted as the motion of the system. However, if the test fails, a new hypothesis is 

formed with a different set of points. The accuracy of the motion reconstruction ultimately depends 

on the number of matched features found.  

Simultaneously, the system’s acceleration and heading data is measured by the Inertial 

Measurement Unit (IMU). The gyroscope data from the IMU is converted to the global frame 

through a rotational matrix describing the orientation of the device relative to its starting 

orientation, and then integrated to estimate Euler angles. This is combined with the accelerometer 

data and converted once more to the global frame with another rotational matrix. Finally, this 

global data is integrated to determine the current position of the system.  

These two sets of global coordinates are weighted against each other by an Extended 

Kalman Filter (EKF). The EKF estimates the current state of the system by forming and validating 

hypotheses on the system state with each round of new data. The Kalman filter ideally weighs the 

linear movement data from the camera and the rotational movement from the IMU strongly, while 

weighing the camera rotation data and the IMU acceleration data weakly. In doing so, the design 

avoids some of the pitfalls of pure vision or inertial systems, while providing better accuracy at 

the expense of the complexity of sensor fusion. The Kalman filter output coordinates are 

continuously transmitted to a base station, which receives the position and heading, and plots it 

with respect to the initial starting position.  

Conclusions 
 The results from this phase of the project were promising. Successful motion reconstruction 

from visual odometry was obtained. Similarly, reliable heading estimations were extracted from 

the inertial odometry implementation. These two sets of data were successfully fused by the 

Extended Kalman filter to produce a more accurate motion reconstruction.  
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However, integration challenges were encountered when attempting to combine the two 

technologies into a real-time, mobile platform. While the visual odometry software performed 

optimally on x86 processor architectures, a successful ARM port proved to be difficult. This was in 

large part due to the different set of intrinsic functions between the two architectures, but also due 

to mishandling of floating point math by the ARM compiler. The intrinsic functions issues were 

resolved; however the floating point errors were not able to be addressed at this time. It was also 

noted that the visual odometry algorithms executed more slowly on the ARM processor despite 

having comparable specifications with the x86 processor; whether this is because of the 

aforementioned issues or simply due to the inherent architecture differences has yet to be 

determined. Additionally, documentation and resources for the processor chosen were relatively 

scarce, in large part due to the processor being new at the time. This further slowed development 

time when it came to integrating the independent components with the processor.  

The gyroscope contained parasitic drifts due to internal changes in temperature, changes 

in acceleration, as well as inherent bias. Their removal proved to be more challenging than 

originally anticipated. Regardless, much of the bias on the gyroscope was mitigated, including the 

drift caused by ambient temperature changes. However, the drifts caused by unpredictable 

changes in acceleration remain unresolved.  

If work is continued on the project, the team recommends investigating a more powerful 

choice of processor to deal with the intense computational loads required for real-time operation. 

Additionally, a more robust interface between the camera and the processor would be required.  

Despite these setbacks, the overall design of the system is still viable. The visual and inertial 

odometry implementations were successful, as was their fusion with the EKF.  
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Chapter I. Introduction  
Technology for localization and tracking in outdoor environments has improved 

significantly in recent years, due in great part to the advent of satellite navigation systems such as 

the Global Positioning System (GPS). GPS has become the de facto technology for outdoor 

navigation systems, finding uses not only in military environments, but in civil and commercial 

applications as well. Indoor navigation systems on the other hand have been slower to develop 

due to no tangible standard method that produces optimal results.  

 While satellite navigation is effective for outdoor navigation, the metallic infrastructure of 

many public buildings attenuates the satellite signal strength enough to mitigate any relevant 

information it might carry. Additionally, the error range of GPS based systems is too large for the 

resolution at which an indoor positioning system needs to perform. Other RF based technologies, 

such as WIFI, suffer from the same issues. Compass based systems are ineffective due to the 

magnetic interference caused by the metallic framework of larger buildings. Various technologies 

for indoor localization exist, such as inertial measurement, visual odometry, LIDAR, and dead-

reckoning. However, these technologies by themselves often prove to be unreliable in effective 

indoor localization.  

Indoor navigation has potential uses in military, civil and commercial applications. 

Similarly to how GPS is used to provide location directions and current position for users seeking 

to traverse through an unknown outdoor environment, indoor navigation can provide 

corresponding results in an enclosed environment. These include large manmade infrastructures 

such as shopping malls, stadiums, and enclosed plazas, and may be even further extrapolated to 

define caves and similar settings where satellite navigation would fail. With further development, 

indoor navigation may be used to reliably track first responders, such as firefighters, during high-

risk missions within enclosed environments. By keeping track of first responders’ locations at any 

point in time, as well as any potential victims, numerous tragedies caused by logistics can be 

avoided. Indoor navigation technology can likewise be beneficial for military personnel when 

conducting missions in enclosed spaces.  

 This project explores the design and functionality of an affordable visual odometry system 

for indoor use. This system will be mounted onto a moving body—such as a robot, vehicle, or 

person—and will be capable of calculating in real-time the position and orientation of said body 

with respect to its starting position. The design integrates several techniques so as to create a 

working visual odometry system. These techniques include feature detection and matching, 

RANSAC, Inertial Odometry, and an Extended Kalman Filter. This will require accurate sensors 

and significant processing power in order to be implemented in real-time with little error. In order 

to achieve this with an affordable system, cost-effective hardware and more efficient algorithms 

were researched. 

Visual odometry, or localization by means of camera systems, provides accurate linear 

movement approximation, but tends to be inaccurate with respect to turns and other rotational 

movement. Conversely, inertial odometry, or localization with accelerometers and gyroscopes, 

provides accurate rotational movement, but fails in long term linear movement approximations 

due to compounded accelerometer error. Optimal movement approximations canthus be 

obtained by combining the respective strength of the two technologies, while mitigating their 

weaknesses.  

Visual odometry is performed through feature detection, feature matching, and motion 

reconstruction. Features are detected by performing non-maximum suppression on blob filtered 

images. Feature descriptors are extracted from Sobel filtered images. These descriptors are 

circularly matched between current and past frames in order to efficiently determine camera 
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motion. RANSAC is then performed on the successfully matched feature in order to reconstruct the 

motion of the system. Inertial odometry is performed by integrating acceleration and rotation data 

so as to obtain position and heading coordinates. These coordinates, along with those obtained 

from visual odometry are combined with an Extended Kalman filter which then produces a more 

reasonable approximation of system motion by fusing the two data sets.  

This paper outlines the research, design, and implementation of the system in question. 

Initially, background information is provided on inertial and visual odometry methodology. 

Afterwards, the intended system design is discussed in detail. The chosen hardware 

implementation and the resulting challenges encountered are then explored. The overall results 

of the independent components of the system, as well as the mobile platform as a whole are 

provided. The conclusion discusses the overall performance of the system, and provides 

suggestions for further improvements.  
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Chapter II. Background 
This chapter provides the research performed prior to the implementation of the project. 

An overview of the fundamental concepts governing the intended design will be provided. 

Additionally the mathematical properties of feature detection, RANSAC, and Kalman filter 

approximation will be discussed.  

II.I   Odometry 
Odometry is the estimation of the change in location over time through the utilization of 

electromechanical sensors or environment tracking. [1] Odometry systems can vary significantly 

in complexity based upon the desired functionality. An example of a simple system is a typical car 

odometer that measures the distance travelled by counting the number of wheel rotations and 

multiplying the result by the tire circumference. The product is the distance traveled in either 

imperial (miles) or metric (kilometers) units. More advanced odometry systems can provide 

information including the orientation of a system with respect to an initial position, the trajectory 

traveled from a starting location, and the current location of a system in relation to its initial 

position. Advanced odometry systems may be implemented through a variety of methods. One 

such way of tracking the orientation and movement of a system consists of measuring the forces 

along the three axes as well as the angular rotation about these axes with a method known as 

inertial odometry. A second method, known as visual odometry, relies instead on the change in 

location of a platform with respect to static objects in the surrounding environment. The design 

proposed in this paper makes use of both visual and inertial odometry to track and locate the 

system.  

II.I.I Inertial Based Navigation  
Inertial navigation is a self-contained implementation that uses measurements provided 

by accelerometers and gyroscopes to track the position and orientation of an object. It is used in 

various applications including aircraft, missiles, spacecraft, and submarines. Inertial systems fall 

into two categories, stable platform systems, and strap-down systems. [1] 

A stable platform system has the inertial system mounted on a platform which is isolated 

from external rotational motion. This system uses frames which allow the platform freedom of 

movement in three axes. Figure II.I  and Figure II.II depict a stable platform IMU, and a stable 

platform inertial measurement unit, respectively.   

 

Figure II.I: Stable Platform IMU [1] 
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Figure II.II: Stable platform inertial navigation algorithm [1] 

A strap-down system is mounted rigidly, directly onto the device, therefore the output 

quantities are measured in the body frame, rather than the global frame. This requires the 

gyroscopes to be integrated. [2] Figure II.III depicts a strap-down inertial navigation algorithm. 

 

Figure II.III: Strap-down inertial navigation algorithm [1] 

II.I.II Accelerometers 
An accelerometer is an electromechanical device used to measure acceleration forces. 

Acceleration can be expressed through Newtonian physics as:  

𝑎 =  
𝐹

𝑚
 

Equation II.I: Newton's force equation 

Accelerometers are generally classified under three categories, Mechanical, Solid State, 

and MEMS (micro-machined silicon accelerometers).  A mechanical accelerometer consists of a 

mass suspended by springs. The displacement of the mass is measured giving a signal 

proportional to the force acting on the mass in the input direction. By knowing the mass and the 

force, the acceleration can be calculated through Newton’s equation. [1] 

   

Figure II.IV: a) Mechanical Accelerometer [1]  b) SAW accelerometer [1] 
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A solid-state accelerometer, such as a surface acoustic wave (SAW) accelerometer, 

consists of a cantilever beam with a mass attached to the end of the beam. The beam is resonated 

at a particular frequency. When acceleration is applied, the beam bends, which causes the 

frequency of the acoustic wave to change proportionally. The acceleration can be determined by 

measuring the change in frequency.  

A MEMS (micro-electrical-mechanical system) accelerometer uses the same principles as 

the other two types, with the key difference being that implemented in a silicon chip, thus being 

smaller lighter, and less power consuming. On the other hand, MEMS accelerometers tend to be 

less accurate. 

II.I.III Gyroscopes 
A gyroscope is a device used for measuring and maintaining orientation using the 

principles of angular momentum. Gyroscopes can generally be divided into three categories, 

Mechanical, Optical, and MEMS gyroscopes. [1] 

A mechanical gyroscope consists of a spinning wheel mounted upon two gimbals that 

allows the wheel to rotate in three axes. The wheel will resist changes in orientation due to the 

conservation of angular momentum. Thus when the gyroscope is subject to rotation, the wheel will 

remain at a constant orientation whereas the angle between the gimbals will change. The angle 

between the gimbals can then be read in order to determine the orientation of the device. The 

main disadvantage of the gyroscopes is that they contain moving parts. Figure II.V depicts a 

mechanical gyroscope system. 

 

Figure II.V: Mechanical Gyroscope [1] 

Optical Gyroscopes used the interference of a light to measure angular velocity. They 

generally consist of a large coil of an optical fiber. If the sensor is rotating as two light beams are 

fired on opposite sides, the beam travelling in the direction of rotation will experience a longer 

path. The angle is then calculated from the phase shift introduced by the Sagnac effect. 

 

Figure II.VI: Sagnac Effect [1] 
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As with MEMS accelerometers, MEMS gyroscopes use the same principles as the other two 

types of gyroscopes, except that MEMS gyroscopes are implemented onto silicon chips. These 

gyroscopes are more cost efficient and lightweight, but are generally less accurate. 

II.I.IV Mono-vision and Stereo-vision Odometry 
Visual odometry is the process of using video information from one or more optical 

cameras to determine the position of the system.  This is accomplished by finding points of 

interest, or features, in each frame or set of frames from the cameras, that are easily 

distinguishable by the computer and tracking the motion of this information from one frame to the 

next.  Solely using feature location in the frame is not sufficient to track the motion, as this only 

provides an angular relationship between the camera and the feature.  To resolve this problem 

multiple frames, either from the same camera over time or from two cameras simultaneously, are 

used to triangulate the position of the feature.   

At the highest level, visual odometry can be divided into mono- and stereo-camera 

odometry.  As the name implies, mono-camera systems make use of only a single camera, while 

stereo-camera systems use two cameras a fixed distance apart.   

Mono-vision Odometry 
In order to extract depth information from a single camera, two separate frames are used 

with the assumption that the camera will have moved in the time between the frames.  Features 

that are found in both images are then used as match points, with the camera movement used as 

the baseline [3] [4].   

The benefits of using only a single camera are readily apparent; there is less hardware 

required reducing system size, cost and hardware complexity. Additionally, there is no need to 

calibrate several cameras to work together [5] [6]. 

There are several drawbacks with this type of visual odometry. Camera motion is used as 

a basis for the distance calculation for features.  This motion is not precisely known, as it is the 

unknown factor in the system.    

Stereo-vision Odometry 
Stereo camera odometry uses two cameras placed next to each other to determine depth 

information for each frame by matching features that both cameras can see, and then watching as 

the points move in space relative to the cameras as the cameras move [7].  The addition of the 

second camera makes this method superior to mono-camera vision as the depth of each of the 

points of interest can be found in each frame, as opposed to waiting for the camera to move to 

provide perspective.  Stereo visual odometry can work from just one frame to the next, or a sliding 

window of frames could be used to potentially improve accuracy [8]. 

The depths of points can be found by making a ray from each camera at the angle that the 

point appears to be in and using simple trigonometry to find the perpendicular distance to the 

point. [9]An example of point patching between two stereo images is shown in Figure II.VII. 
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Figure II.VII - Point matching between the images from a stereo camera 

Although stereo odometry requires more hardware than monocular visual odometry, it also has 

increased accuracy and requires less complex computation. 

II.II Feature Detection and Matching 
Feature matching and detection involves the location, extraction, and matching of unique 

features between two or more distinct images. Feature Detection is a general term that includes 

algorithms for detecting a variety of distinct image features. These algorithms can be specialized 

to detect edges, corner points, blobs, or other unique features. [10] 

II.II.I Edge Detection 
Edge detection is used to convert a Two-Dimensional image into a set of curves. An edge 

is a place of rapid change in the image intensity. In order to detect an edge, discrete derivatives 

of the intensity function need to be derived such that we might get the image gradient. Figure 

II.VIII depicts an image with respect to its image function. [11] 

 
Figure II.VIII: Image edge as function of intensity [11] 

Once the discrete derivatives are found, the gradient of the image needs to be calculated. 

Equation II.II provides the calculation for deriving an image’s gradient. In the equation, ∂f is the 

local change in gradient, whereas x and y are the respective horizontal and vertical pixel changes. 

Figure II.IX shows an image before and after the gradient has been taken. 

∇𝑓 =  [
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
] 

Equation II.II: Image gradient from intensity function [11] 
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Figure II.IX: Image of Tiger before and after gradient [11] 

However, most images will have some noise associated with the edges and must first be 

smoothed. The general approach to smoothing is a using an image filter such as a Gaussian filter.  

A Gaussian Filter is applied by taking a small specially crafted matrix or vector, called a kernel, 

and convolving it with the intensity function of the image. The edges will occur at the peaks of the 

gradient of the result (if the kernel was a Gaussian function). Figure II.X below provides a 

graphical of the aforementioned smoothing implementation. [12]  

 
Figure II.X: Smoothing process using Gaussian kernel [12] 

It should be noted that due to the associative properties of differentiation. The derivative 

of the intensity function no longer needs to be calculated if we are smoothing with a Gaussian 

kernel. The intensity function can simply be multiplied with the intensity of the Gaussian filter.  

Some common Edge detection algorithms include the Sobel method, Prewitt method, 

Roberts method, Laplacian of Gaussian method, zero-cross method, and the Canny method. The 

Sobel method finds edges using Sobel approximation derivatives. Similarly, the Prewitt and 

Roberts methods find edges using the Prewitt and Roberts derivatives, respectively. The Laplacian 

of Gaussians method finds edges by filtering an image with a Laplacian of Gaussian filter, and then 

looking for the zero crossings. The zero-cross method is similar to the Laplacian of Gaussian 

method, with the exception that filter on the image can be specified. The Canny method finds 

edges by looking for local maxima of the gradient of the image. The gradient is calculated using 

the derivative of a Gaussian filter. [13] 

II.II.II Corner Detection 
Corner Detection takes advantage of the minimum and maximum eigenvalues from a 

matrix approximation of a summed up squared differences (SSD) error to find local corners in an 

image. Three common corner detection algorithms include Harris Corner Detection, Minimum 

Eigenvalue Corner Detection, and the FAST (Features from Accelerated Test) method. An 

overview of Minimum Eigenvalue and Harris Corner Detection will be provided below. [13] 
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Initially, we start with a “window” (a set of pixels) W, in a known location. The window is 

then shifted by an amount (u,v). Now each pixel (y, x) before and after the change is compared to 

determine the change.. This can be done by summing up the squared differences (SSD) of each 

pixel.  This SSD defines an error, as given by Equation II.III.  

𝐸(𝑢, 𝑣) = ∑ [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

(𝑥,𝑦)∈𝑊

  

Equation II.III: SSD error [12] 

The function I(x+u, y+v) can then be approximated through Taylor Series Expansion. The 

order of the Taylor Series is proportional to the magnitude of the window’s motion. In general, a 

larger motion requires a higher order Taylor series. A relatively small motion can be reasonably 

approximated by a first order series.  Equation II.IV shows the first order Taylor Series expansion 

of the SSD function. The variables Ix and Iy are shorthand for dI/dx and dI/dy respectively.  

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) =̃ 𝐼(𝑥, 𝑦) +
𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 =̃  𝐼(𝑥, 𝑦) + [𝐼𝑥 𝐼𝑦 ] [

𝑢
𝑣
] 

Equation II.IV: First Order Taylor Series Expansion of SSD function [12] 

The I function expression in Equation II.III can now be replaced with the Taylor expansion 

derived in Equation II.IV. The result of this operation ultimately yields a much simpler equation, 

as shown by Equation II.V.  

𝐸(𝑢, 𝑣) = ∑ [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

(𝑥,𝑦)∈𝑊

 =̃  ∑ [𝐼𝑥𝑢 + 𝐼𝑦𝑣]
2

(𝑥,𝑦)∈𝑊

 

Equation II.V: Result of Taylor Series substitution to SSD error formula [12] 

Equation II.V can be further simplified into Equation II.VI, where A is the sum of Ix
2, B is the 

sum of the products of Ix and Iy, and C is the sum of Iy
2.  

𝐴 = ∑ 𝐼𝑥
2

(𝑥,𝑦)∈𝑊

, 𝐵 = ∑ 𝐼𝑥
(𝑥,𝑦)∈𝑊

𝐼𝑦, 𝐶 = ∑ 𝑦2

(𝑥,𝑦)∈𝑊

  

𝐸(𝑢, 𝑣) =̃  ∑ [𝐼𝑥𝑢 + 𝐼𝑦𝑣]
2

(𝑥,𝑦)∈𝑊

=̃ 𝐴𝑢2 + 2𝐵𝑢𝑣 + 𝐶𝑣2 

Equation II.VI: Further simplification of SSD error formula [12] 

The surface SSD error E(u,v) can be locally approximated by a quadratic form (product of 

matrices), as presented by  Equation II.VI  

𝐸(𝑢, 𝑣) =̃  [𝑢 𝑣] [
𝐴 𝐵
𝐵 𝐶

]
⏟    

𝐻

[
𝑢
𝑣
] 

Equation II.VII: SSD error as quadratic form approximation [12] 

In the case of horizontal edge detection, the derivative, Ix will be zero. Thus the 

expressions, A and B, found in the matrix H, will also be zero. This is shown graphically by Figure 

II.XI.  
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Figure II.XI: Result of matrix H in case of Horizontal edge detection [11] 

Similarly, in the case of vertical edge detection, the derivative, Iy will be zero, thus making 

expressions B and C zero. This is shown graphically by Figure II.XII. 

 
Figure II.XII: Result of matrix H in case of Vertical edge detection [11] 

The matrix H can be visualized as an ellipse with axis lengths defined by the eigenvalues 

of H, and the ellipse orientation determined by the eigenvectors of H. This can be seen in Figure 

II.XIII. In general, the shape of H conveys information about the distribution of gradients around 

the pixel. 

 

 
Figure II.XIII: Elliptical representation of matrix H [11] 

Consequently, the maximum and minimum of H needs to be found. For this, the 

eigenvalues and eigenvectors of E(u,v) (the SSD error), need to be calculated. The maximum and 

minimum ranges of H can be expressed as the product of their respective eigenvectors and 

eigenvalues Figure II.XIV portrays how the eigenvalues/vectors are used for feature detection. 

xmax is the direction of the largest increase in E, xmin is the direction of the smallest increase in E, 

λmax is the amount of increase in the xmax direction, and λmin is the increase in the xmin direction.  
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Figure II.XIV: Using eigenvectors and eigenvalues in corner detection [11] 

For corner detection, we want E(u,v)to be large for small shifts in all directions.  Thus, we 

want the minimum of the SSD error (λmin of matrix H) to be large. Figure II.XV below shows an 

image, I, with corners, and the images’ maximum and minimum eigenvalues after a gradient has 

been taken.   

 
Figure II.XV: An image with its respective maximum and minimum eigenvalues [11] 

Figure II.XVI visualizes the interpretation of eigenvalues for our desired functionality. 

Essentially, when the maximum eigenvalue is much greater than the minimum, or vice-versa, then 

an edge has been detected. However, when both the maximum and minimum eigenvalues are 

large and fairly comparable in magnitude, then a corner has been detected.  When both the 

maximum and minimum eigenvalues are small, then a flat region has been detected (e.g. no 

corner or edge).  

 
Figure II.XVI: Interpreting eigenvalues [11] 

In summary, in order to calculate corner detection, we must:  

 Compute the gradient at each point in the image 

 Create the H matrix from the gradient entries 

 Calculate the eigenvalues 

 Find the points with large responses  

 Choose the point where the minimum eigenvalue is a local maximum as a feature 
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Figure II.XVII shows a point of the image I from Figure II.XV where the minimum eigenvalue is 

a local maximum. 

 
Figure II.XVII: Minimum eigenvalue as a local maximum in image gradient [11] 

The minimum eigenvalue, λmin, is a variant of the “Harris Operator” used in feature 

detection. The Harris Operator is given by Equation II.VIII, where the trace is the sum of the 

diagonals. The Harris Corner detector is similar to λmin, however, it is less computationally 

expensive because there is no square root involved. 

𝑓 =  
𝜆1𝜆2
𝜆1 + 𝜆2

= 
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝐻)

𝑡𝑟𝑎𝑐𝑒(𝐻)
 

Equation II.VIII: Harris Corner Detection equation [12] 

Figure II.XVIII below shows the results of the Harris operator on the gradient of image I. 

As can be seen, it is comparable to the results of the minimum eigenvalue.  

 
Figure II.XVIII: Harris Operator as local maximum in image gradient [11] 

 

In practice, a small window, W, is inefficient and generally does not obtain optimal results. 

Instead, each derivative value is weighted based on its distance from the center pixel. Equation 

II.IX provides the matrix H represented by weighted derivatives 

𝐻 = 𝑤𝑥,𝑦 [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]  

Equation II.IX: Matrix H represented by weighted derivatives [12] 

The Harris method does not require a square root to be taken in the algorithm, and as such 

is much less computationally expensive. Although the results are not as accurate as with a fully 

implemented minimum eigenvalue algorithm, they are comparable enough to warrant 

implementing the Harris method over the minimum eigenvalue method. [12] 

II.II.III SURF and SIFT 
This section will briefly discuss the Speeded-Up Robust Features (SURF), and the Scale-

invariant feature transform (SIFT) algorithms, which are used for detecting, extracting, and 

matching unique features from images.    
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SIFT 
The Scale-invariant feature transform, or SIFT, is a method for extracting distinctive invariant 

features from images. These features can be used to perform matching between different views of 

an object or scene. The advantage of SIFT is that the features are invariant (constant) with respect 

to the image scale and rotation. SIFT detects key points in the image using a cascade filtering 

approach that takes advantage of efficient algorithms to identify candidate locations for further 

examination. The cascade filter approach has four primary steps: 

1. Scale-space extrema detection: Searches over all scales and image locations. 

Implemented by using a difference-of-Gaussian function to identify potential interest 

points. 

2. Keypoint localization: For each candidate location, a model is fit to determine location 

and scale. Keypoints are then selected based upon the candidates’ measure of stability. 

3.  Orientation assignment: Orientations are assigned to the keypoint locations based on 

local image gradient directions. Future Operations are performed on the newly 

transformed image data, thus providing invariance to the transforms. 

4. Keypoint descriptor: The local image gradients are measured at the selected scale in the 

region around each keypoint. They are then transformed into a representation which 

allows for higher levels of shape distortion and illumination modification.  

SIFT generates large numbers of features that covers the image over the full range of scales 

and locations. For example, an image with a size of 500x500 pixels will generate approximately 

2000 stable features.  For image matching and recognition, Sift features are extracted from a set of 

reference images stored in a database (in the case of our design, the reference image(s) will be 

the preceding image pair).The new image is matched by comparing each feature from the new 

image to that of the preceding image and finding potential matching features based upon the 

Euclidean distance of their feature vectors. The matching computations can be processed rapidly 

through nearest-neighbor algorithms. [14] 

SURF 
The Speeded-Up Robust Features, or SURF, algorithm is a novel scale and rotation invariant 

feature detector and descriptor. SURF claims to approximate, and at times outperform previously 

proposed schemes (such as SIFT), while at the same time being able to be computed faster. The 

speed and robustness of SURF is achieved by taking advantage of integral images for image 

convolutions. SURF uses a Hessian matrix-based measure for detection, and a distribution based 

algorithm for description. [15] 

 SURF initiates by selecting interest points from distinctive locations in an image, such as 

corners, blobs, and T-junctions. Interest points are detected by using a basic Hessian-matrix 

approximation upon an integral image. An integral image represents the sum of all pixels bits in 

the input image within a rectangular region formed by the origin point and x position. Equation 

II.X shows the general form of an integral image.  

𝐼∑(𝑥) =  ∑∑𝐼(𝑖, 𝑗)

𝑖<𝑥

𝑗=0

𝑖<𝑥

𝑖=0

 

Equation II.X: General form of integral image function [15] 

In the next step, SURF represents the neighborhood of every interest points through 

feature vectors.  The descriptor describes the distribution of intensities within the interest point 

neighborhood in a similar process as SIFT, with the exception that SURF builds upon the 
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distribution of first order Haar wavelet responses rather than the gradient. The weighted Haar 

responses are represented as points in a space, and the dominant orientation is estimated by 

calculation the sum of the responses. This ultimately yields an orientation vector for the interest 

point. Figure II.XIX provides a graphic representation of the orientation vector calculation through 

Haar wavelet responses.  

 
Figure II.XIX: Orientation assignment of interest point via Haar wavelet responses [15] 

The descriptor vectors are then matched between different images, based on the distance 

between vectors. This process is similar to SIFT, with the exception that SURF takes advantage of 

the sign of the Laplacian generated by the Hessian matrix (the sign of the Laplacian is equivalent 

to the trace of the Hessian matrix)  to exclude points that do not share the same contrast. This 

results in a faster overall matching speed.  

II.II.IV Obtaining World Coordinates from Matched Features 
The Feature Detecting algorithms examined find and extract interesting feature points 

from the stereoscopic images. These feature points can then be matched between the two images 

preceding them. The algorithms provide local x, and y coordinates from the 2D images, however 

for this information to actually be relevant, it needs to be interpolated as real world 3-dimensional 

coordinates. By obtaining the 3-dimensional, or world, coordinates, we can measure the 

magnitude and direction by which the features changed from the current image to the one 

preceding it, and consequently determine the change in coordination of the mobile platform. [16] 

 The first step is to find and extract features using one of the various detection algorithms 

detailed in the prior sections. The local locations (the location of the feature with respect to the 

image) are then given in an N-by-2 matrix, corresponding to the local x and y coordinates in the 

image.   

 The world coordinates can then be determined through processes of triangulation. If we 

have a matched feature, p¸ that is seen by both cameras, the depth can be determines as shown in 

Figure II.XX. The difference between xR, and xT is equivalent to the disparity of the feature point. 

The variable, f, is the focal length of the cameras in question. [17] 
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Figure II.XX: Triangulating Feature Point [17] 

Thus, the next step would be to find the disparity map between the left and right images. 

The disparity map will provide the depth of each pixel with respect to the cameras. The world 

coordinates can then be determined if the baseline and focal length of the camera system is 

known, along with the calculated disparity map. The respective equations for calculating each 

world coordinate are given by Equation II.XI, where d is the disparity of the image, b is the 

Vaseline, and xr, yr is the local position. Figure II.XXI provides a graphical view of the 

transformation from local x,y coordinates to world XYZ coordinates by means of a disparity map. 

𝑍 =  
𝑏 ∗ 𝑓

𝑑
 , 𝑋 = 𝑍

𝑥𝑅
𝑓
, 𝑌 = 𝑍

𝑦𝑅
𝑓

 

Equation II.XI: World coordinates from local coordinates [17] 

 
Figure II.XXI: Transformation from local x,y coordinates to world XYZ coordinates [17] 

Once world coordinates have been found, they can be sent to the filtering algorithms that 

will remove any outliers and predict the motion of the subject based upon the coordinates.  
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II.III RANSAC 
Once features have been located in a frame, they must be matched to features in preceding 

frames in order to find a hypothesis for the motion of the camera.  RANSAC (Random Sample 

Consensus) is an iterative method to estimate parameters of a mathematical model from a set of 

observed data which contains outliers. It is used in visual odometry to remove false feature 

matches [4]. Firstly, RANSAC randomly select sample of data points, s, from S and instantiates the 

model from this subset [5]. Secondly, it finds set of data points Si which are within a distance 

threshold t of model. Si is inlier of dataset S. Thirdly, if size of Si is greater than threshold T, model 

is re-estimated using all points in Si. After N trails largest consensus set Si is selected and model is 

re-estimated using all points in Si. 

RANSAC computes a fundamental matrix (Equation II.XII) to identify incorrect feature 

matches in stereo images, where F is the fundamental matrix and 𝜇0
𝑇 and 𝜇0

𝑇 are image coordinates 

in pair of stereo images.  [5]. 

𝝁𝟎
𝑻 𝑭𝝁𝟎

𝑻 = 𝟎 

Equation II.XII: RANSAC fundemental matrix 

 To determine the number of iterations N, the probability of a point being an outlier needs 

to be known. Equation II.XIII computes number of iterations [5]. 

𝑁 =
log(1 − 𝑝)

log(1 − (1−∈)𝑠)
 

Equation II.XIII: Number of RANSAC iteration 

 

In the above equation, ∈ is the probability that a point is an outlier, s is the number of inliers 

and N is number of trials. Table II.I gives the number of trials for a given sample size and 

proportion of outliers. The algorithm was tested using the Computer Vision Toolbox in MATLAB 

and the plots are show in Figure II.XXII, Figure II.XXIII and Figure II.XXIV. The minimum threshold 

t was set to 10-2 for first plot and decreased in next two plots. Decreasing t increases the proportion 

of outliers in the data set and gives more accurate point matches.  

 

Table II.I:Number of trails N for a given sample and proportion of outliers 

Sample size Proportion of outliers ∈ 

s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 
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Figure II.XXII: Feature matching 

 
Figure II.XXIII: RANSAC with threshold t=1E-4 

 
Figure II.XXIV: RANSAC threshold t= 1E-6 

Putative point matches

 

 

matchedPts1

matchedPts2
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II.IV Kalman Filter 
The Kalman Filter is a widely used algorithm that uses noisy data and a dynamic model to 

produce estimations of the unknown variables that describe a system’s current state. The Kalman 

filter is designed to produce a recursive estimation that minimizes the mean of the square error. 

This becomes very helpful in real time navigation and control of a vehicle given discrete sensor 

readings. It works by approximating the state of a system in the next time step given the prior 

state, the observed error, and the estimation covariance. Although the Kalman filter is designed 

for linear systems, several variants of the Kalman filter have been created to describe nonlinear 

systems. The linear Kalman filter relies on the dynamic equations to describe the system 

functionality [18]. 

II.IV.I Linear Kalman Filter 
The linear Kalman filter is reliable due to the fact that it provides estimated state values 

that have the same average value of the true state in addition to providing the smallest possible 

error variance. It achieves this by solving for the constants in Equations II.XIV that define the linear 

system in which A, B, and C are matrices, k is the time index, u is a known input, y is the measured 

output, x is the state of the system, and w and z are the noise [19]. 

State equation: 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +𝑤𝑘 

Output Equation 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑧𝑘 

Equations II.XIV: Linear System Definition [19] 

In order to apply the Kalman filter, an assumption must be made that the process noise (w) 

and the measurement noise (z) must not only be naught, but also have no correlation between 

each other. This results in Equation II.XV where Sw represents the process noise covariance and 

Sz represents the measurement noise covariance. In the following equations, a -1 superscript 

indicates matrix inversion and a T superscript indicates matrix transposition. 

𝑆𝑤 = 𝐸(𝑤𝑘𝑤𝑘
𝑇) 

𝑆𝑧 = 𝐸(𝑧𝑘𝑧𝑘
𝑇) 

Equation II.XV: Noise Covariance [19] 

With this it becomes possible to solve for K, the Kalman gain, �̂�, the state estimate, and P, the 

estimation covariance, using Equation II.XVI. 

𝐾𝑘 = (𝐴𝑃𝑘𝐶
𝑇 + 𝑆𝑧)

−1 

�̂�𝑘+1 = (𝐴�̂�𝑘 + 𝐵𝑢𝑘) + 𝐾𝑘(𝑦𝑘+1 − 𝐶�̂�𝑘) 

𝑃𝑘+1 = 𝐴𝑃𝑘𝐴
𝑇 + 𝑆𝑤 − 𝐴𝑃𝑘𝐶

𝑇𝑆𝑧
−1𝐶𝑃𝑘𝐴

𝑇 

Equation II.XVI: Kalman Filter [19] 

II.IV.II Nonlinear Kalman Filter 
Nonlinear systems are systems that cannot be described by linear equations but instead 

by sets of dynamic equations. Our project requires the application of a nonlinear Kalman filter for 

estimating the position of the system by analyzing the change in position of matched points from 

multiple frames of our camera. There are multiple types of nonlinear Kalman Filters that each try 

to reduce the error of each measurement. One such nonlinear filter is the extended Kalman filter 

which uses a first-order linear approximation of the non-linear system to get an estimation of the 

state variables [20]. Due to this linear approximation, the Extended Kalman filter often provides 
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error prone results and can even diverge from the true state. The unscented Kalman filter (UKF) is 

a derivative-free alternative to the Extended Kalman Filter (EKF).  

 

II.V Existing Systems  
This section discusses different visual odometry systems currently available or being 

researched. The first system studied was the Atlas sensor head. Atlas is a bipedal humanoid robot 

developed by Boston Dynamics with funding and oversight from Defense Advanced Research 

Projects Agency (DARPA). The robot is 6 feet tall and is designed for a variety of search and rescue 

tasks.  Atlas includes a sensory 'head' built by Carnegie Robotics which features a sophisticated 

range of sensors, including a pair of stereo cameras, to give robot the 3D awareness of its 

surroundings. The sensor head has an on-board processor that implements stereo algorithms that 

transforms left and right images into 3D depth maps at 15 FPS. Figure II.XXV shows depth maps 

generated by the sensor head. The stereovision system has a depth resolution of  ±0.31 mm at 1 

m and ±30 mm at 10 meters [21]. 

 

Figure II.XXV: 3D depth maps generated by Atlas sensor head[23] 

Other than Atlas sensor head, the group looked into visual odometry papers presented at 

IEEE conferences and proceedings of the IXth Robotic Science and Systems. Visual odometry has 

widespread applications in different areas of engineering including tracking first respondents, 

autonomous quadcopters and autonomous underwater vehicles. Odometry has complex problems 

such as human bounce, low baseline to depth ratios and noisy data. A research group from Sarnoff 

Corp. Princeton, New Jersey has developed a human wearable system with two pairs of forward 

and backward looking stereo cameras together with an IMU [2]. The group has developed an 

algorithm that can run in real time with 15 Hz update rate on a dual core 2 GHz laptop PC and 

accurately estimate local pose and act as a front end input to the SLAM algorithm. Data from SLAM 

and the IMU are integrated using an Extended Kalman filter to predict the most accurate location 

coordinates. Figure II.XXVI shows block diagram of the odometry system. This method provides 

more accurate results in situations when cameras fail to provide sufficient features because of poor 

illumination or non-textured scenes. Figure II.XXVII shows angular velocity results from Visual 

odometry (red), an IMU (blue) and a Kalman filter( green). As seen in the figure, Kalman filter 

follows visual odometry measurements for all frames except for frame 2100 when the stereo 

odometry result is inaccurate. Similar to the visual odometry system developed at Princeton, a 

research group from the Electrical Engineering department at the University of Texas, Dallas, 

created an odometry system that fuses data from an IMU, wheel encoders and stereo vision system 

to improve accuracy of location coordinates [4]. Figure II.XXVIII shows translation and rotational 

motion of camera frame. In the figure, Fb is the moving frame of reference, Fb* is the static frame 

of reference i.e. pose at time t=0, T is the translational motion vector, R is the rotational motion 

vector, m1 is the coordinates of the feature point in the moving frame of reference and m1* is the 

coordinates of the feature point in the static frame of reference. Discrete and continuous 
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Homography Matrices are used to recover position, orientation, and velocity from image 

sequences of tracked feature points. The relationship between image points is given by Equation 

II.XVII and the Homography matrix is given by Equation II.XVIII.  

𝑚𝑗 = (𝑅 +
1

𝑑∗
𝑇𝑛∗𝑇)𝑚∗

𝑗 

Equation II.XVII: Relationship between image points 

𝐻𝑑 = (𝑅 +
1

𝑑∗
𝑇𝑛∗𝑇) 

Equation II.XVIII: Homography matrix 

  The Kalman filter fuses measurements from visual odometry and inertial measurement 

systems. Time varying matrices in the Kalman filter allows each sensor to receive high or low 

priority depending on which sensor is providing more accurate data at the given time. After 

studying the above systems it can be concluded that fusing odometry data from multiple sensors 

using a Kalman filter gives more accurate results.  

 
Figure II.XXVI:  Flow diagram for multi camera odometry and IMU integration [22] 
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Figure II.XXVII: Results from SLAM, IMU and Kalman filter [22] 

 

 

 

 

Figure II.XXVIII: Translation and rotational motion of camera frame [23] 
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Chapter III.  System Design  
This chapter will discuss the overall design of the mobile system. The design consists of 

five major parts, Data Acquisition, Feature Detection and Matching, Kalman Filter approximation, 

Power management and the top level User Interface. Figure III.I provides a top level diagram of 

the system design. 

 
Figure III.I: Top Level System Design 

III.I Data Acquisition 
The system has two primary means of acquiring data for localization. A stereoscopic 

camera is used to bring in sets of image frames for feature detection and matching. An IMU is used 

to support the output of the camera data by providing a different set of acceleration and rotation 

approximations.  

III.I.I Stereo Vision Camera System 
A Stereo Vision Camera System consists of two image sensors configured onto a base 

board in left and right positions. The two image sensors work simultaneously and independently 

of one another. As such, for each discrete time constant the system produces two images, one from 

each respective sensor. The images are a rectangular matrix of pixels, with the number of pixels 

corresponding to the overall resolution of the image. The pixel bits control the color of the specific 

pixel. For example, a 3 bit pixel will have 8 (23) distinct colors available. The number of bits per 

pixel is dependent on the image sensor. These left and right images will ideally be identical with 

the exception of a central offset corresponding to the baseline. In other words, the pixels of the 

left image starting from the left edge and traversing the length of the baseline, as well as the pixels 

of the right image starting from the right edge and traversing the length of the baseline,  will be 

unique to their corresponding images. The pixels not within the aforementioned range will have 

equivalent correspondence between the two images. These corresponding pixels will be locally 
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shifted by the length of the baseline. Figure III.III provides a graphical representation of this 

property.  

 
Figure III.II: General Stereoscopic Camera Implementation 

 

 
Figure III.III: Correspondence between Left and Right Images 

 This local shift of equivalent pixels between the left and right image frames is the 

fundamental property that allows for depth, or Z-vector, calculations to be later produced. By 

comparing the equivalent pixel movements from the frames of the next discrete time constant, the 

overall movement of the camera system can be approximated within its local frame. A 

stereoscopic camera system will usually have to calibrate the two frames before any processing 

can be done. The calibration aligns the frames such that they fall within the same horizontal axis. 

The calibration also serves to remove image distortion due to warping, and find the parameters of 

the camera pairs.  
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 The raw output of the Stereoscopic camera system is then encoded and compressed as 

either a pair of bitmap (BMP) or JPEG images. The bitmap compression is lossless (the integrity of 

the data remains the same), but the data set size is much larger. On the other hand, the JPEG 

compression loses some information, but has a much smaller data set size. In either case, the 

image pairs can be opened up in software as an array. The pixels can then be processed and 

manipulated on the bitwise level.  

III.I.II Inertial Measurement Unit  
 The IMU used in the system has two sensors – an accelerometer and a gyroscope to collect 

acceleration and angular velocity measurements. Accelerometers measure inertial forces, or the 

forces (and hence acceleration) that is directed in the opposite direction from the acceleration 

vector. For example, if the accelerometer is sitting idle on the table, with positive Z axis pointing 

downwards, then Z axis acceleration will be -1g. The accelerometer data consists of x, y, and z 

measurements that can be used to calculate velocity and position through integration.  The 

gyroscope data consists of the change in roll (φ), pitch (θ), and yaw (ψ) which is the angle of 

rotation about the X,Y and Z axes respectively as shown in Figure III.IV. The angular velocity, 

similarly, can be used to track the angular heading of the system.  The IMU sensors output an 

analog voltage proportional to the sensed acceleration and angular velocity that is converted to a 

digital value using an Analog to Digital Converter. IMU datasheets have conversion factors to 

convert digital values from the ADC to acceleration values in meters per second squared or 

degrees per second.  

Gyroscopes have static bias which is the signal output from gyro when it is not experiencing any 

rotation. Gyroscopes also have bias that varies with temperature and time. The variation of bias 

over time is called bias drift. Gyroscopes provide reasonable estimations of turns over a short 

period of time. However the position computed using accelerometer data drifts very quickly due 

the cubing of measurement error. MEMS IMUs have separate registers to store accelerometer and 

gyroscope data. The processor is used to communicate with the IMU to read in measurements from 

the registers through digital interfaces like SPI or I2C. This data from the IMU is fused with velocity 

estimations from the visual odometry subsystem in the Kalman filter. Sensor fusion with IMU data 

makes the visual odometry results more robust. 

 
Figure III.IV: Euler angles with respect to the axes of an airplane 

III.II Feature Detection and Matching Algorithm 
The core of the visual odometry process is the feature detector and matcher.  This section 

of code processes raw images into a set of points of interest that are matched between left and 

right frame pairs and between subsequent frames.  These points, known as features, can then be 

used to reconstruct the motion of the camera. Figure III.V provides a top level view of the feature 

detector and matcher.  
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Figure III.V: Top level flow chart of feature detector and matcher 

 Although the team experimented with writing detector, matcher and motion reconstruction 

code, it was determined that it would be more efficient to use freely available published code.  

The library used, Libviso2, was written by Dr. Andreas Geiger from the Max Planck Institute for 

Intelligent Systems in Germany [10].  This library provided the team with a fully implemented 

platform for each step of the visual odometry process.  The algorithm used had several similarities 

to what had already been researched by the team, with some differences.  The components of the 

library that are primarily responsible for the core functionality are discussed below.   

The library takes many steps to speed up what is a very computationally expensive 

process.  One of these steps is finding features and calculating descriptors at half resolution.  This 

is significantly more efficient, while incurring only a minor accuracy penalty.    

III.II.I Sobel Filter 
The Sobel filter is an edge finding algorithm that is frequently used in computer vision as 

it can efficiently find edges in an image.  In order to calculate the Sobel filter for a given image, a 

matrix of constants, called a kernel, is convolved across each row horizontally to create the 

horizontal gradient, and down each column vertically to get the vertical gradient.   

In Libviso2, the Sobel-filtered versions of the image are not used for feature detection, as 

was done in some of the team’s early visual odometry implementations.  Instead, it is used solely 

to construct descriptors for detected features.  An example of the actual output of the Sobel filter 

used in Libviso2 is shown below.   
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Figure III.VI: Sample image from camera before filtering 

 
Figure III.VII: The horizontal and vertical results of the Sobel Operator 

The output consists of two different images: one representing the horizontal gradient and 

one representing the vertical gradient. For applications that are intended to be directly used by 

people, such as edge filters in photo manipulation software, these two images can be combined 

into one that includes both horizontal and vertical edges. For the creation of descriptors however, 

the two are kept separate.  The descriptors are a representation of the pixels surrounding a feature 

that are compared to the descriptors of other features determine if the two features are the same 

object.   

III.II.II Feature Detection Using Non-Maximum Suppression 
 Non-maximum suppression is an algorithm that thins edges in a processed image by 

setting pixels in a given range to zero if they are not the highest valued pixel.  This algorithm was 

used to find the local maximums, which were then used as features.  The images sent to the non-

maximum suppression algorithm were first run through a blob filter, which has the effect of forcing 

similar areas in an image to the same color, creating sharp gradients where different areas touch.  

The output of the blob filter on the image used above for the Sobel filter is demonstrated below in 

Figure III.VIII.  
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Figure III.VIII: Output from blob filter 

This processed image allows non-maximum suppression to easily bring out edges and 

corners, which are then used as feature points.  Descriptors of these features are then created 

using the Sobel filtered images.   

III.II.III Matching 
Matching is done by comparing the descriptor of each feature with that of every other 

feature.  Features that are the same will have similar descriptors.   

Libviso2 uses circular matching, where instead of matching features between 

corresponding left and right frames and then matching then to one of the previous frames, each 

feature from a given frame is tracked across each of the other four frames in a set.  This is shown 

in the diagram below.  First, in Step 1, a feature is matched from the previous left frame to the 

previous right frame.  This search can be constrained to a narrow horizontal corridor, as matches 

between stereo frames on a calibrated camera will be perfectly horizontal to each other.  Next, 

the match is then matched to the current right frame.  In order to minimize the time it takes to find 

the matching feature, information about the motion of the camera is used to find where the feature 

is most likely, and that area is searched first.  The feature from the current right frame is then 

matched to the current left frame, again along a narrow horizontal corridor.  Finally this feature is 

matched to the previous left frame, completing a circle through all of the current set of four frames.  

If the feature is matched back to the same feature that was used initially, the match is good, as the 

feature can be seen in each frame so it can be used to reconstruct motion.  This process is shown 

in Figure III.IX. 
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Figure III.IX: Circular Matching 

III.II.IV RANSAC 
RANSAC is used to remove bad feature matches so that a successful motion reconstruction 

can be made from only good matches.  After the matcher has returned a list of matches and has 

thinned them out based on some basic density parameters, the list of matches is sent to RANSAC 

which builds random groups of these matches, and attempts to create motion data from these 

groups.  This implementation of RANSAC uses only three matches to make the initial motion 

estimate, and then attempts to add more matches to this estimate.  If enough other matches fit this 

motion estimate, it is considered good and the algorithm stops. Otherwise RANSAC will run up the 

maximum allowed number of iterations, in this case 200, and at the end take the motion estimate 

that had the most corresponding matches.   

III.III Non-Linear Kalman Filter Approximation 
 The Extended Kalman Filter (EKF) or Non-Linear Kalman Filter was used to generate a state 

estimate by fusing and filtering data from both the visual odometry subsystem and the IMU. The 

EKF started by making a prediction of where the system will be in the current time step based off 

the state vector of the previous time step and the state transition matrix. This prediction was then 

compared to the measurements of the current time step and calculated using the Kalman gain and 

covariance matrix of the system. The visual odometry subsystem provided the EKF with the linear 

velocity in the three axes of the body-frame. The visual odometry was also capable of providing 

angular velocity but this measurement is less accurate when compared to that of the IMU. The IMU 
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provides the EKF with linear acceleration and angular velocity, both in the body frame of 

reference. With these several sensor measurements, predictions become much more accurate, 

despite the low sampling rate of the visual odometry subsystem. More accurate predictions result 

in more effective noise removal and therefor closer estimations of the systems true movement.  

 Listed below are the different equations, matrices, and vectors needed for the EKF. The 

subset for each variable corresponds to the x, y, or z component of that variable. Px is the position 

in the x direction. vx is the velocity in the x direction. ax is the acceleration in the x direction. θx is 

the angle about the x-axis. 𝜃�̇� is the change in the angle about the x-axis. Figure III.XVIII shows the 

state and measurement vectors. The state vector shows all of the variables that are estimated and 

the measurement vector shows all of the measurements that are received from the cameras and 

IMU. Figure III.XI shows the observation versus estimation matrix. This matrix compares what 

information is received from the cameras and IMU to the variables that are estimated. Figure III.XII 

displays the state transition matrix of the system using the dynamic equations shown in Figure 

III.XIII. The time step dt in these equations and matrices is determined by the update rate of the 

IMU due to its much faster sampling rate than that of the visual odometry subsystem. The dynamic 

equations listed below are in terms of the x-axis but can be extended to the y and z axes.  
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Figure III.X: State and Measurement Vectors 
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Figure III.XI: Observation vs. Estimation Matrix 
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Figure III.XII: State Transition Matrix 
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Figure III.XIII: Dynamic Equations  

 The EKF was first written in MATLAB due to the ease of plotting data and running tests. The 

MATLAB starts by loading in the data from the cameras and the IMU. The cameras provide position 

in meters and heading in degrees for the x, y, and z directions. The IMU provides acceleration in 

meters per second squared and change in heading in degrees in the x, y, and z directions. The z 

direction is forward and backward. The y direction is up and down. The x direction is left and right. 

The buffer size and change in time are set next. The buffer size is the size of the IMU data set. The 

variable dt is set to the IMU time difference because the IMU and camera data needs to be synced 

and the IMU has a faster sampling rate than the camera. 

 Next, state variables are initialized using the first data points from the camera and IMU data 

sets. The position variables are initialized to zero. The initial state vector is initialized to these 

initial state variables and the initial covariance matrix is set up to a 15x15 identity matrix. Next, 

matrix xk and vector xp are initialized. xk is a matrix that stores the iterations of the state vector. xp 

is the state vector after the predict state also called a priori. One iteration of xk (state vector) is 

depicted in Figure III.X. Matrix Pk and Pp are initialized next. Pk is a matrix that stores the iterations 

of the covariance matrix. Pp is the covariance matrix after the a priori state. The variables Q and R 

are set next. Q is the matrix for the process noise. This matrix only has values along the diagonal 

and zeroes everywhere else. These values can range from 0.1 to 0.2 and are adjusted to help 

correct the output. R is the matrix for measurement noise. This matrix also only has values along 

the diagonal and zeroes everywhere else. The values are based off of the noise properties for the 

camera and IMU based on their data sheets. The yk matrix is set up next, which holds the iterations 

of the measurement vector and one iteration (measurement vector) is shown in Figure III.X. The H 

matrix is then set up which tells the system what are the observed states and which are the 

estimated states as shown in Figure III.XI. This matrix is used in the a posteriori state to choose 

only the values that are measured. 

 The MATLAB code then enters a for loop, which runs through all of the data points in the 

data sets. The loop starts by updating the state transition matrix. This matrix holds the dynamic 
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equations used to predict the next state. These equations are nonlinear because the modeled 

system itself is nonlinear. These dynamic equations are shown in Figure III.XIII and the state 

transition matrix is shown in Figure III.XII. 

 

 

Figure III.XIV: a priori state 

 The next state is the predict state, also called a priori. This state predicts where the system 

will be in the next iteration. The MATLAB code is shown in Figure III.XIV. The first equation is the 

state equation, which makes the prediction. The second equation is used to update the covariance 

matrix. The covariance matrix is used to tell the Kalman Filter how much confidence there is in the 

specific value. These numbers range from zero to one with zero being very confident and one 

being not confident.  

 Next is the update state also called a posteriori. This state corrects the values predicted in 

the a priori using the measurement data taken in from the cameras and IMU. Figure III.XV shows 

the a posterior state. The measurement data is collected before these steps. The Kalman gain is 

calculated first. Then the state vector is corrected using the new measurement data. The 

covariance matrix is also corrected using the new measurement data. The MATLAB code ends by 

plotting the position data of the state vector. 

 
Figure III.XV: a posteriori state 

 

III.III.I Data Transformation  
The accelerometer and gyroscope within the IMU are integral parts of this project. Like the 

camera, they assist in the tracking of position and orientation. They are able to do this in much less 

time with much less complicated processing than the camera system. Both of them serve as inputs 

to the Kalman Filter by providing the angular rate of change and linear acceleration. Before they 

can be processed by the Kalman Filter, they must be translated from the local, or body frame, to 

the global frame. This is accomplished by keeping track of the angular orientation of the system 

in relation to the global axes. The angular orientation can be described by the three Euler angles 

of roll, pitch, and yaw as shown in Figure III.XVI. By converting the accelerometer measurements 

to the global frame, gravity can be removed by subtracting 9.8 m/s2 from the y-axis acceleration. 

%Predict / a priori 
    %state equation 
    xp = F*xk(:,i-1); 

     
    %covariance of the estimation error 
    Pp = (F*Pk(:,:,i-1)*F') + Q; 
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Figure III.XVI: Axis Definition 

Gyroscope and Accelerometer Rotation Matrix 
The rotation of a body in 3D space is represented using Euler angles convention, in which 

φ is the rotation of the system about the global z-axis, θ is the rotation about the x-axis and φ is the 

rotation about the y-axis. The gyro rates are transformed to global frame using the following 

rotational matrix for Euler angle rates. 

[
�̇�

�̇�
�̇�

] =  [

0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
0 𝑠𝑖𝑛𝜑/𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑/𝑐𝑜𝑠𝜃
1 𝑠𝑖𝑛𝜑 ∗ 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜑 ∗ tan 𝜃

] ∗  [
�̇�′

�̇�′
�̇�′

] 

Equation III.I: Gyroscope Rotation Matrix from Figure III.XVI  

 Because the above equation requires the global orientation in order to calculate the global 

change in orientation, a previous calculation or estimation of heading is required. In our design, 

the predicted heading produced within the Kalman filter was used.  

Likewise, the acceleration component in each global dimension is computed from a 

rotation matrix described in Equation III.IV and Equation III.II. The headings used to compute the 

Body Rotation Matrix can either be calculated by integrating the change in each heading 

calculated in Equation III.I or by using the predicted heading of the Kalman filter. In order to stay 

consistent with the calculation of the global angular velocities, the predicted heading from the 

Kalman filter is used. 

𝐶𝑏
𝑛 = [

cos(𝜃) cos (𝜓) − cos(𝜙) sin(𝜓) + sin(ϕ) sin (θ)cos (𝜓) sin(𝜙) sin(𝜓)+ cos(𝜙) sin(𝜃) cos (𝜓)

cos(𝜃) sin (𝜓) cos(𝜙) cos(𝜓) + sin(𝜙) sin(𝜃) cos (𝜓) − sin(𝜙) cos(𝜓) + cos(𝜙) sin(𝜃) sin (𝜓)

−sin (𝜃) sin(𝜙) cos (𝜃) cos(𝜙) cos (𝜃)

] 

Equation III.II: Body Rotation Matrix from Figure III.XVI 

[

𝑣𝑧
𝑣𝑥
𝑣𝑦

]

𝑔𝑙𝑜𝑏𝑎𝑙

= 𝐶𝑏
𝑛 ∗ [

𝑣𝑧
𝑣𝑥
𝑣𝑦

]

𝑏𝑜𝑑𝑦

 

Equation III.III: Body-to-Global Velocity Transformation 

 



33 

 

[

𝑎𝑧
𝑎𝑥
𝑎𝑦

]

𝑔𝑙𝑜𝑏𝑎𝑙

= 𝐶𝑏
𝑛 ∗ [

𝑎𝑧
𝑎𝑥
𝑎𝑦

]

𝑏𝑜𝑑𝑦

 

Equation III.IV: Body-to-Global Acceleration Transformation 

 

III.III.II Noise and Data Weighting 
The weighting of the data allows the system to decide which input data it should rely on 

more over others. Weighting of the data occurs in the covariance matrix. These values range from 

zero to one. The closer the values are to zero the more confident the EKF is in that value. The EKF 

then uses equations to appropriately change the covariance matrix to fit the desired need of the 

system. Covariance matrices are usually initialized to be an identity matrix. 

There will always be white Gaussian noise associated with data coming from the sensors. 

The Q and R noise matrices are used to best understand this noise. The Q matrix, called process 

noise, is used to represent the noise that is introduced when predicting the next state. The R matrix, 

called measurement noise, is used to represent the noise produced by the sensors of the system. 

To find the appropriate values for these matrices, our system was left sitting still for a fixed period 

of time. This data set consisted of measurements for all of the different inputs of the system. The 

measurements of velocity, acceleration, and angular velocity had a mean value of zero. The 

standard deviation was taken on each of these inputs. These standard deviations were then 

squared and used as the values for the R matrix to best model the noise coming from the sensors 

of the system. The Q matrix uses these values for the measured variables and deriving the values 

for the unmeasured variables. 

III.IV Power Management  
There are several different voltage levels required in the system.  The OMAP EVM has 

internal voltage regulators that accept any voltage from five to fifteen volts at one amp or less.  The 

Capella Camera requires five volts at one amp.  As discovered in testing, the IMU needs a very 

clean power supply that can support the 1.5 A transient as it turns on.  To meet these requirements, 

two switching regulators were chosen to supply the 3.3 V and 5 V regulated voltages for the IMU 

and Capella.  As the EVM would be regulating its input voltages, it was connected directly to the 

unregulated input voltage.  Both the XBee wireless transceiver and the Arduino would be powered 

off the EVM’s 5 V USB bus power. A top level block diagram of the power management system is 

shown in Figure III.XVII.   
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Figure III.XVII: Power Management block diagram 

III.IV.I Switching Regulators 
 To speed the development process, off the shelf switching regulators were chosen.  As 

each regulator only had to power one device, determining max current draw was relatively 

straight forward.  The peak current requirements for each of the regulators are shown below. 

Table III.I: Peak current draw for voltage regulators 

3.3 V Regulator 5.0 V Regulator 

IMU 1.5 A Capella Camera 1 A 

 

It was decided to use D15V35F5S3 switching regulator modules from Pololu, a 

manufacturer of parts for hobby robotics.  The regulator has a small form factor, can be plugged 

into a protoboard, and has a selectable output voltage to either 3.3 V or 5 V.  Because of this, the 

same type of regulator could be used for both supplies.  The regulators have a high efficiency, 

approximately 90% for both with an input voltage of 7.2 V and under the given load conditions.  

The efficiency curves for each of the regulators are shown below in Figure III.XVIII. The regulators 

were mounted on a custom protoboard which provided them with terminals to connect to the 

various subsystems that required regulated voltages. 

 

Figure III.XVIII: Efficiency of 3.3 V regulator (left) and 5.0 V regulator (right) 
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III.IV.II Battery 
To allow for mobility, the system needed to be powered by a battery.  The highest input 

voltage allowable was 15 V, limited by the voltage regulator on the EVM.  The minimum voltage 

allowable was 6.5 V, limited by the dropout voltage of the 5 V regulator.  Given these voltage 

requirements, a 7.2 V nickel-metal hydrate, or NI-MH battery was a chosen.  The necessary 

capacity for the battery was then determined by estimating the current draw of the system for a 

typical case.  Although all of the other current draw analysis was done for the worst case, that does 

not give a reasonable estimation for battery life, as most of the components do not run at their 

worst case current draw for the entire time.  This is especially true for the IMU, which has a startup 

transient of 1.5 A, but only draws 200 mA during regular operation.  To determine current draw 

from the regulators, the following equation was used. 

𝐼𝑖𝑛 =
𝐼𝑜𝑢𝑡 ⋅ 𝑉𝑜𝑢𝑡
𝐸 ⋅ 𝑉𝑖𝑛

 

Equation III.V: Input Current Calculation 

In the above equation, E is the efficiency of the regulator, in this case estimated at 85%. The 

current estimate for the typical case is then shown below. 

Table III.II: System current draw estimate 

Device Current Draw (A) 

OMAP EVM 0.8 
3.3 V Regulator 0.1 
5 V Regulator 0.6 

Total 1.5 

 

III.IV.III Safety Measurements 
In order to prevent the battery from being damaged in the event of a short circuit, a fuse 

was placed in the positive power supply line.  The fuse is rated for 5 A, to allow for regular 

operation, which can reach two amps, and also allow for enough overhead for startup transients 

or other short spikes in power usage.  Additionally, each of the Pololu voltage regulators had a 

built in over-current shutdown feature, which would cause them to turn off in the event of a current 

draw beyond their capacity. 

III.V User Interface 
The system must be capable of displaying or communicating the tracked position and 

orientation of the system. An initial design implemented an LCD on the system that displayed a 

numerical representation of the position and heading. The group decided this setup would be too 

costly and add more work and possible problems to the project. Instead our design implements a 

wireless transceiver that can be used to transmit the information to a second system that can 

display or process the information in any way the user wishes. 

III.V.I Wireless Radio Communication 
The design implements a transceiver that transmits the data from the mobile system as a 

frame as well as a transceiver that reads in the frames to a computer. The frames include the x, y, 

and z positions as well as the pitch, yaw and roll. The frames have the following comma delimited 

structure: 

[x-position], [y-position], [z-position], [pitch], [yaw], [roll] 
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Wireless transceivers enable data to be transmitted in both directions, allowing commands 

to be sent to the system. These commands may include asking the system to report its position, 

zero its position and heading, and anything else deemed important. The system could also be 

implemented in a spoke-hub structure, in which multiple odometry systems report their locations 

and orientations to a central receiver. This would be very useful for search and rescue and military 

operations.  
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Chapter IV. System Implementation 
 This chapter will discuss the realized implementation of the system design presented in 

Chapter III. The top level system implementation diagram is provided by Figure IV.I. The 

stereoscopic capabilities are provided by E-con System’s Capella Stereo Vision Camera 

Reference Design. The system uses Analog Device’s ADIS16375 IMU for collecting acceleration 

and rotation data to support the camera. The Arduino Uno parses the raw IMU data and feeds the 

output through a Virtual Com Port (VCP). The OMAP5432 Evaluation Module provides the core 

functionality to the system and acts as the communications manager between the other 

peripherals. Feature detection and matching, local to global coordinate transformation, and 

Kalman filter approximations are all performed on the OMAP5432. The power management unit 

splits the 7.2V battery supply to 3.3V and 5V respectively. It also contains a power on/off switch 

and a safety fuse. The XBee Wireless Transceiver and Receiver pair provides the principal means 

of communications between the system and the target computer. The primary means of 

communication between the peripherals and the central processor is through the serial port 

drivers provided by the OMAP5432 EVM.  

 
Figure IV.I: Top level system implementation  

IV.I Capella Camera Stereo Vision System 
The Capella camera is an embedded Stereovision reference design for the TI OMAP35x 

and DM37x line of processors.  The Capella is targeted towards customers seeking to integrate 

Stereovision capabilities in a product design, and rapid prototyping of stereovision camera 

algorithms. At $1,299 the Capella camera is one of the more affordable global shutter systems for 

obtaining stereovision capabilities. The Capella communicates with the OMAP5432 processor via 

a USB serial port and an Ethernet connection. The Ethernet connection is used for transmission of 
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the video stream from the camera to the processor. The serial port is used to run the initialization 

scripts on the camera processor. The Capella comes with a preinstalled Linux kernel containing 

the camera drivers and various camera applications. The Linux kernel also provides the potential 

for extending the cameras functionality to meet our requirements. Refer to Appendix A.III for 

documentation on setting up and using the camera.  

 
Figure IV.II: Capella Stereo Vision Camera Reference Design 

IV.I.I Specifications 
Table IV.I provides the specifications for the Capella Camera. The primary benefits of the 

Capella is the fairly low voltage power requirement as well as the Linux 2.6.35 kernel which allows 

for streamlined communication between the Overo processor (OMAP35x architecture) on the 

camera and the OMAP5432 EVM. 

Table IV.I: Capella Camera Specifications and Features 

SPECIFICATIONS AND FEATURES 

FRAME RATE  30 fps 
RESOLUTION 736x480 (per camera) ,1472x480 (combined camera resolution) 
IMAGE FORMATS 8-bit greyscale format 
LENS TYPE Factory calibrated S-mount lens pair with lock-nut and S-mount 

lens holder 
BASELINE 100mm (adjustable on request) 
CAMERA BOARD E-CAM  9v024 Stereo 
CAMERA  1/3” Global shutter MT9V024 image sensor 
OUTPUT FORMAT WVGA 752(H) x 480(V) (360690 pixels) sensors output 

736(H)x480(V) images in 8-bit greyscale format 
INTERFACE 27 pin FPC connector to Gumstix  Overo WaterSTORM  COM, 

HDMI-DVI cable, USB type A to Mini B cable, Ethernet port 
DRIVERS Standard V4L2 compliant drives with associated API’S  
SOFTWARE Linux 2.6.35 kernel, OpenCV for depth measurement 
POWER SUPPLY 5V, 1A  
PRICE $1,299.00  

 

IV.I.II File Transfer Protocol (FTP) Network 
The Capella operating system came with a pre-installed FTP server with the intention of 

transferring files to and from the camera. As the user does not have direct access to the SD card 

containing the Capella OS file system, the FTP network is the primary means by which the user 
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can modify the Operating system. The user must first specify the IP (internet protocol) address of 

the camera, at which point the receiving computer may access the camera file system with an FTP 

client.  

IV.I.III GStreamer Multimedia Framework 
The only means of outputting the video stream externally provided natively by the Capella 

Camera is through the HDMI out port. The OMAP5432 EVM processor does not contain an HDMI 

in port, and as such additional functionality has to be provided to the Capella Camera. The 

GStreamer Multimedia Framework is an open-source library that allows for the manipulation, 

processing, and streaming of video and audio sources. Building and installing GStreamer on the 

Capella camera provided the capability to stream the camera feeds to a different computer 

through a local Ethernet connection. In order to do this, corresponding GStreamer pipelines are 

initiated on both the host (Capella) and the receiving (OMAP5432) computers. For further detail 

on building GStreamer and constructing pipelines refer to Appendix A.III. 

GStreamer Streaming Host Pipeline 
The GStreamer host pipeline is run on the Capella Camera. The pipeline opens the video 

streams from the left and right cameras and formats the raw video as 640x480 grayscale streams 

transmitting at 5 frames per second. The pipeline then gives the streams a color space and 

payloads the stream for Real-time Transport Protocol (RTP) format. Finally the pipeline defines a 

UDP (User Datagram Protocol) port for each stream and transmits them at the user specified IP 

address. Figure IV.III provides a flow diagram of the host pipeline. 

 
Figure IV.III: GStreamer host pipeline flow diagram 

GStreamer Receiver Pipeline 
 The GStreamer receiver pipeline is run on the OMAP5432 EVM. This pipeline connects to 

the UDP network set up by the host pipeline and opens the respective video ports. The pipeline 

capabilities are based upon the verbose outputs of the host pipeline. Afterwards the video streams 

are de-payloaded and converted back into the same color space. Each incoming frame is then 

encoded as a JPEG image and saved into a folder to be accessed by the feature detection 

algorithm. Figure IV.IV provides a flow diagram of the receiver pipeline.  
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Figure IV.IV: GStreamer receiver pipeline flow diagram 

IV.II ADIS16375 IMU Interface 
The ADIS16375 is a high-end IMU that has a tri-axis gyroscope with range of ±3000 degrees 

per second and a tri-axis accelerometer with range of ±18 g. It was donated for the research 

project by Analog Devices so the group could make use of a high quality IMU for the project 

despite the high price.   The IMU has a MEMS angular rate sensor, a MEMS acceleration sensor 

and an embedded temperature sensor. The outputs from the sensors are written to a thirty two bit 

output registers after calibration for bias which gives high precision measurement values. The 

IMU module is compact and has dimensions of 44 by 47 by 14 mm. Analog Devices provided a 

prototype interface board that comes with larger connectors than the connector on the IMU to 

facilitate prototyping. Figure IV.V below shows the IMU and the prototype board.  The following 

sections describe IMU axis, SPI bus for interfacing IMU with processor and power requirements of 

the IMU. 

 

Figure IV.V: ADIS16375 IMU and prototype interface board 

IV.II.I IMU Frame of Reference 
The IMU coordinate axis is shown in Figure IV.VI below. The data collected using the IMU 

is converted from the IMU frame of reference to the system's frame of reference using the rotational 

matrix in Equation IV.I. 

[

𝑥𝑖𝑚𝑢
𝑦𝑖𝑚𝑢
𝑧𝑖𝑚𝑢

] = [
0 1 0
0 0 1
1 0 0

]  × [

𝑥𝑠𝑦𝑠𝑡𝑒𝑚
 𝑦𝑠𝑦𝑠𝑡𝑒𝑚
𝑧𝑠𝑦𝑠𝑡𝑒𝑚

] 

Equation IV.I: IMU transformation matrix 
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Figure IV.VI: ADIS IMU frame of reference 

IV.II.II Power Requirements 
Table IV.II below shows the power requirements of the IMU and Arduino as per their 

datasheet. The IMU is powered by a 7.6 V Lithium-ion-polymer battery by stepping down the 

battery output to 3.3 V using a D15V35F5S3 adjustable regulator. Arduino is powered through the 

OMAP EVM through a USB port. IMU- Arduino integration in the final system is shown in a block 

diagram in section.  

Table IV.II : Power requirements of IMU 

Parameter ADIS16375 Arduino 

Operating 

voltage 
3.3 V 5 V 

Power supply 

current 
173 mA 200 mA 

Transient 

currents 
1.5 A  

IV.II.III SPI (Serial Peripheral Interface) 
The IMU has a SPI compatible serial interface to connect it to an embedded system SPI is a 

synchronous serial data link that operates in full duplex communication. SPI has four main lines-

slave select, serial clock, master out slave in (MOSI) and master in slave out (MISO). In the system, 

the embedded processor is the master and the IMU is the slave device. The master generates the 

serial clock which sets the speed of the link, initiates the data frame and selects the slave device 

by setting the slave select (SS in the figure below) low.  

The OMAP has four SPI modules and the OMAP EVM breakout header has pins that provide 

access to SPI module 2 in the OMAP. To register the SPI slave device with the OS, the Linux kernel 

requires a device tree file. The device tree is a structure of nodes and properties. Each device 

connected to the CPU is represented as a node and has a compatibility property which enables 

the operating system to decide which device driver to bind to a device. It was not feasible to 

interface the IMU directly with the OMAP processor because the device tree file for the OMAP was 

not found in the Ubuntu Linux distribution installed on the OMAP EVM.  Given the time constraints 

and lack of documentation on how to implement a device tree for SPI, this option was abandoned.  

As a workaround we used an Arduino Uno board as a medium between the IMU and the OMAP. 

The Arduino Uno is a development board based on the ATmega328. The IMU connects to the 

Arduino via SPI and the IMU data is parsed in the Arduino, and printed to a serial port at baud rate 



42 

 

of 115200 baud. The Arduino has built in SPI drivers which made it convenient to interface the IMU 

with the Arduino. The IMU and the Arduino SPI settings are shown in the table below. 

Table IV.III: SPI specifications for ADIS16375 and Arduino Uno 

Setting ADIS 16375 Arduino 

 Slave Master 

SCLK ≤15 MHz 8 MHz 

SPI Mode SPI Mode 3 

CPOL=1 and CPHA=1 

SPI Mode 3 

Bit Sequence MSB first MSB first 

 

The Arduino is the master device that generates system clock at a rate of 8 MHz and 

controls the data coming in and out of the IMU which is the slave device. Data is shifted with the 

most significant bit (MSB) shifting out first. The IMU and the Arduino communicate in SPI mode 

three. In mode three, data is captured on the clock's rising edge and data is propagated on a falling 

edge. 

IV.II.IV IMU Interface 
A level shifter circuit was developed to interface the Arduino Uno with the ADIS IMU. The 

shifter connects SPI signals between the devices. The minimum digital high voltage that can be 

read by the Arduino is 3 V and the minimum digital high voltage guaranteed by the IMU is 2.4 V. 

For this reason a level shifter circuit was designed to shift the IMU output to 5V so that Arduino 

could read in IMU data. The schematic for the level shifter is shown in the figure below.  The level 

shifter consists of two NPN BJT transistors and four current limiting resistors.  The first NPN shifts 

the input voltage to 5 V but the signal is inverted. The second NPN reverses the output of first NPN 

transistor and the output of the level shifter is the original signal shifted to 5 V. 

 
Figure IV.VII: Level shifter schematic 

The Arduino shield also has an FTDI chip that converts the serial data coming from Arduino 

to USB signals so that the FTDI drivers installed on the processors could read the data sent from 

Arduino. Furthermore, Python module pySerial was installed on the OMAP. pySerial provides a 

back end for Python running on Windows and Linux to provide access to serial port. A python 

script was developed to read serial data coming from serial port on the OMAP and save the data 

in a text file. 
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IV.II.V IMU Data Transmission 
In the final system implementation, the Arduino reads in data from IMU at a frequency of 

100 Hz using a hardware timer with a period of 10ms. The Arduino script initializes a 16 bit internal 

hardware timer called 'Timer 1'. The Interrupt Service Routine flags the interrupt from Timer 1. A 

loop constantly checks for the flag and when the interrupt is flagged, a new measurement is read 

from the accelerometer, gyroscope and temperature sensor in the IMU. The data is transmitted by 

serial communication to the processor in the following comma delimited data format in which the 

second, third, and fourth measurements are angular velocities and the last three measurements 

are accelerations. 

[temperature, �̇�, �̇�, �̇�, , 𝑎𝑧, 𝑎𝑥, 𝑎𝑦] 

The plot of the integrated gyroscope measurements from the experiment is shown in the 

figure below. Ninety degree turns were estimated accurately as shown in Figure IV.VIII. The plots 

show that the system can read in sensor values accurately at precise time intervals to get accurate 

estimation of headings from the measurements.  

 

Figure IV.VIII: Ninety degree rotations about Z axis 

 

IV.III Kalman Filter on the ARM Platform 
A C++ implementation of the EKF has been designed to run on the ARM platform using an 

OpenCV matrix library. The EKF is written as a function that reads in the next measurements from 

the camera and the IMU as inputs. It then goes through the a priori and a posteriori states of the 

EKF using the new measurements. The EKF sets the state vector and covariance matrix as global 

variables allowing them to be used for the next iteration of the EKF. The EKF function will then 
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output the state vector of the system. The position data from the state vector will then be sent over 

to the XBee, which transmits the position of the system to the base station. 

To get the design running on the ARM platform the correct library is needed and the cross 

compiler needs to be set up. The EKF function uses matrices to store data and does matrix 

manipulations to calculate better approximations of the system. To do these calculations a matrix 

library is needed. Finding the correct library did pose a challenge. The first library used was 

called Meschach. The documentation for the library created the illusion that it would be of use. 

However, when doing initial testing some of the functions did not work properly. The functions 

that were being used to set the values of the elements were not correctly inputting the data. The 

functions that would manipulate the data also were not performing the calculations correctly. The 

outputted data would not be correct. After looking through the library and seeing how the 

functions were written, it was apparent that the functions were not written properly. Instead of 

rewriting these functions and a different library was used. OpenCV had a matrix library where the 

functions were written properly. After doing some basic manipulations of matrices using the 

functions from OpenCV it was apparent that the functions were performing correctly. Once a 

working matrix library was found the EKF was then written in C++ and tested on an x86 platform. 

Once the EKF was proven to work on an x86 platform, the next challenge was to get it to 

cross compile onto the ARM platform. The compiler that was used is called arm-linux-gnueabihf-

g++. The challenge was getting the matrix library to compile and link correctly. When building 

the matrix library only a portion of the library would build and link. However, the part of the library 

that is being used by the EKF was built and linked. The problem was that the compiler couldn’t 

find the library. Changing where the compiler was looking for the library was tried first but it did 

not work. Next, the library was rebuilt and relinked to try to connect the library to the directory 

where the compiler was looking. The compiler still couldn’t find it. Finally, the library was built 

and linked in its own directory and then copied over to the directory where the compiler was 

looking. This finally worked and the EKF does compile for the ARM platform. 

IV.III.I Design Changes 
The first step of the Kalman filter is the transformation of the measurements of the visual 

odometry subsystem and IMU sensor from the systems body frame of reference to the global 

frame. This transformation relies heavily on the accuracy of the heading estimations and 

measurements. Because we were not able to completely remove the bias introduced by changes 

in acceleration within the IMU, we were not able to fully implement local-to-global transformation. 

To adjust for this, we found that if the system was kept relatively flat during testing, the angles of 

roll and pitch could be set to zero. This effectively equates to the local yaw of the system being the 

same as the global yaw.  

 Because of the complications in removing the gyroscopes drift, we were unable to 

implement the entire Kalman filter that was described before. Without accurate calculations of the 

roll and pitch of the system, acceleration measurement became useless due to the components of 

gravity present in each axis. Because the roll and pitch had to be set to zero, the systems 

capabilities were very limited. Any slight change in pitch or roll resulted in inaccurate data being 

recorded. 

 

IV.III.II Extended Kalman Filter Process 
Figure IV.IX below shows the overall flow chart of the different steps that the EKF takes to 

produce the filtered output state. The EKF first takes in the data from the camera and the IMU. The 
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constants and all of the variables that the EKF will need, such as the state and measurement 

vectors, are initialized next. The EKF then enters the a priori state were the EKF will predict the 

next state of the system as well as predict the next covariance matrix. It then checks to see if there 

is any new camera data. If there is not, then the EKF will only transform the IMU measurements into 

the global frame. If there is camera data, then both the camera and IMU data is transformed into 

the global frame. After the data is transform, the measurement vector is updated. Next the EKF 

enters the a posteriori state. This state will calculate the Kalman Gain and adjust the state vector 

based on the new measurements. The covariance matrix will also be adjusted. The position and 

heading state of the system will then be outputted to the XBee to be transmitted. The EKF only runs 

when it receives new data from the IMU and/or the camera. 

 
Figure IV.IX: Extended Kalman Filter flow chart 
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IV.IV XBee Radio Communication 
XBee Pro radios were chosen due to their simplicity and the extensive documentation on 

their usage. In order to set up the XBees for peer-to-peer communication, the two were accessed 

through minicom, a serial communication program. The serial communication baud rate was set 

to 57600 baud with 8 data bits, no parity, and a stop bit of 1. The maximum baud rate of 115200 

baud was incompatible with MATLAB’s serial communication library. Next the Xbees were 

controlled to enter configuration mode by typing “+++” and waiting for the response “OK”. Within 

the command mode, AT commands can be sent to the XBees to either read or set the configuration 

parameters. The most important parameters are the Channel, PAN ID, and Interface Data Rate. 

These three values were set to C, 3332, and 57600 respectfully by utilizing the Command 

Reference Table in the XBee Product Manual. 

 

Figure IV.X: XBee Radio and USB Interface 

In transparent mode, the XBees buffer the incoming serial data and sends the packet after 

either 100 characters are received, the command mode sequences is received, or after no 

characters are received for a time period equal to the packetization timeout. For our project we 

only have one XBee transmitting and one receiving which allows us to send data whenever we 

want without the danger of interference caused by both transceivers transmitting at the same time. 

We chose a packetization timeout of 3 character such that data was transmitted after an entire 

frame was communicated to the transmitter on the mobile system. Because of the comma delimited 

data format, the combined number of digits and decimal points of the six measurements must be 

less than or equal to 89. These configurations are then saved to non-volatile memory with the AT 

command “WR”. 
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Figure IV.XI: Configuring the XBee Channel and PAN ID 

IV.IV.I MATLAB GUI 
A MATLAB script was created to connect to an XBee radio over serial communication, read 

in incoming data, and plot the system position and orientation over time. Three plots are displayed 

including a top down view of the systems past and current x and z-coordinates, the systems height 

over time, and the three axes of revolution over time. The following plot is the result of sending 

hand typed packets to one XBee radio through minicom connection, receiving the packets on the 

other XBee, and processing the packets in MATLAB. In this experiment, two packets were 

alternated to prove the concept. 

 

Figure IV.XII: MATLAB Receive and Plot 

IV.V OMAP5432 EVM Processor 
 The main processor was used for visual odometry processing, interpretation of the data 

received from the IMU and data fusion using an EKF.  As the team was not planning on developing 

an entire circuit board for the processor, the chosen device had Selection of the processor and 

supporting board was made by weighing several factors, with price and ease-of-use as the leading 

influences.  One of the first major decisions about the processor that needed to be made was the 

architecture that would be used. 

Early tests were run on x86 processors.  The x86 architecture is a 32-bit microprocessor 

architecture named for the line of microprocessors from Intel, is an architecture that is ubiquitous 

in personal computers produced solely by Intel and its spin-off AMD.  The x86 architecture has 
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evolved over the years to become a very powerful general purpose architecture, with deep 

pipelining and effective instructions.  However as most personal computers have easy access to a 

wall outlet or other power supply, these processors have very large power requirements.  Even 

x86 processors built for mobile applications such as laptops still have very large power 

requirements when compared to other architectures, such as PowerPC or ARM processors.  As a 

result of requiring so much power to run, they also dissipate a large amount of power as heat.  This 

requires heat sinks and fans to prevent the processor from overheating.  For these two reasons, 

x86 processors are not frequently used in embedded or small mobile systems and the team 

determined that this would not have been an optimal choice.   

The ARM architecture has become very popular in mobile devices such as tablets and 

cellular phones due to its low power requirements and good performance.  However because 

ARM processors are designed to use very little power, their instructions are not as powerful as 

those on an x86 processor.  The group chose to use an ARM processor due to the low power and 

cooling requirements, low cost, and ease of acquisition.  Additionally, the team had some 

experience with ARM processors and there was a large amount of information available online for 

the architecture.  The Texas Instruments OMAP5432 evaluation module was chosen as for the 

processor system.  This board was released just before the beginning of the project, making it one 

of the newest ARM processors available for purchase.  Additionally, the low price point of the 

board fit into the team’s budget.   

The OMAP5432 was supported by the OMAP5432 Evaluation Module, or EVM.  This PCB 

included the OMAP processor, supporting voltage regulators, power control ICs, clock sources 

and distribution, network interfaces, RAM, connectors for the various interfaces, and other 

associated hardware.  

A block diagram of the EVM from the board datasheet is shown in Figure IV.XIII 



49 

 

 
Figure IV.XIII: OMAP5432 EVM block diagram 

IV.V.I Specifications 
The OMAP5432 on the EVM is a dual core ARM processor, featuring two ARM Cortex-A15 

processors, clocked at up to 1.5 GHz.  The board includes two gigabytes of DDR3L memory 

clocked at 800 MHz.  For non-volatile memory, the board has a 4 GB EMMC device; however the 

team was not able to install drivers for this device.  The board has jumpers to select the boot 

source, and for simplicity the team made use of the micro-SD card port as the location of the 

operating system as well as the file system.  The EVM has on-board voltage regulation and 

management, and accepts a wide range of input voltages, making for simple system integration.   

IV.V.II Ubuntu 6.x Operating System 
Texas Instruments provided two operating system choices: Yocto, a platform that provides 

Linux builds for specific embedded devices, and the more well know Ubuntu.  As the Yocto system 

had limited support and documentation, Ubuntu 12.04 LTS was chosen.  Additionally, several team 

members had previous experience with Ubuntu.   

USB Flash Drive Storage 
Due to the limited amount of storage on the micro-SD card, the team searched for another 

method to store the recorded image data from the cameras.  A USB flash drive was proposed as a 

simple and cost effective system.  This allowed easy transfers of data off the device for testing and 

validation, and allowed an easily expandable amount of exterior memory.  For this purpose, a 64 

GB flash drive with a small physical footprint was acquired.  It was connected directly to one of the 

USB 2.0 ports on the EVM, to avoid any latency in the USB hub that was used to connect the FTDI 

devices.   
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FTDI Drivers and Serial Com Port Communication 
Several devices required serial connectivity with the OMAP processor.  These were the 

Arduino, which relayed information from the IMU, the Capella camera, which needed instructions 

over a serial port to start recording and transferring data, and the XBee, which received data over 

a serial port to transmit to the base computer.  The standard Ubuntu kernel includes drivers for 

FTDI devices; however the kernel provided by TI for the OMAP5432 was not built with this driver 

included.  The team rebuilt the Linux kernel to include the FTDI driver.   

IV.V.III Feature Matching and Detection on ARM Platform 
The library used for visual odometry, Libviso2, was written to run on x86 processors, and 

took advantage of several features specific to the x86 architecture. Running the visual odometry 

code on the ARM platform required a successful port of Libviso2 to ARM.  In order to run these 

sections of code on an ARM platform, the sections of code containing these x86 sections had to be 

converted to the ARM equivalents.  This process was complex and time consuming, however it 

was successfully completed and the section of the library that contained these features functioned 

exactly the same on the two platforms.    

Although the code was all ported successfully, there were additional compiler issues that 

prevented floating point functions from running on the platform.  These issues are discussed 

further in the Results Chapter.   

Despite the failure of floating point functions, the team was able to get reliable estimations 

of the execution speed of the algorithm on the OMAP processor.  Using these, an estimation of the 

performance of the OMAP platform could be made using a handicapped x86 machine.  Frames 

were processed in approximately 400 milliseconds, a five-fold increase in execution time over the 

same code executed at full speed on the x86 laptop used for testing.  This would result in a frame 

rate of approximately 2.5 frames per second on the OMAP platform.  The original testing operated 

at 10 FPS.  The frame is directly tied to accuracy.  A comparison of the first floor dataset processed 

on an x86 processor using 5 frames per second and 2.5 frames per second is shown below.   

 

Figure IV.XIV - Comparison of visual odometry running at 5 FPS (left) and 2.5 FPS (right) 

 

The 2.5 FPS data is less accurate; however it would still be acceptable for a proof of concept 

design. 
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IV.VI Power Management System 
Successful power management is essential for effective operation of all of the system 

components.  There were two power sources used during the debugging and testing of the system; 

the battery was used for mobile operation and a 12 V wall power supply was used for bench 

testing.     

The original power usage estimations were relatively accurate.  With an input voltage of 

12 V the systems draws approximately 1.6 A under full processing load.  The current draw varies 

under processing load, as both the camera processer and the main processer change their clock 

rates based on the load they are under.  Additionally, because several of the voltage regulators 

used are switching regulators, the current required changes based on the input voltage as well. 
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Chapter V.  Experimental Results 
This chapter provides an overview of the testing and experimental results of the system. 

The performances of the various algorithms were first tested independently as they were 

implemented. The performance of the system was tested as a whole upon finishing the integration 

of the various components.  

V.I Initial Feature Detection and Matching Results 
The following are the initial results from the Feature Detection and Matching Algorithms 

implemented on an x86 processor. The Bumblee3 camera was used for obtaining the image frames 

(the Capella camera had not yet been purchased at this time). A data set was obtained from the 

first floor of the Atwater Kent building. This data set was then processed.  Figure V.I presents the 

visual odometry approximation of the path traversed by the system on the first floor. The results 

are fairly accurate for this application, however the errors become more pronounced as the 

system keeps moving.  

 
Figure V.I: Visual Odometry results on first floor of Atwater Kent, running on an x86 processor 

 A second dataset was taken on the third floor of Atwater Kent. This data demonstrated one 

of the major flaws of a vision-based odometry system. The third floor is on average more 

featureless and dimly light than the first floor. As such, the detector was finding less than 25% of 

the number of features compared to the first floor. As such, major miscalculations started to 

propagate upon major corner turns of the system, until the resulting path became completely 



53 

 

erroneous. Figure V.II provides the results of the third floor dataset.  Red dot mark frames where 

no motion reconstruction was possible due to a lack of successfully matched features. 

 

Figure V.II: Third floor results of visual odometry running on x86 processor 

V.II Investigating Inertial Odometry 
Because of problems with the visual odometry portion of the system, a purely inertial 

odometry system was extensively researched to assess its effectiveness with the hardware we had 

available to us. IMU readings were taken at a sample rate of 100 Hz using the Arduino Uno and a 

computer running a python script for serial data recording. The measured data was processed 

using the Kalman filter described above. Of the 12 inputs described in the measurement vector of 

Figure III.X, only linear acceleration and angular velocity are supplied as inputs to the filter from 

the IMU. With data from only two sensors, the gyroscope and accelerometer, it becomes much 

more difficult to track position and orientation. 

V.II.I Gyroscope Drift 
The gyroscope measurements include a bias in each angular velocity measurement, as 

depicted in Figure IV.VI. This leads to large drifts of the orientation when performing integration 

of the angular velocity. To remove bias, we first initialize the system by calculating the average 

angular velocity for each gyro output while the system is still on a flat surface. These values are 

often small, between 0.07 and 0.13 degrees/sec but add a significant drift over long period of time. 

In our experiments where the system remains still on a table for just over a minute, the orientation 

drifts as much as 8°. By subtracting the calculated average value of each output of the gyroscope, 
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the bias can be significantly reduced resulting in a drift no more than 0.4°. The experiment results 

plotted in Figure V.III experienced drifts between 92% and 98% smaller then unprocessed direct 

gyroscopic data. 

 
Figure V.III: Bias Removal-Sitting Still 

 This method of calculating the bias during an initialization script is effective for data 

captures over a few minutes in temperature-stable environments. If the internal temperature of 

the IMU changes due to extended use or varying environment temperatures, we can expect the 

drift to change. Over a 3.5 minute experiment in which the system was walked around the first 

floor of the Atwater Kent Building, the roll and pitch was tracked. As before we first initialized the 

system and calculated the bias. The three following plots of Figure V.IV show the 90° turns of the 

system in the building, the pitch and yaw after removing the bias, and the pitch and yaw as a result 

of running the Kalman Filter. During the first 60 seconds there is almost no drift, looking at the 

second plot; however drift is introduced as soon as the system is moved at approximately 80 

seconds after the beginning of the measurement. Because of the translation from the local frame 

to the global frame in the Kalman filter, the bias of roll is a positive value when yaw is between 0° 

and 180° and a negative value when it is between 180° and 360°. The resulting roll at the end of 

testing will be close to 0° if the system spends relatively equal amounts of time facing in the 

positive-z and negative-z directions. These drifts were a direct result of random accelerations 

introduced by picking up the system and walking forward. 
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Figure V.IV: Bias Removal-90˚ Turns 

V.III Data Fusion with EKF Results 
The EKF was chosen to filter the data because it would allow the fusing of the data from the 

camera and the IMU. In our implementation, the EKF receives velocity measurements from the 

camera and it receives change in heading measurements from the IMU. The EKF fuses these 

measurements and calculate position. It also removes noise from the system. The EKF combines 

the data from the camera and the IMU through the transformation of the camera data from local to 

global coordinates. The transformation and fusing of the data was difficult to do. Due to the 

complexity, the system does not correctly fuse and transform the data. 

V.III.I Understanding Noise in EKF 
The EKF takes noise into account in its state estimations. As described in the subsection 

Noise and Data Weighting of the Non-Linear Kalman Filter Approximation section, the noise is 

represented in the Q and R matrices and the values are found using the process described in that 

section. A MATLAB script was written to find the values for the Q and R matrices using that process. 

The data that was used in this experiment was from the first floor of Atwater Kent. The IMU and 

camera were first set on a table to keep the values at a mean of zero. The standard deviations were 

taken of the velocity and change in angular velocity inputs from the IMU and camera. These 

standard deviations were then squared and placed into the diagonal of the R matrix as shown in 

Figure V.V. These values are also used for the velocity and change in angular velocity noise 

elements of the Q matrix, which are along the diagonal. The position noise element in the Q matrix 

is set to be the velocity noise element multiplied by the change in time. The angular velocity noise 

element in the Q matrix is set to be the change in angular velocity multiplied by the same change 

in time. The Q matrix is shown in Figure V.VI. These values are used in our EKF to best represent 

the noise of the system. 
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Figure V.V: Values of R Matrix 

 

[
 
 
 
 
 
 
 
 
 
 
3.5317𝑒 − 6

0
0
0
0
0
0
0
0
0
0
0

0
4.3533𝑒 − 6

0
0
0
0
0
0
0
0
0
0

0
0

4.4832𝑒 − 6
0
0
0
0
0
0
0
0
0

0
0
0

7.0633𝑒 − 4
0
0
0
0
0
0
0
0

0
0
0
0

8.7067𝑒 − 4
0
0
0
0
0
0
0

0
0
0
0
0

8.9663𝑒 − 4
0
0
0
0
0
0

0
0
0
0
0
0

1.4358𝑒 − 8
0
0
0
0
0

0
0
0
0
0
0
0

2.8709𝑒 − 8
0
0
0
0

0
0
0
0
0
0
0
0

2.2553𝑒 − 8
0
0
0

0
0
0
0
0
0
0
0
0

2.8716𝑒 − 6
0
0

0
0
0
0
0
0
0
0
0
0

5.7418𝑒 − 6
0

0
0
0
0
0
0
0
0
0
0
0

4.5105𝑒 − 6]
 
 
 
 
 
 
 
 
 
 

 

Figure V.VI: Values of Q Matrix 

 

 

 

V.III.II Sensor Fusion 
Experiments with sensor fusion within the EKF provided mixed results. In some cases, 

adding the IMU’s tracking of heading to the data from the visual odometry subsystem created 

worse results as evident in the first floor capture displayed in Figure V.VII. Here we see that the 

visual odometry better tracked heading, completing more precise turns. When the visual 

odometry heading was replaced by the heading calculated from the IMU, turns became much 

noisier and less precise.  



57 

 

 
Figure V.VII: Results of sensor fusion on first floor of Atwater Kent (Blue – raw data, Red – 

Sensor Fusion, Orange – Ground truth) 

 A data capture on the third floor of Atwater Kent that failed when implementing visual odometry 

was improved by fusing the heading from the IMU. This data set had failed due to the lack of edges 

for tracking and sufficient lighting. The linear movement was inaccurate, which is evident when 

the system passes the hallway before the first turn. Although this data set doesn’t show a reliable 

localization of the system, we are still able to show that sensor fusion can provide improvements 

in some cases. 

 

Figure V.VIII: Results of sensor fusion on third floor of Atwater Kent (Blue – raw data, Red – 

Sensor Fusion, Circles – Ground truth) 
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V.IV XBee Transmission and Data Representation 
Despite not achieving full integration of the visual and inertial odometry in real time, we 

were still able to experiment with data transmission and visualization with an external GUI.  

Position data from the visual odometry experiments and heading data from the inertial odometry 

were sent by wireless transmission to a computer. A MATLAB program on this computer displays 

this information in real-time in a GUI to show height, heading, and a top-down view of the z and x 

positions. Because the data must be re-plotted each time, the execution time of the GUI was 

expected to increase as more and more data was received. Instead, we found that this was untrue 

and that the execution time stayed under 0.1 seconds as shown in Figure V.X. If this maximum 

execution time happens to be slower than the update rate of the system, data frames may be 

missed. This is not a huge concern considering all the position and heading values aren’t 

necessary to the general user.   

 

Figure V.IX: Real-time position and heading GUI 
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Figure V.X: GUI Execution Time 
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Chapter VI. Conclusions  
This project proposed a real-time indoor navigation system using visual and inertial 

odometry. Many of the design requirements were met; however the real-time aspect of the design 

was compromised due to the integration challenges posed by the hardware chosen for the 

implementation. A summary of the project goals, their current status, and their implementation is 

given by Table VI.I.  

Table VI.I: Design Goals and implementation status 

Project Goal Implementation Status 
Visual Odometry  3/4 

 Capture images and 
stream them in real-
time 

Capella Stereovision Camera used to capture image 

pairs. GStreamer framework used to stream image 

frames over an Ethernet connection. 

Met 

 Feature Detection 
and Matching 

Blob and Sobel filters were used to find image features, 

and feature descriptors, respectively. Circular 

Matching was used to locate similar features between 

pairs. 

Met 

 Motion 
Reconstruction 

RANSAC used to reconstruct camera motion from 

successful feature matches. 

Met 

 Successful ARM Port X86 version of C++ code cross-compiled for ARM. 

Intrinsic functions manually altered to closest 

corresponding ARM counterpart. Compiler floating 

point errors not resolved. 

 

Not Met  

 
Inertial Odometry  3/4 

 Obtain Acceleration 
and Rotation Data. 

ADIS16375 IMU used to obtain data. Level shifter 

designed to resolve high-bit voltage differences.  

Met 

 Integrate Data to 
find position 

Kalman Filter performs a summation of motion  data for 

each time step in order to estimate position  

Met 

 Successful 
incorporation with 
ARM processor 

The IMU data is sent to an Arduino Uno via a SPI 

interface. The Arduino parses the data to the ARM 

processor through a vitual COM port.  

Met 

 Bias Removal Static bias was removed, as well as drift caused by 

temperature changes. Bias caused by unpredictable 

acceleration changes is still persistent.  

Not Met 

 
Sensor Fusion  3/4 

 Design of EKF Extended Kalman filter designed on Matlab. Met 

 C++ port of EKF Matlab version of EKF manually converted to C++ to 

increase code execution efficacy.   

Met 

 ARM port of C++EKF C++ code was cross compiled for ARM platform. 

Floating point errors from compiler not resolved.  

Not Met 

 
Cost-Effective Total price of system was under $3500, due to relatively 

inexpensive parts chosen.  

Met 
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Real-Time  2/3 

 Visual Odometry  Software executes with each new image input from 

Capella camera, at ~3 FPS. Software not working as 

intended on mobile platform due to compiler floating 

point errors. 

Not Met 

 Inertial Odometry Raw acceleration and rotation data was extracted, 

transformed and sent to the processor at each time step. 

Met 

 Data Transmission Extracted coordinates from each time step transmitted 

wirelessly through radio transceiver, and mapped at 

base station.  

 

Met 

 
Indoor Navigation by 
motion reconstruction 

Motion reconstruction obtained in visual odometry by 

RANSAC. This data when fused with rotational data from 

inertial odometry successfully reconstructed system 

movement in building.  

Met 

 

The initial results of the visual and inertial localizations were promising. The feature 

detection and matching algorithm was able to successfully localize a moving camera system within 

Atwater Kent. Similar results were obtained from inertial data. Significant strides were made in 

developing a fully functional, integrated design. A successful ARM port of the (x86) Feature 

matching and detection algorithms was created. Likewise, the Capella Camera, and the 

ADIS16375 IMU were both able to communicate with the chosen processor. An ARM C++  Kalman 

filter was also designed. Unfortunately, the processor chosen by the group, while very powerful, 

was also fairly new in the market, and lacked much of the documentation necessary for an ideal 

implementation. With that being said, the implementation itself met the low-cost criteria, costing 

less than half of some other inertial odometry designs.  Indoor navigation was achieved, albeit 

only through post-processing of the data.  

VI.I Challenges 
The proposed design was not without its share of challenges to be overcome. The principle 

challenges mainly arose from the integration of the different components; however some 

implementation difficulties inherent to the components used were also prevalent.  

VI.I.I ARM Architecture Port of Feature Matching and Detection Code 
In preliminary testing, the Libviso2 library was found to be very effective when run on an x86 

platform, such as a typical desktop computer.  The team planned to implement the system on an 

ARM processor, so the library had to be ported between platforms.  This was expected to be a 

straightforward process, as the library was primarily a series of math functions with few IO 

operations or other functions that were hardware dependent.   Further investigation, however, 

revealed that in order to increase the efficiency of the filters and parts of the feature matcher, 

several parts of the code made use of x86 SIMD intrinsics [10].  SIMD, or Single Instruction Multiple 

Data, is a method of performing vector processing where a single instruction operates on several 

pieces of data that are stored in a vector format.  The x86 SIMD engine can handle 64- and 128-bit 

variables that consist of several smaller variables arrayed inside.  For example, a 128-bit SSE 

variable could consist of two 64-bit IEEE 754 doubles, or eight 16-bit integers.  Operations can 

then be performed on all of the elements in the variable at once, such as adding them to the 

corresponding elements in another SSE variable or summing the entire array.  For functions that 
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require repeated operations, such as convolving a filter kernel with an image, the use of these 

functions can speed up the function several times.   

The implementation of this functionality is very closely related to the precise vector processing 

unit used.  On x86 platforms, this unit is called SSE.  The authors of Libviso2 used SSE intrinsic 

functions, or functions that translate directly into predefined assembly instructions.  The intrinsics 

for SSE functions are compiled directly into x86 assembly, and as a result code containing these 

intrinsics is not portable to other processor architectures.   

To port the library to run on the OMAP, all of the SSE intrinsics needed to be changed to the ARM 

SIMD instruction set, called NEON.   Although both of these are SIMD instruction sets, they are 

implemented differently.  For many of the SSE operations used there was no direct NEON 

equivalent.  A simple example of this was a short function that took two 128-bit variables containing 

eight 16-bit integers and combined, or packed, them into a single 128-bit variable containing 

sixteen 8-bit integers.  In cases where an element was larger than 8 bits, it was saturated, or set to 

the highest value.  Using SSE instructions, this could be accomplished using a single instruction, 

as shown below. 

    void pack_16bit_to_8bit_saturate( const __m128i a0, const __m128i a1, __m128i& b ) 

    { 

      b = _mm_packus_epi16( a0, a1 ); 

    } 

However no corresponding instruction existed for NEON.  Instead, a workaround had to 

be found.  Two intermediate values are calculated; each of the 16x8 integers is first converted to 

an eight element 8-bit vector and is saturated in the process.  These two 64-bit values are then 

combined into a single 128-bit value.  The final function using NEON intrinsics is shown below.   

    void pack_16bit_to_8bit_saturate( const int16x8_t a0, const int16x8_t a1,     

uint8x16_t& b ) { 

     b = vcombine_u8 (vqmovun_s16(a0), vqmovun_s16(a1)); 

    } 

Although it is still only one line, this function now includes three function calls to interdependent 

data which would be difficult to pipeline, resulting in significantly reduced performance.   

Each time a SSE intrinsic function was used, it had to be changed by hand to NEON instructions.  

Despite this, all of the SSE intrinsics were successfully converted to direct NEON equivalents or to 

equivalent sections of NEON intrinsics. Testing revealed that all of the changed sections of code 

produced exactly the same result on the two different platforms.   

A more serious problem that was encountered was a difficulty compiling floating point function 

calls for the ARM platform.  When ARM compilers were originally written, most ARM processors 

did not have a built in floating point unit, and as a result floating point was emulated in software.  

When hardware floating point units were added, the calling convention for floating point functions 

changed.  These two formats of floating point conventions are not compatible.  Due to the 

requirement for NEON instructions, the project required function calls to be made using the soft 

floating point convention, however, the group believes that the C++ Math library on the ARM 

platform expected floating point function calls to be made using the hardware floating point 

convention.  As a result, calls to important cmath functions such as trigonometric functions and 

simple rounding functions such as ceil and float returned incorrect values, leading to failure in the 
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visual odometry library.  Unfortunately, there was not enough time to fully diagnose this problem 

or to determine a method to repair it. This problem was not discovered until much later in the 

debugging process as the large majority of the math done in the visual odometry library is integer 

math, which was not affected by this problem.  Floating point math is done primarily in the motion 

reconstruction portion of the code, and as a result the problem was initially masked by the other 

difficulties that were encountered while porting the code to ARM, primarily the SIMD instruction 

problem discussed above.  The team reached out to TI technical support to attempt to find a 

solution, however they were unable to assist with the problem.   

As a result the visual odometry library was not successfully implemented on the ARM platform.   

VI.I.II Lack of Serial Drivers on OMAP5432 EVM 
The primary method used to connect several parts of the system, including the wireless 

transceiver, the IMU and the control interface for the Capella Camera was FTDI USB virtual serial 

ports.  This consists of a driver on the USB host and a USB connected integrated circuit made by 

Future Technology Devices International.  When the FTDI IC is connected to the USB host, it 

appears as a hardware serial port, similar to a RS-232 serial port that can be found on older 

computers.  These devices are commonly used as a simple solution for connecting custom USB 

devices to a computer, and were used in the original Arduinos.  Due to their common use, the 

drivers for these devices are typically built into Ubuntu, and the team planned on easy integration 

with the Ubuntu OS on the OMAP platform.   

The build of Ubuntu provided by TI, however, did not include these drivers, most likely to save 

space.  As a result, when the FTDI devices were connected to the OMAP they were enumerated as 

generic USB devices and did not work. 

In order to fix this, the Linux kernel had to be rebuilt, including the FTDI drivers.  The build of the 

kernel is controlled by a file, called a config file, which contains a list of which features from the 

source code to include in the kernel build.  This config file also controls which devices the kernel 

will work on.  The team had some difficulty finding the location of the config file that had been 

specifically written to work with the OMAP platform.  Once the config file was located, it was 

modified to include the necessary driver, and used to rebuild the kernel, which was copied over 

the old kernel on the bootable SD card.  The process used to achieve this is described in detail in 

Appendix A.   

VI.I.III Streaming between Capella Camera and OMAP5432 EVM 
The only video output capability provided by the Capella Stereovision Camera was an 

HDMI out port. Unfortunately, the OMAP5432 EVM did not have HDMI input capabilities. As such, 

an alternative way to stream the video to the processor had to be devised. It was quickly decided 

that the unused Ethernet ports on the camera and processor could be repurposed for video 

transmission. Originally, a simple test was performed to check whether video could be transmitted 

in real time over Ethernet through a local SSH network between the Capella and the OMAP5432.  

However, the Capella Camera operating system would refuse the set public and private keys in 

order to connect with OMAP. Other transmission protocols, such as UDP and TCP could neither 

understand nor handle the raw video obtained from the camera drivers. It was then realized that 

a more intricate approach would be required in order to transmit the video streams. 

After more research, it was found that the GStreamer Multimedia framework allowed for 

the functionality described above. However the GStreamer framework had to be first cross-

compiled for an ARM7 architecture (the architecture of the Capella processor) and installed unto 
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the Capella camera. This proved to be a non-trivial task, as no members of the group had any prior 

experience with cross-compilation. Different methods to do this were performed; however they 

were met with only minimal success. Eventually, a successful compilation of GStreamer for the 

Capella camera was achieved by using the Scratchbox2 cross-compiler (and even then it was after 

much trial and error). Once the base GStreamer functionality was ready, the GStreamer plugins 

were all cross-compiled and installed in a similar functionality. The installation to the Capella 

Camera was achieved by copying the relevant files to the necessary filesystem directory on the 

Camera through a pre-established FTP network. Some GStreamer plugins were incompatible with 

the Capella Camera, so they could not be used, but the functionality intended for this design could 

still be achieved. Unfortunately, there were still more issues that had to be resolved before video 

streaming to the processor could be achieved.  

Lack of Digital Signal Processing on Capella Camera  
Most of the relevant GStreamer pipelines that allowed for video streaming made use of 

video encoding plugins for more efficient streaming and pay loading of raw video. However, the 

video encoding plugins required DSP capability from the Capella Camera. Despite the camera 

processor being designed for DSP applications, and the Capella being advertised with DSP 

capabilities, the actual DSP drivers were missing on the camera. This group did not have the 

intimate knowledge, or time required, to implement the DSP drivers ourselves. Thus we 

communicated with the Capella manufacturers with the intent of obtaining the drivers. This 

method became unfeasible due to the company requiring considerable monetary compensation 

for their services. Thus we were left with having to find a workaround for the DSP issue. Ultimately, 

a pipeline was created that could stream the video without encoding it first (thus removing the DSP 

requirement). Nevertheless, this method proved to be far less efficient, and the pipeline could 

only maintain long-term stability at less than 10 FPS streaming. Likewise, the pipeline allocated 

about 97% of the Capella CPU while it was running. 

Non-calibrated Image Frames from GStreamer Pipeline.  
One of the main attractions of the Capella Camera was that it came pre-calibrated. 

However, unbeknownst to the group, the “calibration” only applied to the demo applications on 

the camera OS that were provided by the company. This was contrary to the groups’ interpretation 

that the calibration was done on the camera drivers themselves. The GStreamer pipeline 

previously discussed extracted the video directly from the camera drivers, completely avoiding 

any pre-calibration performed by the Capella manufacturers. As such, the images sent to the 

OMAP5 processor showed signs of misalignment and the “fish-eye” effect. Unfortunately, it was 

too late to fix this issue by the time that it was discovered.  

VI.I.IV IMU Bias   
The Gyroscope has a constant static bias that was successfully removed by averaging the 

gyroscope output at zero angular velocity when gyroscope is sitting still on a table and subtracting 

the average from subsequent measurements. However, gyroscope also has a bias component that 

varies with time (also called drift) due to effects of linear motion. In the local frame the drift 

accumulates non-linearly to large values over time. But after converting from local frame to global 

frame, the drift may increase or decrease depending on whether the turns were in one direction 

(either clockwise or anti clockwise)   or were a combination of clockwise and anti-clockwise turns 

which cancel out each other.  Given the unpredictable nature of the gyroscope drift, it is difficult 

to filter the drift in gyroscope data. 
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VI.II Future Work 
The primary work to be done in the future would be to resolve the remaining integration 

issues. Beyond that, there is much room for improvement on the design and implementation 

described above. Provided the time and resources, the ideal system would consist of custom made 

components, rather than off-the-shelf designs. Likewise, the feature detection and matching 

algorithms can still be optimized for ARM processors and attain a higher frame rate (alternatively, 

an x86 processor may be used instead, which mitigates arm compatibility issues). The Arduino 

parser may be replaced in future designs when the drivers for the SPI interface on the OMAP5432 

are provided. The evaluation model for the processor, while ideal for rapid prototyping, is not 

ideal for an efficient design. As such, a future model would implement a custom PCB for the 

OMAP5432 processor (or any other processor that may be decided on).  By changing to custom 

made components, much of the size of the system can also be reduced. Ideally this indoor 

navigation system should have a weight and size comparable to a modern cellphone or tablet, 

such that is does not hinder the first responder or mobile robot.   
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Appendices  

A.I. List of Abbreviations 
ARM: Acorn RISC Machine 

BMP: Bitmap 

DARPA: Defense Advanced Research Projects Agency 

EKF: Extended Kalman Filter 

FAST: Features from Accelerated Test 

FPGA: Field Programmable Gate Array 

FTDI: Future Technology Devices International 

FTP: File Transfer Protocol 

GRV: Gaussian Random Variable 

GPS: Global Positioning System 

GUI: Graphical User Interface 

HDMI: High-Definition Multimedia Interface 

IMU: Inertial Measurement Unit 

JPEG: Joint Photographic Experts Group 

MEMS: Micro-Electrical-Mechanical-System 

OS: Operating System 

PNG: Portable Network Graphics 

RANSAC: Random Sample Consensus 

RSS: Residual Sum of Squares 

RTP: Real-time Transport Protocol 

SAW: Surface Acoustic Wave 

SIFT: Scale-Invariant Feature Transform 

SIMD: Single Instruction  Multiple Data 

SLAM: Simultaneous Localization and Mapping 

SoC: System on Chip 

SSD: Summed up squared differences (SSD) 

SURF: Speeded-Up Robust Features 

TI: Texas Instruments 

UDP: User Datagram Protocol 

UKF: Unscented Kalman Filter 

VCP: Virtual Com Port 



70 

 

A.II. Glossary 

A 
Accelerometer: Electromechanical device that is used to measure acceleration forces 

ARM: An architecture of efficient low power processors frequently used in mobile devices and 

embedded systems. 

C 
Canny Method: Edge Detection Algorithm finds edges in an image by looking for local maxima 

in the Gaussian filter derivative of the image.  

Corner Detection: Feature Detection process used to find local corners in an image by taking 

advantage of minimum and maximum eigenvalues from a matrix approximation of a SSD error. 

 

D 
Discrete Derivative: Derivative of a function with a discrete domain 

Discrete Domain: A domain with a well-defined finite set of possible values 

Disparity Map: The apparent pixel difference or motion between a pair of stereo images 

 

E 
Edge: A place of rapid change in the intensity function of an image.  

Edge Detection: Feature detection process used to find edges in an image or set of images.  

Eigenvalue: The multiplier yielded by an eigenvector 

Eigenvector: a non-zero vector that, when multiplied by a specific matrix, yields a constant 

multiple the vector. 

Extended Kalman Filter: Kalman filter which uses a first-order linear approximation of a 

nonlinear system 

 

F 
Feature Detection: Process involving the detection and extraction of unique features between 

two or more distinct features.  

Feature Matching: Process involving the matching localization of equivalent unique features 

between two or more distinct features. 

Focal Length: The measure of how strongly an optical system converges or diverges light 

 

G 
Gaussian Filter: A filter whose impulse response is a Gaussian Function. 

Gaussian Function: A function having the form of a characteristic symmetric “bell curve” that 

quickly degrades to zero.  

Gradient: A change in the magnitude of a property observed in passing from one point to another. 
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GStreamer:  A pipelined based multimedia framework used for constructing graphs of media-

handling components. 

Gyroscope: Device used for measuring and maintaining orientation by way of the principles of 

angular momentum.   

 

H 
Haar Wavelet: A sequence of rescaled “square-shaped” functions which form a wavelet family 

when combined 

Hessian Matrix: A square matrix of second-order partial derivatives of a function. 

 

I 
Inertial Odometry: Odometry through measurement of the angular rotation and forces in three-

dimensional axes. 

Intensity Function: Measurement of the radiant power per unit solid angle. In the case of image 

processing, this can be seen as the discrete change of pixel brightness along one pixel vector.  

Isotopic: Having a physical property that has the same value when measured in different locations 

 

K 
Kalman Filter: Algorithm that produces estimation of unknown variable that describe a systems 

current set from noisy data and a dynamic model 

 

L  
Laplace Operator (Laplacian): A differential operator calculated by the divergence of the 

gradient of the function.  

Laplacian of Gaussians Method: Edge Detection Algorithm that finds edges in an image by 

filtering the image with a Laplacian of Gaussian filter.  

Laplacian of Gaussian Filter: A two-dimensional isotropic measure of the second spatial 

derivative of an image. The filter highlights regions of rapid intensity change.   

Linear Regression Kalman Filter: Kalman filter that uses a statistical linearization technique to 

approximate a nonlinear system 

Localization: Technique for determining one’s position and heading within a given environment 

 

M 
Mechanical Accelerometer: Accelerometer consisting of a mass suspended by springs. The 

displacement of the mass is measured giving a signal proportional to the force acting on the mass 

in the input direction. 

Mechanical Gyroscope: Gyroscope that consists of a spinning wheel mouthed upon two gimbals 

that wallow the wheel to rotate in three axes. 
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MEMS Accelerometer: Accelerometer implemented on a silicon chip, providing smaller size and 

less power consumption by sacrificing accuracy.  

MEMS Gyroscope: Gyroscope implemented on a silicon chip, providing smaller size and less 

power consumption by sacrificing accuracy. 

Mono-Camera System: Visual odometry system which makes use of only one image sensor 

(camera)  

 

N 
Nonlinear System: A system wherein the output is not directly proportional to the input. 

 

O 
Odometry: Estimation of the change in location over time through the utilization of 

electromechanical sensors 

Optical Gyroscope: Gyroscope consisting of a large coil of optical fiber that uses light to measure 

angular velocity. 

P 
Payload: The “cargo” or body of a data transmission. Generally the fundamental data with the 

exclusion of the overhead data.  

Pipeline: a set of data processing elements connected in series, where the output of one element 

is the input of the subsequent element 

Pixel: The smallest controllable element or sample of an image.  

Prewitt Operator: Edge Detection Algorithm that finds edges in an image by using Prewitt 

derivatives (operators) 

Prewitt Operator: Derivative that calculates the difference of pixel intensities in an edge region. 

The coefficients of the derivative mask are fixed, and work so as to increase the edge intensity, 

while decreasing non-edge intensity in comparison to the original image. 

 

R 
Random Sample Consensus (RANSAC): An iterative method that estimates parameters of a 

mathematical model from a set of observed data which contains outliers.  

Roberts Method: Edge Detection Algorithm that finds edges in an image by using Roberts 

derivatives (operators) 

Roberts Operator: Convolution derivative that finds the gradient edges of an image at -45° and 

45°. The edges are then produced by taking the RSS of the two convolutions.  

 

S 
Scale-Invariant Feature Transform (SIFT): Method for extracting distinctive invariant features 

from images.  

Sigma Points: A minimal set of sample points picked up by an Unscented Kalman Filter 
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Sobel Method: Edge Detection Algorithm that finds edges in an image by using Sobel 

approximation derivatives (operators) 

Sobel Operator: Derivative that calculates the difference of pixel intensities in an edge region. 

The coefficients of the derivative mask are variable, and work so as to increase the edge intensity, 

while decreasing non-edge intensity in comparison to the original image. 

Sagnac effect: The shift in interference fringes from two coherent light beams travelling in 

opposite directions around a ring as the ring is rotated about a perpendicular axis.  

SIMD: a form of parallel processing, utilizing instructions that perform the same operation on 

several pieces of data simultaneously.   

Solid-State Accelerometer: Accelerometer that consists of a cantilever beam with a mass 

attached to the end of the beam 

Spatial Derivative: Derivative that measures the change of a quantity in a given space.  

Speeded-Up Robust Features: Novel scale and rotation invariant feature detector and descriptor 

claiming to be the fastest of similarly proposed schemes.  

Stable Platform IMU: Inertial measurement unit that has the inertial system mount on a platform 

which is isolated from external rotational motion 

Stereo-Camera System: Visual Odometry system which makes use of two or more image sensors 

(cameras) 

Stereoscopic: Having the impression of depth and solidity. In relation to images, it refers to a pair 

of images taken at different angles, such that when the images are viewed together a depth 

dimension can be inferred.  

Strap-down IMU: Inertial measurement unit that is mounting directly onto the device, therefore 

measuring output quantities in the body frame rather than the global frame 

 

T 
Taylor Series Expansion: A representation of a function as an infinite sum of terms that are 

calculated from the function derivatives at a single point.  

Triangulation: Process of determining the location of a point by measuring angles to it from 

known points from the ends of a fixed baseline. 

 

U 
Unscented Kalman Filter: Kalman filter that provides a linear approximation of a nonlinear 

system without the use of derivatives  

 

V 
Visual Odometry: Odometry system that relies on change in location of a platform with respect 

to static objects in the surrounding environment  
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W 
Wavelet: Wave-like oscillations with a positive amplitude that initiates and ends at zero 

 

X 
x86: The most common computer architecture, used in almost all PCs. 

 

Z 
Zero-Cross method: Edge Detection Algorithm that finds edges by looking for locations in the 

image where the value of the Laplacian changes sign.  
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A.III. Capella Camera Setup Guide 
 The Capella is an embedded pixel synchronous Stereo Vision Camera reference design 

for the TI OMAP35x series processors. This guide will provide a walkthrough to set up the Capella 

Camera for stereo vision applications. The guide assumes that the reader is using a Linux 

Operating system on their work computer.  

A.III.I Getting Started 
Connect an Ethernet cable between the Capella Camera and your work computer. Then 

insert a USB mini plug on the side port of the Camera. Connect the other end to a USB port on your 

work computer. This connection will serve as a serial port for communication between the camera 

and the work computer. At this point you may optionally connect an HDMI cable between the 

camera and a compatible monitor. You may also optionally connect a mouse and keyboard with 

the top USB mini port for direct communication with the Capella Camera. After the aforementioned 

connections have been set, connect the power supply to the DC power jack.  

On the work computer, find the COM port corresponding to the Camera serial port. Open 

this serial port with your choice of serial terminal (e.g. minicom, terraterm, PuTTY). After the 

initialization sequence, the camera will ask for a password to login as root. The password is root. 

After login, type ls into the terminal to see a list of top level files and applications that are already 

on the camera. The camera comes with 2 demo applications from the manufacturing company. The 

functionality of these applications can be found in the Camera product brief. The V4l folder 

contains an application that allows for camera streaming and snapshots. The OpenCV folder 

contains a simple circle detector application that finds circular objects in the camera stream and 

outputs their position.  The camera home folder will also have several bash files (files with the .sh 

extension) that have been created by this group to automate certain functionalities. 

 

Figure A.I: Capella Camera Full Setup 
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A.III.II Configuring FTP Network  
There is no direct access to the camera file system (without manually taking the camera 

apart). Thus, to add files and applications to the camera, the user must use a File Transfer Protocol 

network between the camera and the work computer. The Capella camera comes with a pre-

installed FTP server, however before the server can be used, the camera IP address and netmask 

needs to be initialized. The IP address will serve as a local network for the camera Ethernet 

connection. To set the IP run the following command on the serial port terminal: ifconfig eth6 

192.168.1.10 netmask 255.255.255.0. This will configure the Ethernet IP to the address 192.168.1.10 

(this command will need to be run every time the camera boots up), this address can be 

configured to anything you wish so long as it is in the correct format (e.g. X.X.X.X). To run the FTP 

server, execute the following command in the terminal: pure-ftpd &.  

On the work computer, the FTP network can be accessed through any open source FTP 

client, such as Filezilla. Upon opening the client of your choice, provide the previously configured 

IP address to the client, and type root for the password. You should now have be able to access 

any directory and file on the camera OS from within the FTP client. The group has created the 

FTP_Config.sh bash file which automates the FTP server process on the camera. To run the bash 

file, simply type sh FTP_Config.sh in the serial port terminal. The FTP network will prove 

instrumental in implementing additional functionality for the Capella Camera.  

A.III.III Building GStreamer  
 The Capella Camera does not come with any means to transmit the video stream to the 

work computer (unless the computer has an HDMI-in port). As such, additional functionality for the 

camera is needed so as to achieve video streaming to another computer. GStreamer is an 

application that allows for the real-time video and audio streaming over Ethernet. The steps to 

build GStreamer for the Capella Camera are given below.  

Scratchbox2 Cross-compiler 
 GStreamer will need to be cross-compiled for the Armv7 architecture in order to 

successfully be implemented on the camera. Scratchbox2 is a simple and effective cross-compiler 

for this purpose. The following is a summary of steps to install Scratchbox2 on your work 

computer.1  

1. Install QEMU on the work computer by running the following commands from the terminal 

(some commands may need root access, to provide this, prefix the command with sudo): 

git clone git://git.savannah.nongnu.org/qemu.git 

cd qemu 

git checkout -b stable v0.10.5 

./configure --prefix=/$qemu_install_directory --target-list=arm-linux-user 

make install 

2. Once QEMU is installed, compile and install scratchbox2 with the following commands: 

git clone git://anongit.freedesktop.org/git/sbox2 

cd sbox2 

./configure --prefix=/$SB2_install_directory 

make install 

3. After scratchbox2 is installed, add its location to the target path of the terminal. 

                                                        
1 For further detail see: http://felipec.wordpress.com/2009/06/07/installing-scratchbox-1-and-2-for-

arm-cross-compilation/  

http://felipec.wordpress.com/2009/06/07/installing-scratchbox-1-and-2-for-arm-cross-compilation/
http://felipec.wordpress.com/2009/06/07/installing-scratchbox-1-and-2-for-arm-cross-compilation/
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export PATH=/$SB2_install_directory /bin:$PATH 

4. An ARM toolchain will be needed to configure the scratchbox2 target. A free version of the 

CodeSourcery toolchain can be used for this purpose.2 Download and install the toolchain. 

The version used by this group was arm-2009q3. From here on $CS will be used to refer to 

the toolchain install directory. 

5. The following commands will configure a target, which will represent your target 

filesystem: 

cd $CS/arm-none-linux-gnueabi/libc/sb2-init –c $qemu_install_directory/bin/arm-

none-linux-gnueabi-gcc 

sb2-init -c $qemu_install_directory/bin/qemu-arm armv7 $CS/bin/arm-none-linux-

gnueabi-gcc 

6. Now cross-compilation for ARM7 architecture can be done by prefixing a command with 

sb2, for example: sb2 ./configure --prefix=/TARGET_DIR 

Cross-Compiling the Glib Libraries 
The GStreamer plugins require the GLib library in order to compile, as such the GLib 

library needs to first be cross-compiled. The following is a summary of steps to successfully cross-

compile Glib for ARM7 architecture.3 The variable $TARGET/gst will be used to represent the 

GStreamer target directory 

1. Make sure that the ~/bin directory is in your path by executing the following command: 

export PATH="$HOME/bin:$PATH" 

2. Before we can compile GLib, we must first compile and install the ZLib library, which GLib 

depends on.  Cross-compile ZLib with the following commands: 

wget -c http://zlib.net/zlib-1.2.5.tar.gz 

tar -xf zlib-1.2.5.tar.gz 

cd zlib-1.2.5 

sb2 ./configure --prefix=$TARGET /gst 

sb2 make install 

3. Some versions of the GLib library contain bugs that fails to detect the ZLib library. To get 

arounf the bugs the C_INCLUDE_PATH and LDFLAGS globals have to manually be set by 

the following command: export C_INCLUDE_PATH='$TARGET/gst/include' LDFLAGS='-

L/$TARGET/gst/lib'. If all else fails, try different versions of the GLib library until one is 

found that does not contain the bug. 

4. Run the following commands to cross-compile the GLib library for ARM7: 

git clone git://git.gnome.org/glib 

cd glib 

git checkout -b stable 2.24.1 

./autogen.sh --noconfigure 

sb2 ./configure --prefix=$TARGET/gst --disable-static --with-html-dir=/tmp/dump 

sb2 make install 

Cross-Compiling the GStreamer Plugins  
At this point, the GStreamer core, base and extension plugins can finally be cross 

compiled. GStreamer has three major plugin packages: the Good (contains the most stable and 

                                                        
2 CodeSourcery tool chain may be downloaded from: http://www.mentor.com/embedded-

software/sourcery-tools/sourcery-codebench/editions/lite-edition/  
3 For further detail see: http://felipec.wordpress.com/2010/10/08/my-arm-development-notes/  

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://felipec.wordpress.com/2010/10/08/my-arm-development-notes/
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tested plugins), the Bad (plugins that are not as extensively tested), and the Ugly (least tested and 

stable plugins). The following is a summary of steps to successfully cross-compile GStreamer for 

ARM7 architecture. As before, the variable $TARGET/gst will be used to represent the GStreamer 

target directory. 

1. The first step is to download and install the core GStreamer framework. This is done with 

the following commands: 

git clone git://anongit.freedesktop.org/gstreamer/gstreamer 

cd gstreamer 

git checkout -b stable RELEASE-0.10.29 

./autogen.sh --noconfigure 

sb2 ./configure --prefix=$TARGET/gst --disable-nls --disable-static --disable-

loadsave --with-html-dir=/tmp/dump 

sb2 make install 

2. Many GStreamer components require the Liboil library. The following commands cross-

compile Liboil for our target: 

git clone git://anongit.freedesktop.org/liboil 

cd liboil 

git checkout -b stable liboil-0.3.17 

./autogen.sh --noconfigure 

sb2 ./configure --prefix=$TARGET/gst --disable-static --with-html-dir=/tmp/dump 

sb2 make install 

3. Now the GStreamer base plugins will be installed. These plugins provide the fundamental 

functionality of GStreamer. The following commands will cross-compile the base plugin 

package for our target: 

git clone git://anongit.freedesktop.org/gstreamer/gst-plugins-base 

cd gst-plugins-base 

git checkout -b stable RELEASE-0.10.29 

./autogen.sh --noconfigure 

sb2 ./configure --prefix=$TARGET/gst --disable-nls --disable-static --with-html-

dir=/tmp/dump 

sb2 make install 

4. The Good plugins package can be installed with the following commands: 

git clone git://anongit.freedesktop.org/gstreamer/gst-plugins-good 

cd gst-plugins-good 

git checkout -b stable RELEASE-0.10.23 

./autogen.sh --noconfigure 

sb2 ./configure --prefix=$TARGET/gst --disable-nls --disable-static --with-html-

dir=/tmp/dump 

sb2 make install 

5. The Bad and the Ugly plugin packages can be installed similarly to steps 3 and 4.  

6. Every time you open a new terminal is opened, and you wish to cross-compile, you must 

first manually export the package configuration paths with the following command: export 

PKG_CONFIG_PATH=$TARGET/gst/lib/pkgconfig 

Transferring GStreamer onto the Capella Camera 
Now that GStreamer has been built for an ARM7 architecture, it must be transferred over 

to the Capella Camera Operating System. This is where the previously configured FTP network 
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comes in. Using the FTP client, copy the contents of the $TARGET directory to the /opt folder in 

the Camera file system (you will have to back out of the home folder in the camera, where upon 

you will see all of the system folders, including the /opt folder). After the contents have been 

copied, make sure they are given full user permissions (if using the Filezilla client, you can right 

click on the copied folder in the Capella file system, select “change permissions” and then type 

777 to give full read/write/execute permissions to the user. After this is complete, GStreamer 

should be fully operational on the Capella Camera.  

A.III.IV Transmitting and Receiving the Camera Video Stream 
After GStreamer is installed on the camera, a GStreamer pipeline can be created to 

transmit the camera video feed over Ethernet to a receiving computer. The receiving computer 

must also have GStreamer installed. If the receiving computer is a standard PC or laptop running 

Linux, the installation process is as simple downloading the GStreamer application and running 

the installer If the receiver is another ARM machine, then GStreamer will have to be installed in a 

process similar to the Capella Camera (alternatively if the receiver is also ARM7 the user can 

simply copy the cross-compiled GStreamer folder in the target directory, over to the receiver file 

system). 

Transmitting the Video Stream 
Every time the Capella Camera boots up, the user must export the GStreamer library 

locations. This can be done by executing the following commands through the serial port terminal: 

export PATH=/opt/arm/gst/bin:/user/:$PATH 

export GST_PLUGIN_PATH=/opt/arm/gst/lib/gstreamer-0.10:/usr/share/gstreamer-0.10 

export LD_LIBRARY_PATH=/opt/arm/gst/lib:/usr/lib 

 

Now the GStreamer pipeline of your choice can successfully be executed. Unfortunately, 

GStreamer is not designed to stream stereoscopic feeds, and does not recognize the Capella 

Camera /dev/video4 device, which contains both the left and right streams combined together. 

The following pipeline can be used to transmit the left and right camera video feeds to different 

ports within the same pipeline.  
gst-launch-0.10 -v v4l2src device=/dev/video0 always-copy=false ! 'video/x-raw-
gray,format=(fourcc)UYVY,width=640,height=480,framerate=5/1' ! ffmpegcolorspace 
! rtpvrawpay ! multiudpsink clients=\"192.168.1.1:4000\" v4l2src 

device=/dev/video3 always-copy=false ! 'video/x-raw-
gray,format=(fourcc)UYVY,width=640,height=480,framerate=5/1' ! ffmpegcolorspace 
! rtpvrawpay ! multiudpsink clients=\"192.168.1.1:5000\" 

 

While the Overo WaterSTORM COM processor used by the Capella Camera has DSP 

capabilities, the DSP drivers were not included with the Capella Reference design. As such, some 

of the more sophisticated GStreamer pipelines, such as video encoding, cannot be done on the 

Capella. Likewise, because the Capella effectively has no DSP, the GStreamer pipeline takes up 

considerable CPU usage (about %97). It is thus recommended that no other processes be run on 

the camera while the GStreamer pipeline is active. The Initialization.sh bash script created by this 

group automates the GStreamer transmission pipeline for the Capella Camera 

Receiving the Video Stream 
A GStreamer pipeline will need to be initiated on the receiving end in order to obtain the 

video stream. This pipeline will be fundamentally similar to the pipeline of the transmitter. The 

following is the respective receiving pipeline for the transmission pipeline shown above: 
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gst-launch-0.10 udpsrc port=4000 caps = 'application/x-rtp, 

media=(string)video, clock-rate=(int)90000, encoding-name=(string)RAW, 

sampling=(string)YCbCr-4:2:0, depth=(string)8, width=(string)640, 

height=(string)480, colorimetry=(string)SMPTE240M, payload=(int)96, 

ssrc=(uint)3586515688, clock-base=(uint)2274023560, seqnum-base=(uint)17136' ! 
rtpvrawdepay ! ffmpegcolorspace !  jpegenc quality=100 ! multifilesink 

location=$HOME/IMAGES/imgL%d.jpg  udpsrc port=5000 caps = 'application/x-rtp, 

media=(string)video, clock-rate=(int)90000, encoding-name=(string)RAW, 

sampling=(string)YCbCr-4:2:0, depth=(string)8, width=(string)640, 

height=(string)480, colorimetry=(string)SMPTE240M, payload=(int)96, 

ssrc=(uint)3586515688, clock-base=(uint)2274023560, seqnum-base=(uint)17136' ! 
rtpvrawdepay ! ffmpegcolorspace ! jpegenc quality=100 ! multifilesink 

location=$HOME/IMAGES/imgR%d.jpg   

 As can be seen, this pipeline is accessing the ports (4000 and 5000) created by the 

transmission pipeline. The highlighted caps value comes directly from the transmission pipeline. 

Upon running the transmission pipeline, the serial monitor will print out several values and pseudo 

pipelines. Among these values are the caps declarations. Simply copy the caps value from the 

serial port, and set it on the receiving pipeline. The pipeline above is saving the video stream in 

a folder, as a series of JPEG images. The video can also be made to play live by removing the 

jpegenc and multifilesink plugins, and instead replacing them with the autovideosink plugin. 
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A.IV. OMAP5432 EVM Setup Guide 
The purpose of this section is to document the setup of the Ubuntu Linux OS on the TI 

OMAP5432 EVM, including the changes made to the OS and the additional programs installed in 

order to achieve the required functionality.  These range from rebuilding the Linux kernel with 

additional functionality to simple package installations.  Additionally, this section will review the 

scripts and programs used to configure the EVM for collecting and processing data and for 

obtaining updates from the internet.  A basic understanding of Unix-like systems is assumed.  In 

this section the term “EVM” will be used to refer to the Texas Instruments OMAP5432 Evaluation 

Module as both a hardware and software device.  When discussing operating systems, “the OS” 

or “Linux” will refer to the Ubuntu 12.04 LTS distro of Linux that was installed on the EVM and on 

the host machine unless otherwise specified.  

Many of the changes made to the OS were not implemented in the order described here, but 

instead as the problem they corrected was discovered.  For the sake of simplicity, however, they 

are documented in an order that builds to a final system in a cleaner manor.  Finally, remaining 

issues with the OS and platform will be discussed.  These relate primarily to ease of use issues that 

do not affect the actual functionality of the system.   

A.IV.I. Host System 
TI supplies a set of software tools that allow users to easily build and install Ubuntu 12.04 for the 

EVM, called the TI GLSDK.  These tools require a Linux host with Ubuntu 12.04 installed.  Instead 

of acquiring a dedicated machine, our team used a virtual machine. 

A.IV.II. Installing the TI GLSDK 
Refer to the documentation for installing the GLSDK provided by TI.  Version 6.00.00.07 

was used as it was the last version to support Ubuntu as the target OS.  As in the TI documentation, 

$GLSDK will be used when referring to the directory the SDK is installed in.  On our host, the 

GLSDK was installed in /opt.   

A.IV.III. Rebuilding and Installing the Linux Kernel 
The EVM boots off a bootable micro SD card that contains the operating system it will be 

using.  This section will describe the process of building a suitable Linux kernel, and then placing 

it on the micro SD card along with the file system and bootloader.  Although the GLSDK come with 

a prebuilt Linux kernel, this kernel does not include drivers for FTDI USB to serial devices.  This 

driver is part of the Linux kernel, and is included in the Ubuntu distribution by default, however 

the configuration file used to make the provided kernel does not include this feature.  

Configuration files are files that describe the features to be included in a build by the make utility.  

Although they are text files, they should only be modified with special tools.  To enable FTDI 

drivers in the configuration file, execute the following commands on the host computer.  Modifying 

the configuration file and building the kernel are relatively straightforward operations; however 

it will take a good deal of time, possibly an hour or more on a typical PC, for the kernel to be built. 

The first step is to back up the makefile, and copy it to the Linux directory so that it can be 

modified.  On our host machine, our user did not own the development folder so we had to use 

sudo for much of the process.  To avoid this hassle, a root user session is started before running 

through these commands. 

> sudo -s 

> cd $GLSDK/board-support/Linux_3.8.4 
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> cp ./arch/arm/configs/omap2plus_defconfig 

./arch/arm/configs/omap2plus_defconfig_backup 

> cp ./arch/arm/configs/omap2plus_defconfig ./.config 

Next menuconfig is used to modify the config file.  Menuconfig is a program that provides 

a graphical interface for modifying config files.  It is important to specify which architecture the 

configuration file is to be used for, as otherwise menuconfig will assume it is for a 386 machine.   

> export ARCH=”arm” 

> make menuconfig 

A GUI will appear on the screen.  Using the arrow keys, navigate to Device Drivers > USB 

Support > USB Serial Converters.  Press ‘Y’ while USB Serial Converters is selected to include it in 

the build.  Next enter into USB Serial Converters, select USB FTDI Single Port Serial Driver and press 

‘Y’.   

 
Figure A.II - Using menucofig to include FTDI drivers in kernel build 

Use the Exit selection at the bottom of the screen to exit out of each level.  At the top level, 

press Exit again and chose to save your changes.  Copy the configuration file back to the directory 

where it came from, and use the GLSDK to build the kernel. 

> cp ./.config ./arch/arm/configs/omap2plus_defconfig 

> cd $GLSDK 

> make linux_clean 

> make linux 
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> make linux_install 

The build process for Linux may take an hour or more depending on the machine used to 

do it.  Once it is done, use install to put the kernel files in a place you can find them, as shown 

above.  This will be a location you chose during the installation of the GLSDK for the target file 

system, with the default value being in your home directory.  This file path can be found in 

$GLSDK/Rules.make at the bottom of the file in the variable EXEC_DIR.  Our files were moved to 

/home/USER/targetfs/home/root/omap5.  This directory will be referred to as $EXEC_DIR in the 

instructions below, however it should be noted that this will need to be replaced with the actual 

direct path, as the variable is not exported from the script.  In this directory the files will be 

contained in the boot directory, making the complete path 

/home/USER/targetfs/home/root/omap5/boot.  

These final instructions move the newly built kernel to where the SD build script can find 

it and use the GLSDK to make a bootable micro SD card.  Make sure the micro SD card that will be 

used is connected to the host system and that there is no important data on it, as it will be 

completely and irreversibly erased.  To check which disk in /dev in the micro SD card, use fdisk 

–l and look for the drive that matches the size of your disk. 

> cp –r ./board-support/prebuilt-images ./board-support/prebuilt-images-

backup 

> cp –r $EXEC_DIR/boot/ ./board-support/prebuilt-images/ 

> ./bin/mksdboot.sh 

The script will prompt for which disk to use.  Agree to the prompts, and once the script is 

done the micro SD card should be ready to boot from.  At the end, exit from the sudo session. 

> exit 

A.IV.IV. Installing Packages and Initial Setup 
Supply the board with power and connect the debug port to the host computer using a USB cable.  

On a host with the GLSDK installed, a minicom session with the board can be started by typing 

sudo minicom -w.  Note that the board may take some time to boot.  Once the target system has 

booted, log in as root if a prompt is presented.  TI has provided a script that installs and sets up 

many of the basic packages that are required for using the system.  To install these packages the 

board needs network access.  The only building on the WPI campus that our group found to allow 

the board on the WPI network was the Gordon Library.  Once the Ethernet is connected, run the 

setup script on the target device.  This may take some time to complete.   After the script 

completes, it may be helpful to install some additional packages to aid in debugging.   

> ./first-boot.sh 

> sudo apt-get install net-tools usbutils 

A.IV.V. Scripts and Rules 
Automated setup and execution of different parts of the system was achieved through the use of 

several different scripts.  Each of the required scripts is listed below, with a brief descript of what 

is does, its file path, and the content of the script. 

Rules for udev 
To automate the usage of serial ports connected through FTDI devices, the devices need to appear 

with the same name in /dev each time they turn on.  This includes the XBee, the Capella camera 
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serial connection, and the Arduino.  By default, devices attached to the next open /dev/ttyUSB*, 

with no guaranteed order.  To fix this, the udev rules were modified to create a more descriptive 

name for each device.   

It should be placed in /etc/udev/rules.d/45-custom-serial-names.rules. 

# Makes simlinks with more appropriate names for all the FTDI devices 

SUBSYSTEMS=="usb", KERNEL=="ttyUSB*", ATTRS{idVendor}=="0403", 

ATTRS{idProduct}=="6001", ATTRS{serial}=="AE00EVL7", SYMLINK+="ttyCapella" 

SUBSYSTEMS=="usb", KERNEL=="ttyUSB*", ATTRS{idVendor}=="0403", 

ATTRS{idProduct}=="6001", ATTRS{serial}=="A702NVF7", SYMLINK+="ttyXBee" 

Python Script to Start GStreamer on the Capella Camera 
This brief script logs into the Capella Camera and runs the script placed in the root user’s home 

directory on the Capella that starts sending image data to the EVM.  If the corresponding 

GStreamer client is not running on the EVM, the data is ignored.   

This script should be /root/startGSTServer.py . 

#!/usr/bin/env python  

import serial 

ser=serial.Serial("/dev/ttyCapella", 115200, timeout=1) 

ser.write("root\n") 

ser.write("\n") 

ser.write("sh Inititalization.sh\n") 

ser.close() 

 

GStreamer Client 
This bash script first configures the Ethernet interface on the EVM to connect with the Capella.  

Next, if the USB drive used for image storage is plugged in, it is mounted if it is not already.  The 

folder for the images to be stored in is cleared, and finally the GStreamer client is started.   

This script should be placed in /root/rximg-jpeg.sh  

#!/bin/bash 

 

#Camera stream setup 

 

ifconfig eth0 192.168.1.1 netmask 255.255.255.0 

 

echo "Network configured" 

ifconfig | head -n 2 

echo "Preparing image folder..." 

 

if [ -e "/dev/sda1" ]; then 

  mountpoint -q /u || mount /dev/sda1 /u 

  TARGETDIR=/u/IMAGES 

else 

  echo "Can't find Removable Drive, saving images to HOME directroy" 

  TARGETDIR=~/IMAGES 

fi 

 

if [ -e "$TARGETDIR" ]; then 

  rm -R $TARGETDIR 
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fi 

 

mkdir $TARGETDIR 

echo "Image directory cleared" 

echo "Images will be stored in ${TARGETDIR}" 

 

gst-launch-0.10 udpsrc port=4000 caps = 'application/x-rtp, 

media=(string)video, clock-rate=(int)90000, encoding-name=(string)RAW, 

sampling=(string)YCbCr-4:2:0, depth=(string)8, width=(string)640, 

height=(string)480, colorimetry=(string)SMPTE240M, payload=(int)96, 

ssrc=(uint)3586515688, clock-base=(uint)2274023560, seqnum-

base=(uint)17136' ! rtpvrawdepay ! ffmpegcolorspace !  queue ! jpegenc 

quality=100 ! multifilesink location=$TARGETDIR/imgL%d.jpg  udpsrc 

port=5000 caps = 'application/x-rtp, media=(string)video, clock-

rate=(int)90000, encoding-name=(string)RAW, sampling=(string)YCbCr-4:2:0, 

depth=(string)8, width=(string)640, height=(string)480, 

colorimetry=(string)SMPTE240M, payload=(int)96, ssrc=(uint)3586515688, 

clock-base=(uint)2274023560, seqnum-base=(uint)17136' ! rtpvrawdepay 

!ffmpegcolorspace ! queue ! jpegenc quality=100 ! multifilesink 

location=$TARGETDIR/imgR%d.jpg  

 

echo "GStreamer client started" 
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A.V. Parsing IMU Data  
After a full duplex SPI communication was established between the devices, IMU register 

values were parsed to obtain angular rates in degrees per second. The gyroscope and 

accelerometer output data is a 32 bit twos complement format. Each IMU register is 16 bits and 

hence two IMU register reads are required to get the complete data. Figure 6 shows registers that 

need to be read to get X-axis gyroscope data and how to convert X_GYRO_OUT register value to 

angular rate in degrees per second. Using the X_GYRO_OUT register provides sufficient 

resolution for the project so X_GYRO_LOW register was not read because of the processing delay 

associated with reading in a register through SPI. Other gyroscope registers were parsed similarly 

following the data format for each register as described in the datasheet.  

 

 
Figure A.III: X gyro data format 

To read in Arduino data through a serial port, a python script was developed using the 

pySerial module. pySerial provides backends for Python running on Windows and Linux to 

provide access to serial port. A script was written using this module so that serial data coming in 

from Arduino can be read in Linux running on the OMAP EVM. Figure 10 shows the parsed data 

printed by Arduino to a serial port on the laptop.  

 
Figure A.IV: Angular rotation Z axis by parsing data in Arduino. Units of Y axis is degrees and 

units of X axis is seconds. 
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A.VI. Legacy Designs 
 The following were previous potential system designs devised before deciding on the final 

implementation.  

A.VI.I. FPGA Design 
 The FPGA based system shown in Figure A.V was the first proposed design by the group. 

This system would have taken advantage of the parallelization properties of FPGA systems in order 

to obtain much faster feature detection and matching solutions. As such, this design would been 

more ideally suited for a real-time application design. Nevertheless, implementing feature 

detection and matching algorithms on an FPGA platform proved to be too time consuming to 

implement within the scope of this project. Additionally, as this system would have been more 

expensive overall due to requiring both a fairly powerful FPGA and a microprocessor,. 

 
Figure A.V: FPGA based Design 

A.VI.II. ZedBoard Based Design 
 A possible implementation based around the ZedBoard was entertained for a time. The 

Zedboard is a low cost development board which contains both a programmable logic (PL) 

section, and a Xilinx Zynq 7000 SoC (System on chip) processor. The Zynq 7000 is a dual core ARM 

Cortex A9 processor rated at a nominal 800MHz. As the Zedboard allows for development on both 

programmable logic (FPGA) and software (via ARM processor) environments, it is ideally suited 

to approximate the practicality of our original system (which contained both environments).  

 The ZedBoard design was created with the intention that the Arm processor would run an 

embedded Linux environment which would contain a software implementation of a Sobel filer as 

well as provide a means of communication between peripherals. Conversely, the programmable 

logic would be used for hardware acceleration, and also contain a hardware implementation of 

the Sobel filter. This was done so as to benchmark the relative speeds of the hardware and software 

implementations. Ultimately it was found that there was a significant communication bottleneck 

between the hardware and the OS, creating large latency for the hardware implementation of the 

Sobel filter. Additionally the Zedboard processor was not powerful enough to run the feature 

detection and matching algorithms at a close to real-time frame rate. Thus, the students opted 

instead to simply use a powerful embedded processor without programmable logic.  
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Figure A.VI: Flowchart of Software filtering on ZedBoard 

A.VI.III. Processor Core Based Design 
 The Processor Core based design is provided by XX. This design is virtually identical to 

the final realized system with some notable exception. This design has all the functionality within 

the OMAP5432 processor, with the major algorithms each being given their own cores for 

processing. Similarly this system also took advantage of the AM M4 cores located on the processor 

for some of the smaller algorithms. While this system is ideal in theory, the group discovered that 

we did not have as much free range to customize the processor cores as previously anticipated. 

Likewise, the LCD screen output on the system was eventually dropped due to timing constraints.  

 
Figure A.VII: Processor Core based Design 
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A.VII. Other Stereo Vision Camera Systems 
This appendix provides an overview for a variety of currently existing stereo vision 

cameras, and stereo vision camera system packages.  

A.VII.I. Surveyor Vision System 
Website: http://www.surveyor.com/stereo/ 

This is an open-source stereo vision system targeted towards research and hobbyist 

applications.  

 
Figure A.VIII: Surveyor Stereo vision system 

Table A.I: Specifications and Features for Surveyor Stereo Vision System 

SPECIFICATIONS AND FEATURES QUANTITY ON 
SYSTEM 

PROCESSOR 500 MHz Analog Devices 2 (1 for each camera) 
MEMORY 32MB SDRAM, 4MB SPI Flash 2( 1 for each camera) 
PORTS/BUSES JTAG, SPI, I2C, 16 GPIO (general purpose input/output), 

external 32-pin I/O header (with 2 UARTS 
2( 1 for each camera) 

CAMERA Omnivision OV9655 1.3 megapixel sensor  
COMMUNICATION Processor-Processor communications via SPI. WLAN 

802.11g radio for Wifi 
1 

POWER On board 3.3V switching regulator. 
Dual h-bridge motor driver with 1A drive current per 
motor. 
2 switching transistor driver (100mA drive ) 
Low battery detect circuit  
Total Power Draw: ~2W (300mA @7.4V) 

1 

BOARD 
DIMENSIONS 

60mmX150 mm 1 

PRICE ~$550.00 (when it was last available  

Schematics and Drawings 
Stereo Vision Module - http://www.surveyor.com/blackfin/bfin-stereo-v2.png 

Camera Schematic - http://www.surveyor.com/blackfin/SRV1-bfin-schematic.pdf 

Camera Module Schematic - http://www.surveyor.com/blackfin/AA9655-schematic.jpg 

http://www.surveyor.com/stereo/
http://www.surveyor.com/blackfin/bfin-stereo-v2.png
http://www.surveyor.com/blackfin/SRV1-bfin-schematic.pdf
http://www.surveyor.com/blackfin/AA9655-schematic.jpg
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A.VII.II. MEGA-DCS Megapixel Digital Stereo Head 
Website: http://users.rcn.com/mclaughl.dnai/sthmdcs.htm 

The MEGA-DCS is an all-digital stereo head for machine vision tasks, emphasizing high 

performance in a low power, compact package. 

 

Figure A.IX: MEGA-DCS Megapixel Digital Stereo Head 

Table A.II: Specifications and Features for MEGA-DCS Megapixel Digital Stereo Head 

SPECIFICATIONS AND FEATURES 

CAMERA RESOLUTION 1280Hx960V pixels 
IMAGERS ½” format CMOS, color or monochrome 
FORMATS 1280x960 or 640x480, 8-bit monochrome or Bayer color 
FRAME RATES 3.75, 7.5, 15, 30 Hz. MAX: 7.5 Hz at 1289x960 
GAIN 0-22 dB 
SENSITIVITY 2.5 V/lux-sec 
S/N >55 dB 
POWER < 1W 
LENS 6.0 mm F 2.4 C mount included 

3.5 mm and 12 mm lens optional 
SIZE 1.5’’ x 5” x 1” 
SVS SOFTWARE Linux kernel 2.4, MSW98SE, ME, 2000, XP 
INTERFACE Single cable for power, data, and control  
PRICE $1,600.00 

Manual and References 
Manual: http://users.rcn.com/mclaughl.dnai/sthmdcs.pdf 

Color/Monochrome Reference: http://users.rcn.com/mclaughl.dnai/sthmdzcs_color.htm 

Lens Options: http://users.rcn.com/mclaughl.dnai/sthmdcs_lenses.htm 

Pricing Options: 

http://users.rcn.com/mclaughl.dnai/Videre%20Design%20Order%20Form%20March%202003.

pdf 

 

A.VII.III. PCI nDepth Vision System 
Website: http://www.focusrobotics.com/products/systems.html 

Vision System targeted towards companies and individuals looking to add real-time depth 

perception to an existing PC platform. 

http://users.rcn.com/mclaughl.dnai/sthmdcs.htm
http://users.rcn.com/mclaughl.dnai/sthmdcs.pdf
http://users.rcn.com/mclaughl.dnai/sthmdzcs_color.htm
http://users.rcn.com/mclaughl.dnai/sthmdcs_lenses.htm
http://users.rcn.com/mclaughl.dnai/Videre%20Design%20Order%20Form%20March%202003.pdf
http://users.rcn.com/mclaughl.dnai/Videre%20Design%20Order%20Form%20March%202003.pdf
http://www.focusrobotics.com/products/systems.html
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Figure A.X:nDepth Stereo Vision System 

Table A.III: Specifications and Features for nDepth Stereo Vision System 

SPECIFICATIONS AND FEATURES 

PROCESSOR SUBSYSTEM 
FRAME RATE 30 fps 
RESOLUTION WVGA (752x480) 

CALIBRATION 
ERROR 

.1 pixel RMS error 

STEREO ALGORITHM Sum of Absolute Differences (SAD) with 9x9 block matching 
HOST INTERFACE Standard PCI 33, direct DMA access 

STEREO VISION CAMERA 
RESOLUTION Two 752x480, 1/3 inch VGA CMOS digital image sensors 
FRAME RATE Up to 60 fps 
BASELINE 6cm 
IMAGE FORMATS Monochrome 
DYNAMIC RANGE >60dB 
A-D CONVERSION 10 bit 
SHUTTER TYPE Global shutter photodiode pixels. Simultaneous integration and 

readout 
CONTROLS Automatic and manual synchronized exposure + gain control 
INTERFACE LVDS  on CAT6 cable 
POWER 
CONSUMPTION 

< 1W at maximum data rate 

HOST SOFTWARE SUBSYSTEM 
DRIVERS Linux and Windows (for access to depth image, undistorted, and 

calibrated images 
CONTROL API Includes programming interfaces for control and infield processor 

upgrades.  
PRICE N/A 

Manual and References 
Datasheet: http://www.focusrobotics.com/docs/focus_ndepth_pci_brief.pdf 

 

A.VII.IV. Bumblebee 2 and Bumblebee XB3 
Website:  http://www.ptgrey.com/products/stereo.asp 

The bumblebee 2 and Bumblebee XB3  are high end stereo vision cameras obtainable with 

complete hardware and software packages.  

http://www.focusrobotics.com/docs/focus_ndepth_pci_brief.pdf
http://www.ptgrey.com/products/stereo.asp
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Figure A.XI: Bumblebee 2 Stereo Vision Camera 

Table A.IV: Specifications and Features for Bumblebee 2 and Bumblebee XB3 

SPECIFICATIONS AND FEATURES  

  Bumblebee 2 Bumblebee XB3 
FRAME RATE 48 fps , 20 fps 15 fps 
RESOLUTION 640x480, 1024x786  1280x960 
IMAGE FORMATS Monochrome and color Monochrome and color 
CALIBRATION Pre-calibrated to within .1 pixel RMS error Pre-calibrated to within .1 pixel 

RMS error 
A/D CONVERTER 12-bit ADC 12-bit ADC 
CAMERA  Sony® 1/3” progressive scan CCD Three Sony ICX445 1/3” progressive 

scan CCD’s 
BASELINE 12cm or 24 cm 12cm or 24 cm 
INTERFACE 6-pin IEEE-1394a 2x9 IEEE-I394 interface and for 

GPIO pins 
DRIVERS C/C++ API and device drivers.  C/C++ API and device drivers.  
SOFTWARE FlyCapture SDK and Triclops SDK FlyCapture SDK and Triclops SDK 
POWER 
CONSUMPTION 

2.5W at 12V 4 W at 12 V 

PRICE $1,895.00 (640x480), $2,395(1024x786) N/A 

Manual and References 
Getting Started Manual for Bumblebee 2: 

http://www.ptgrey.com/support/downloads/documents/Bumblebee2%20Getting%20Started%2

0Manual.pdf 

Getting Started Manual for Bumblebee XB3:  

http://www.ptgrey.com/support/downloads/documents/Bumblebee%20XB3%20Getting%20Sta

rted%20Manual.pdf 

Bumblebee 2 Datasheet: 

http://www.ptgrey.com/products/bbxb3/bumblebee2_xb3_datasheet.pdf 

Triclops SDK Datasheet: http://www.ptgrey.com/products/triclopsSDK/triclops.pdf 

 

A.VII.V. Scorpion 3D Stinger 
Website: http://scorpion3dstinger.com/ 

The Scorpion 3D Stinger is a Vision system designed for industrial robotics applications. 

http://www.ptgrey.com/support/downloads/documents/Bumblebee2%20Getting%20Started%20Manual.pdf
http://www.ptgrey.com/support/downloads/documents/Bumblebee2%20Getting%20Started%20Manual.pdf
http://www.ptgrey.com/support/downloads/documents/Bumblebee%20XB3%20Getting%20Started%20Manual.pdf
http://www.ptgrey.com/support/downloads/documents/Bumblebee%20XB3%20Getting%20Started%20Manual.pdf
http://www.ptgrey.com/products/bbxb3/bumblebee2_xb3_datasheet.pdf
http://www.ptgrey.com/products/triclopsSDK/triclops.pdf
http://scorpion3dstinger.com/
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Figure A.XII: Scorpion 3D Stinger Camera 

Table A.V: Specifications and Features of Scorpion 3D Stinger Camera 

SPECIFICATIONS AND FEATURES 

FRAME RATE 90 fps 
RESOLUTION 640x480 (VGA) 
IMAGE FORMATS Monochrome 
CAMERA  2 Sony XCG-V6oE cameras 
BASELINE  
INTERFACE 1000BASE-T (GigE Vision Compatible), rs-232, or tcp/ip for communication 

with robots 
DRIVERS N/A (handled through Scorpion Software 
SOFTWARE Scorpion Vision Software 
POWER SUPPLY 24V input, 5 and 12V output  
PRICE N/A 

Manual and References 
Scorpion Stinger Camera Datasheet: http://www.tordivel.no/scorpion/pdf/scorpion%208/PD-

2011-0002%20Scorpion%203D%20Stinger%20Camera.pdf 

Scorpion Stinger for Robot Vision: http://www.tordivel.no/scorpion/pdf/scorpion%209/PD-

2011-0015%20Scorpion%203D%20Stinger%20for%20Robot%20Vision.pdf 

 

A.VII.VI. Enseno N10 
The Enseno N10 is a compact Stereo camera with USB interface and a 3D image sensor.  

 
Figure A.XIII: Enseno N10 Stereo Camera 

http://www.tordivel.no/scorpion/pdf/scorpion%208/PD-2011-0002%20Scorpion%203D%20Stinger%20Camera.pdf
http://www.tordivel.no/scorpion/pdf/scorpion%208/PD-2011-0002%20Scorpion%203D%20Stinger%20Camera.pdf
http://www.tordivel.no/scorpion/pdf/scorpion%209/PD-2011-0015%20Scorpion%203D%20Stinger%20for%20Robot%20Vision.pdf
http://www.tordivel.no/scorpion/pdf/scorpion%209/PD-2011-0015%20Scorpion%203D%20Stinger%20for%20Robot%20Vision.pdf
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Table A.VI: Specification and Features for Enseno N10 Stereo camera 

SPECIFICATIONS AND FEATURES 

FRAME RATE  30 fps 
RESOLUTION 752x480 (WVGA) 
IMAGE FORMAT N/A 
WORKING RANGE 280-1400 mm 
INTERFACE USB 2.0, M8 GPIO connector 
SOFTWARE Enseno Software API (C++ based) 
POWER CONSUMPTION 2.5 W (5V, 500mA) 
PRICE Price on Request 
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A.VIII. Other IMU Options 
This appendix provides an overview for a variety of currently existing Inertial 

Measurement Units.  

A.VIII.I. FreeIMU 
FreeIMU is an open source IMU that is primarily intended for the hobbyist market, and is made 

to be easily interfaced to a small microcontroller.  It has limited onboard processing capabilities.  

In addition to the gyro and accelerometer, it has a magnetometer and a barometer.   

Purchase: http://www.varesano.net/projects/hardware/FreeIMU 

Datasheet: http://invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf 

 

Figure A.XIV - FreeIMU PCB 

 

Table A.VII: Specification and Features for FreeIMU 

SPECIFICATIONS AND FEATURES 

GYRO TYPE MEMS 
ACCELEROMETER TYPE MEMS 
MAX ANGULAR RATE 2000 deg/s 
MAX ACCELERATION 16 g 
GYRO DRIFT Not supplied 
ACCELEROMETER NOISE Not supplied 
DATA RATE 1000 Hz 
INTERFACE I2C, SPI 
RESOLUTION 12 bits 
POWER CONSUMPTION 3.9 mA @ 3.3V 
PRICE ~$66 

 

A.VIII.II. x-IMU 
The x-IMU has more extensive onboard processing using a dsPIC processor.  This allows the unit 

to communicate and log orientation and estimated position data at rates of up to 512 Hz.   

Purchase/info: http://www.x-io.co.uk/products/x-imu/#!prettyPhoto 

User Manual: http://www.x-io.co.uk/downloads/x-IMU-User-Manual-v5.1.pdf 

Example application: https://www.youtube.com/watch?v=6ijArKE8vKU 

http://www.varesano.net/projects/hardware/FreeIMU
http://invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://www.x-io.co.uk/products/x-imu/#!prettyPhoto
http://www.x-io.co.uk/downloads/x-IMU-User-Manual-v5.1.pdf
https://www.youtube.com/watch?v=6ijArKE8vKU
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Figure A.XV – x-IMU PCB 

 

Table A.VIII: Specification and Features for x-IMU 

SPECIFICATIONS AND FEATURES 

GYRO TYPE MEMS 
ACCELEROMETER TYPE MEMS 
MAX ANGULAR RATE 2000 deg/s 
MAX ACCELERATION 8 g 
GYRO NOISE 0.01 dps/√Hz 
ACCELEROMETER NOISE Not supplied 
DATA RATE 512 Hz 
INTERFACE I2C, SPI 
RESOLUTION 16 bits for gyro, 12 bits for accelerometer 
POWER CONSUMPTION 50-150  mA @ 3.6-6.3V, depending on settings 
PRICE ~$336 

 

A.VIII.III KVH 1750 IMU 
The KVH 1750 IMU is a military grade IMU with a fiber optic gyroscope and a low noise MEMS 

accelerometer.  Although this unit is significantly larger than the other units, it offers significantly 

higher levels of precision, with an angular drift due to gyro bias of less than 0.05 deg/hr.   

Info and Datasheet: http://www.kvh.com/Military-and-Government/Gyros-and-Inertial-Systems-

and-Compasses/Gyros-and-IMUs-and-INS/IMUs/1750-IMU.aspx  

http://www.kvh.com/Military-and-Government/Gyros-and-Inertial-Systems-and-Compasses/Gyros-and-IMUs-and-INS/IMUs/1750-IMU.aspx
http://www.kvh.com/Military-and-Government/Gyros-and-Inertial-Systems-and-Compasses/Gyros-and-IMUs-and-INS/IMUs/1750-IMU.aspx
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Figure A.XVI – KVH 1750 IMU 

 

Table A.IX: Specification and Features for KVH 1750 IMU 

SPECIFICATIONS AND FEATURES 

GYRO TYPE Fiber Optic 
ACCELEROMETER TYPE MEMS 
MAX ANGULAR RATE 490 deg/s 
MAX ACCELERATION 10 g 
GYRO DRIFT 0.01 dps/√Hz 
ACCELEROMETER NOISE <0.12 mg/√Hz random walk (0.23 ft/sec /√h) 
DATA RATE 1000 Hz 
INTERFACE RS-422 
RESOLUTION 16 bits for gyro, 12 bits for accelerometer 
POWER CONSUMPTION 5-8W, 9-36 V 
PRICE Not supplied 
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A.IX. Proposed PCB Design 
During the early stages of the project the group planned to put the power management 

system, the FTDI USB to serial bridge for the XBee wireless transceiver, a graphic liquid crystal 

display controller and the IMU interface on a custom made printed circuit board.  Building a 

custom board would allow these systems to be designed to our specifications so that they would 

precisely meet our needs.  Additionally, combining most of the smaller systems on a single board 

would have saved a significant amount of space in the final build up.  It would have been more 

robust, as there would have been less cabling that would have been required to connect these 

subsystems.   

The PCB consisted of three major sections.  The first of these was the power supply, which 

stepped the battery voltage down for both the PCB and other off-board systems.  A small 8-bit 

microcontroller was also placed on the board to provide communications with the IMU, to control 

a graphic LCD screen and to provide battery measurement capabilities.  Finally, a FTDI USB to 

serial bridge was placed on the board to provide the main OMAP board with a simple method of 

communicating with the XBee.  A system block diagram including the custom PCB is shown below.   

 

Figure A.XVII - Proposed System Block Diagram Including Custom PCB 

A.IX.I. Power Management 
Two switching mode power supplies from Alpha Omega Semiconductor are used to 

provide 5V and 3.3V supplies.  The 3.3V supply is used to power the IMU, the ATMega and the 

graphic LCD.  The 5V supply is used to power the Capella Camera. The USB to serial bridge is 

powered from the USB 5V line.  The expected worst case peak power requirements were 

approximately 1.5 A on the 5V rail and 2 A on the 3.3V rail.  To simplify design and layout, the 

same adjustable switching buck supply was used for both of the supplies.  The part, the AOZ1021 

from Alpha Omega semiconductors, is capable of sourcing up to 3 A of continuous current, 

allowing the addition of additional loads of both rails. 
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Figure A.XVIII - Schematic  for 3.3 V regulator 

A.IX.II. Microcontroller 
The microcontroller acted as a controller for the graphic LCD, as a battery measurement 

tool, and as a backup interface for the IMU.  The microcontroller chosen was an Atmel ATmega328 

clocked at 16 MHz.  The ATmega328 is an 8-bit microcontroller with 32 KB of flash memory.  This 

microcontroller was chosen for several reasons.  The primary reason was that team members were 

very familiar with this specific family of microcontrollers, which would speed development.  

Additionally, it is low-cost, easy to implement, and has several peripherals that applied to this 

application.  The presence of a hardware SPI unit allowed the ATmega to serve as a backup option 

for connecting the IMU.  The UART provided the microcontroller with simple connectivity with the 

OMAP.  Finally, the built in ADC would be used to monitor the battery voltage to prevent over-

discharging it.   

A.IX.III. XBee Transceiver 
The board had a single FTDI USB to serial bridge to connect the XBee transceiver to the 

OMAP.  This device appears as a virtual serial port on the host operating system and presents a 

3.3 V serial interface on the other side, compatible with the XBee.  In addition to the FTDI receiver, 

the board had headers so the XBee could be directly connected to the board.   

A.IX.IV. Connectivity 
The board would be connected to the OMAP via the expansion header on the EVM which 

has SPI, a USB port, a UART, and I2C which is not used.  The available USB port is connected to a 

USB to serial bridge from FTDI.  The serial connection is used to interface with the XBee wireless 

transceiver, allowing for wireless communications with a base computer. 

The UART is connected to the ATMega.  The SPI interface is routed through the board and 

is connected to the IMU.  There are jumpers on the board to allow the IMU to be instead connected 

to the hardware SPI interface on the ATMega if it is later decided to use the ATMega as an interface 

between the OMAP and the IMU.   

A.IX.V. Layout 
There were no specific size or shape constraints for the PCB, however to keep fabrication costs to 

a minimum the board size was minimized.  For the same cost reasons, the board was only two 

layers, which did limit the achievable component density.  A first version of the board layout is 

shown below.  The board was 2.25” x 3.0”.   
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Figure A.XIX - A preliminary layout for the proposed PCB 

A.IX.VI. Decision not to use Custom PCB 
After serious consideration, the group decided not to continue work on the PCB.  It was 

decided that the same objectives could be achieved through the use of off the shelf components 

for approximately the same budget and for considerably less effort and in less time.  This would 

come at the cost of working around the restrictions of the off the shelf parts, specifically the 

Arduino, which proved to have some connectivity problems with the OMAP board.  A comparison 

of the costs for each option is shown below.   

Off the Shelf Parts  Custom PCB 

Item  Cost   Item  Cost  

Xbee Breakout  $    24.95   PCB  $    35.00  

2 x Voltage Regulator  $    29.90   Estimated BOM  $    35.00  

Total  $    84.80   Total:  $    70.00  

 

The off the shelf components, their selection, and their implementation are discussed in 

detail in the System Implementation Section. 
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