331,864 research outputs found

    Rate and Mechanism of the Oxidative Addition of Benzoic Anhydride to Palladium(0) Complexes in DMF

    Get PDF
    The rate constant of the oxidative addition of the benzoic anhydride (PhCO)2O to [Pd0(PPh3)4] has been determined in DMF and compared to that of phenyl halides and phenyl triflate. The following reactivity order has been established: PhI >> (PhCO)2O > PhOTf > PhBr. The oxidative addition of (PhCO)2O proceeds by activation of one C−O bond. Two acyl-PdII complexes are formed: a neutral complex trans-[(PhCO)Pd(OCOPh)(PPh3)2] and a cationic complex trans-[(PhCO)PdS(PPh3)2]+ (S = DMF) showing that the decarbonylation process is highly endergonic. The exchange of PPh3 by the bidentate ligand dppp does not favor the decarbonylation process.

    Oxygen adsorption on the Ru (10 bar 1 0) surface: Anomalous coverage dependence

    Full text link
    Oxygen adsorption onto Ru (10 bar 1 0) results in the formation of two ordered overlayers, i.e. a c(2 times 4)-2O and a (2 times 1)pg-2O phase, which were analyzed by low-energy electron diffraction (LEED) and density functional theory (DFT) calculation. In addition, the vibrational properties of these overlayers were studied by high-resolution electron loss spectroscopy. In both phases, oxygen occupies the threefold coordinated hcp site along the densely packed rows on an otherwise unreconstructed surface, i.e. the O atoms are attached to two atoms in the first Ru layer Ru(1) and to one Ru atom in the second layer Ru(2), forming zigzag chains along the troughs. While in the low-coverage c(2 times 4)-O phase, the bond lengths of O to Ru(1) and Ru(2) are 2.08 A and 2.03 A, respectively, corresponding bond lengths in the high-coverage (2 times 1)-2O phase are 2.01 A and 2.04 A (LEED). Although the adsorption energy decreases by 220 meV with O coverage (DFT calculations), we observe experimentally a shortening of the Ru(1)-O bond length with O coverage. This effect could not be reconciled with the present DFT-GGA calculations. The nu(Ru-O) stretch mode is found at 67 meV [c(2 times 4)-2O] and 64 meV [(2 times 1)pg-2O].Comment: 10 pages, figures are available as hardcopies on request by mailing [email protected], submitted to Phys. Rev. B (8. Aug. 97), other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches

    Full text link
    Point defect complexes in crystalline silicon composed of hydrogen, nitrogen, and oxygen atoms are studied within density-functional theory (DFT). Ab initio Random Structure Searching (AIRSS) is used to find low-energy defect structures. We find new lowest-energy structures for several defects: the triple-oxygen defect, {3O}, triple oxygen with a nitrogen atom, {N, 3O}, triple nitrogen with an oxygen atom, {3N,O}, double hydrogen and an oxygen atom, {2H,O}, double hydrogen and oxygen atoms, {2H,2O} and four hydrogen/nitrogen/oxygen complexes, {H,N,O}, {2H,N,O}, {H,2N,O} and {H,N,2O}. We find that some defects form analogous structures when an oxygen atom is replaced by a NH group, for example, {H,N,2O} and {3O}, and {H,N} and {O}. We compare defect formation energies obtained using different oxygen chemical potentials and investigate the relative abundances of the defects.Comment: 9 pages, 13 figure

    Algorithms and almost tight results for 3-colorability of small diameter graphs.

    Get PDF
    The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring cannot be solved in time 2o(n) on graphs with n vertices and diameter at most 4. In spite of extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been an open problem. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2O(nlogn√). Furthermore we extend the notion of an articulation vertex to that of an articulation neighborhood, and we provide a polynomial algorithm for 3-coloring on graphs with diameter 2 that have at least one articulation neighborhood. For graphs with diameter at most 3, we establish the complexity of 3-coloring by proving for every ε∈[0,1) that 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ=Θ(nε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ=Θ(nε). Finally, we provide a 3-coloring algorithm with running time 2O(min{δΔ, nδlogδ}) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with δ=ω(1) and for graphs with δ=O(1) and Δ=o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ=Θ(nε), where ε∈[12,1), as its time complexity is 2O(nδlogδ)=2O(n1−εlogn) and the corresponding lower bound states that there is no 2o(n1−ε)-time algorithm

    AC hot-carrier-induced degradation in NMOSFET's with N 2O-based gate dielectrics

    Get PDF
    Frequency-dependent ac-stress-induced degradation in NMOSFET's with N 2O-grown and N 2O-nitrided gate oxides was investigated. Suppressed device degradation is observed in both N 2O-based devices as compared to SiO 2 device for frequency up to 100 kHz, which is attributed to nitrogen incorporation in the gate oxides. Moreover, when comparing the two N 2O-based oxides, N 2O-grown oxide device exhibits enhanced degradation than N 2O-nitrided oxide device. Charge pumping measurements reveal that N 2O-nitrided oxide has better immunity to interface-state and neutral-electron-trap generation under dynamic stress.published_or_final_versio

    An X-ray absorption spectroscopic study at the mercury LIII edge on phenylmercury(II) oxygen species

    Get PDF
    The X-ray absorption spectra of the reference and model compounds HgCl2, PhHgCl, PhHgOAc and [(PhHg)2OH][BF4].H2O have been analysed in both the XANES and EXAFS regions, and the technique was extended to determine the structures of (PhHg)2O, PhHgOH, and the basic salts PhHgOH.PhHgNO3 and PhHgOH.(PhHg)2SO4, which were previously structurally uncharacterised. Results indicate that (PhHg)2O is a molecular species with Hg-O-Hg 135°, while PhHgOH contains the [(PhHg)2OH]+ cation and is better formulated as [(PhHg)2OH]OH. The same cation is also featured in the two basic salts. Electrospray mass spectral studies of PhHgOH in aqueous solutions show that [PhHgOH2]+, [(PhHg)2OH]+ and [(PhHg)3O]+ co-exist in solution in a pH-dependent equilibrium

    Nitrided La 2O 3 as charge-trapping layer for nonvolatile memory applications

    Get PDF
    Charge-trapping characteristics of La 2O 3 with and without nitrogen incorporation were investigated based on Al/Al 2O 3/La 2O 3/SiO 2Si (MONOS) capacitors. The physical properties of the high-k films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Compared with the MONOS capacitor with La 2O 3 as charge-trapping layer, the one with nitrided La 2O 3 showed a larger memory window (4.9 V at ±10-V sweeping voltage), higher program speed (4.9 V at 1-ms +14 V), and smaller charge loss (27% after 10 years), due to the nitrided La 2O 3 film exhibiting less crystallized structure and high trap density induced by nitrogen incorporation, and suppressed leakage by nitrogen passivation. © 2012 IEEE.published_or_final_versio

    Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots.

    Get PDF
    Nitrous oxide (N 2O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N 2O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N 2O production was measured both before and after addition of ammonium and nitrate. In both experiments, N 2O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N 2O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N 2O was produced following nitrate application to either AMF treatment. Thus, the main N 2O source in this system appeared to be via nitrification, and the production of N 2O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N 2O production
    corecore