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Nitrided LasOs as Charge-Trapping Layer for
Nonvolatile Memory Applications
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Abstract—Charge-trapping characteristics of La>O3 with and
without nitrogen incorporation were investigated based on
Al/Al>;03/Laz03/Si02/Si (MONOS) capacitors. The physical
properties of the high-k films were analyzed by X-ray diffrac-
tion and X-ray photoelectron spectroscopy. Compared with the
MONOS capacitor with La;Og3 as charge-trapping layer, the one
with nitrided La>O3 showed a larger memory window (4.9 V at
+10-V sweeping voltage), higher program speed (4.9 V at 1-ms
+14 V), and smaller charge loss (27% after 10 years), due to the
nitrided La5 O3 film exhibiting less crystallized structure and high
trap density induced by nitrogen incorporation, and suppressed
leakage by nitrogen passivation.

Index Terms—Charge-trapping layer (CTL), high-k dielectric,
metal-oxide-nitride-oxide-silicon (MONOS), nitrided La5 O3, non-
volatile memory.

etal-oxide-nitride-oxide-silicon (MONOS)-type flash

memories with dielectrics as charge-trapping layer
(CTL) have many advantages over their floating-gate coun-
terparts, such as lower power consumption, higher reliabil-
ity, and stronger scaling ability. These are mainly ascribed
to their physically discrete-trapping characteristics, which can
avoid the whole charge leakage even via one single defect
happened in the floating-gate memory devices. SisNy (k ~ 7)
was the first dielectric used as the CTL. Recently, extensive
researches have been carried out to study high-k dielectrics
for substituting SisN, as CTL, mainly due to their higher
charge-trapping efficiency and stronger scaling ability [1]-[7].
Among various high-k dielectrics, rare-earth metal oxides, such
as Y203 (k’ ~ 18)[4], Pl’gOg (k‘ ~ 15)[5], Nd203 (]f ~ 16)[5],
EI‘QOg (ki ~ 13)[5], Gd203 (k ~ 14)[6], La203 (]{/‘ ~ 25)[7],
have received much interest as CTL, mainly due to their rel-
atively high dielectric constants, appropriate conduction-band
offsets with respect to Si and good electrical properties [8].
Moreover, La;O3 seems more suitable for CTL due to its high
dielectric constant and deep-level traps [9], which contribute to
high program/erase (P/E) speeds and good retention property.
Unfortunately, only a small memory window (0.5 V at +13 V
for 1 s [7]) was obtained for the MONOS memory with Las O3
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as CTL due to the low trap density of the LasOg film. It has been
widely reported that nitrogen incorporation into dielectrics can
induce traps in the bandgap [1], [2]. In addition, nitrogen in-
corporation can improve thermal stability [8]. Therefore, based
on MONOS capacitors, this work aims to study the charge-
trapping characteristics of the LayOs film with and without
nitrogen incorporation.

MONOS capacitors with an Al/Aly03/LasO3/Si04/Si struc-
ture were fabricated on p-type silicon substrate. After a standard
RCA cleaning, 2-nm SiO; was grown on the wafers by thermal
dry oxidation. Then, 4-nm LasO3 was deposited on the SiO,
by reactive sputtering using a La;Oj3 target in a mixed Ar/Ny
or Ar/Oy ambient, and the corresponding MONOS capacitors
were denoted as LaON and LaO, respectively. It is noted
that both samples have similar thickness for fair comparison.
Following that, 14-nm Al»O3 as blocking layer was deposited
by means of atomic layer deposition using trimethyl-aluminum
(AI(CH3)3) and H2O as precursors at 300 °C. Then, both
samples went through a postdeposition annealing (PDA) in Ny
ambient at 850 °C for 30 s. The high-temperature annealing
was used to imitate the thermal budget for activating the
source/drain of memory transistors after the film deposition
[10]. Finally, Al was evaporated and patterned as gate electrode,
followed by a forming-gas annealing at 300 °C for 20 min. The
cross-sectional transmission electron microscopy (TEM) image
of the LaON sample is shown in the inset of Fig. 1(a). To inves-
tigate the physical and electrical characteristics of the LasOs3
film, Al/LasO3/Si05/Si (MNOS) capacitors with and without
nitrogen incorporation were also fabricated by the same process
mentioned above. The thickness of the dielectrics was deter-
mined using ellipsometry and confirmed by TEM. The physical
characteristics of the high-£ dielectric films were determined
by X-ray diffraction (XRD) and X-ray photoelectron spec-
troscopy (XPS). The electrical characteristics of the memory
devices were measured by HP4284A LCR meter and HP4156A
semiconductor parameter analyzer at room temperature. The
flatband voltage (Vpp) was extracted from the experimental
C-V curve where the capacitance is equal to the calculated
flatband capacitance [11].

The atomic content of nitrogen in the LaON film is deter-
mined to be 2.7% by the XPS analysis shown in Fig. 1(a).
Fig. 1 also shows the La 3d and Si 2s spectra of the stacked
Lay03/SiO; films with and without nitrogen incorporation. For
the LaoOg film, the La 3d spectrum shows two strong peaks
located at 833.0 eV (La 3d5/,) and 849.9 eV (La 3d3,3) with
a spin-orbit splitting energy of 16.9 eV. These two peaks are
in accordance with the La component in La;O3[12]. Compared
with the LayOs film, the peak of the La 3d spectrum for the
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Fig. 1. XPS spectrum of the stacked LagO3/SiO2 films with and without

nitrogen incorporation. (a) N 1s spectrum. (b) La 3d spectrum. (c) Si 2s
spectrum. The inset of Fig. 1(a) is the cross-sectional TEM image of the LaON
sample.

nitrided La; O3 film shifts to higher binding energy by 0.4 eV,
which should be mainly due to the presence of more La-silicate
content in the film resulting from the chemical reaction at the
Si02/Lay 03 interface [13], [14]. The presence of La silicate
can be further confirmed by the Si 2s spectrum shown in
Fig. 1(c), where the Si 2s spectrum of the LasOgs film can
be decomposed into three components located at 151.0 eV,
153.6 eV and 154.3 eV, respectively. The component located
at 151.0 eV with a full width at half maximum of 1.4 eV
can be assigned to the Si substrate [14], while the com-
ponent located at 154.3 eV agrees with the bonding struc-
ture of SiO5[15]. For comparison, the component located at
153.6 eV lying between SiOs and Si can be associated with La
silicate at the SiO»/LasO3 interface. The ratio of Si component
corresponding to SiO5 and silicate (SiO2 versus silicate) is
evaluated to be 2.67 and 2.30 for the LayO3 and LaON films,
respectively. Combined with the TEM result that no obvious
interlayer between the SiO5 and LaON films as shown in
Fig. 1(a), it can be concluded that only a small fraction of SiOq
is transformed into the silicate for both the LaON and LaO
samples. One possible reason for less La-silicate content in the
LasO3 film than the nitrided one is that reoxidaton may happen
in the La;Oj3 film during the PDA, because oxygen is easier to
diffuse through its more polycrystalline structure, which can be
confirmed by the XRD patterns as shown in Fig. 2 later.

The crystalline structures of the stacked Lay03/SiO; films
on Si substrate with and without nitrogen incorporation are
investigated by XRD and shown in Fig. 2. For the La; O3 film,
it shows an intense peak at 26 = 56.5° and three weak peaks
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Fig. 2. XRD pattern of the stacked La203/SiO2 films on Si substrate with
and without nitrogen incorporation.
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Fig.3. (a) C-V hysteresis curve of the MONOS capacitors with and without
nitrogen incorporation. (b) J—V characteristic of the MNOS samples with and
without nitrogen incorporation.

located at 20 = 54.8°,55.7°,57.3°, respectively, indicating its
polycrystalline nature. For comparison, the nitrided LasOs3 film
only exhibits a single peak at 20 = 30.0°, indicating its less
crystallized structure. This peak is in accordance with the (411)
reflection of the cubic La; O3 phase (20 = 30.3°). Furthermore,
compared with the LayOj3 film, the nitrided La;Og film exhibits
lower peak intensity in the XRD diffraction spectrum, suggest-
ing its less crystallized structure due to nitrogen incorporation,
which can suppress the crystallization of the dielectric film [8].
Based on the Scherrer equation, the grain size of the LasO3 and
LaON films is calculated to be 1.35 nm and 1.10 nm, respec-
tively. The LasOg film with polycrystalline structure and larger
grain size indicates its more defects along the grain boundaries,
which can be further confirmed by the /-V characteristics as
shown in Fig. 3(b) later.
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Fig. 3(a) shows the 1-MHz C-V hysteresis characteristics
of the MONOS capacitors with and without nitrogen incor-
poration. Sweep starts from inversion region to accumulation
region, and back to inversion region again. As the sweeping
voltage increases from +6 V to £10 V, the memory window
of the LaON sample increases from 2.0 V to 4.9 V. For
comparison, the memory window of the LaO sample is only
0.9 V under +6 V sweeping voltage. A larger memory window
for the LaON sample indicates its higher trap density due
to nitrogen incorporation. Furthermore, when the sweeping
voltage increases to £8 V, the LaO sample is damaged with
a high conductance Gof .1 mSat Vg = —8 V(G = 12 uS for
the LaON one), demonstrating the nitridation-induced hardened
structure of the nitrided La;Oj3 film. To gain deeper insight into
the above phenomenon, the gate-current density as a function
of negative gate voltage (J-V) of the MNOS capacitors
(Al/Laz03/Si02/Si) with and without nitrogen incorporation is
also shown in Fig. 3(b). The MNOS sample without nitrogen
incorporation shows much larger gate leakage by two orders of
magnitude at Vg — Vpg = —2 V as well as lower breakdown
voltage than the one with nitrogen incorporation. Electrons
injected from the gate electrode can be divided into two parts:
some are trapped in the charge-trapping film, and others will
pass through the charge-trapping film into the substrate. Conse-
quently, a smaller gate leakage for the nitrided MNOS sample
than the one without nitrogen incorporation demonstrates its
higher trapping efficiency. This should be mainly ascribed to its
fewer defects due to its less crystallized structure and nitrogen
passivation. The nitrogen incorporation not only can improve
the thermal stability of the dielectric, but also passivates its
defects, both of which are beneficial for the dielectric quality
of the LayOs film. In addition, since there is only a slight
difference in silicate content between the LaO and LaON
samples, it is reasonable to assume that this silicate interlayer
has similar influence on the gate leakage. Compared with the
LayOg film, the dielectric constant of the LaON one can also
be improved due to nitrogen incorporation (15 versus 12 from
the CV measurement). The lower dielectric constant for the
LaO(N) film than the reported value (~25) for pure LasO3
should be ascribed to the formation of silicate.

Fig. 4 shows the P/E transient characteristics of the MONOS
capacitors with and without nitrogen incorporation. The LaON
sample displays higher P/E speeds than the LaO one under
the same operating conditions. For the LaON sample, it has
a Vpp shift of 49 V and 6.8 V at +14 V for 1 ms and 1 s,
respectively, demonstrating its high program speed and large
memory window. Moreover, the LaON sample still shows a
Vrp shift of 3.4 V even at +10 V for 1 ms, which is larger
than the value (3.1 V) for the LaO sample at +14 V for 1 s,
further supporting its high trapping efficiency resulting from
the nitrogen incorporation. In addition, a high erase speed for
the LaON sample can be demonstrated by a Vpp shift of 3.6 V
at —10 V for 100 ps as shown in Fig. 4(b). It is noted that
the erase speed can be further improved by using electrodes
with high work function (e.g., Pt) because the gate injection
due to electrons tunneling from the gate under erase state can
be suppressed. The nitrogen incorporation can induce deep-
level traps in the charge-trapping film. Meanwhile, the defects
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Fig. 4. (a) Program and (b) erase transient characteristics for the MONOS
capacitors with and without nitrogen incorporation.

along the grain boundaries can also be suppressed in the LaON
sample due to its less crystallized structure as well as nitrogen
passivation [16]. It is worth pointing out that the deep-level
traps and defects along the grain boundaries play different roles
in the charge-trapping characteristics. Charges stored in the
defects along the grain boundaries are easy to escape, resulting
in low charge-trapping efficiency. These defects can also act as
a medium to accelerate charge leakage. Therefore, they should
not be considered as effective traps, but as degraders on the
reliability of the devices. This is consistent with the conclusion
based on the /-V characteristics shown in Fig. 3(b). The higher
charge-trapping efficiency for the LaON sample than the LaO
one contributes to its higher P/E speeds. In addition, the higher
dielectric constant of the LaON film is also beneficial for higher
P/E speeds due to higher electric field across SiO- under the
same operating voltage.

Fig. 5(a) displays the retention characteristics of the MONOS
capacitors with and without nitrogen incorporation measured
at room temperature. To achieve an approximately the same
initial memory window, the LaON sample is programmed at
410V for 100 us, while the LaO one is programmed at +14 V
for Is. The Vpp shift decreases with time during the retention
mode, which is mainly due to the loss of electrons stored in the
CTL via tunneling back to the substrate and gate electrode or
hole tunneling from the substrate into the CTL as shown in the
inset of Fig. 5(a)[8]. The retained charge rate after 10 years is
evaluated by extrapolation to be 72.8% and 65.8% for the LaON
and LaO samples, respectively. A more serious charge loss rate
for the LaO sample should be ascribed to its more defects in
the polycrystalline structure of the LapO3 film, because the
leakage path via the defects along the grain boundaries can
degrade the retention performance. This is consistent with the
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Fig. 5. (a) Retention characteristics of the MONOS capacitors with and
without nitrogen incorporation measured at 25 °C. The inset shows the energy-
band diagram under the retention mode with Eox = 4 MV/cm. The arrays
represent possible charge-loss processes. (b) Retention characteristics of the
LaON sample with different initial Vpp shifts measured at 25 °C. The retention
data measured at 85 °C are also shown.

conclusions from the J-V( characteristics in Fig. 3(b). It is
also noted that even the LaO sample shows acceptable retention
performance, even though the tunneling layer (SiOs) is only
2-nm thick. A thin SiO4 contributes to high P/E speeds for the
MONOS-type memories. However, the thin SiOy deteriorates
the data retention characteristics because charges stored into the
charge-trapping film are easy to escape into the substrate during
the retention mode. Therefore, there is a tradeoff between P/E
speeds and data retention. The acceptable retention charac-
teristics for the LaO sample should be due to the deep-level
traps in the Las O3 film [9]. Moreover, even though the LaON
sample has higher silicate content than the LaO one, it exhibits
better retention property, indicating that nitrogen incorporation
plays a key role in the performance of the memory devices. To
investigate the contributions of electron or hole tunnelings to
the degradation of data retention, the retention properties of the
LaON sample with different initial Vg shifts (AVgp) are also
shown in Fig. 5(b). If the hole tunneling dominates under the re-
tention mode, the retention properties should be closely related
to the electric field across SiOy (Eox) induced by the charges
stored in the CTL because the hole-tunneling current by direct-
tunneling mechanism (or Fowler-Nordheim mechanism) in-
creases exponentially with E,,. The retained charge after 10 s
is 87.4%, 89.1%, and 92.0% with initial AVpp of 3.73 V
(Eox = 4.75MV/cm),2.94V (Eox = 3.74 MV/cm) and 2.50 V
(Eox = 3.18 MV/cm), respectively. Only a slight difference of
the charge loss under different initial AVgp indicates that the
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hole tunneling plays a negligible role on the degradation of data
retention, mainly due to the good SiO»/Si interface and large
valence-band offset between SiOs and Si [8]. The retention
property of the LaON sample measured at 85 °C is also shown
in Fig. 5(b), where the retained charge after 10* s is 90.0%
(versus 92.0% at room temperature), further supporting its good
data retention property.

In conclusion, the charge-trapping characteristics of LayOs3
film with and without nitrogen incorporation are investigated
based on MONOS-type capacitors. The nitrided La;Og3 film
shows a less crystallized structure and smaller surface rough-
ness compared with the LasOs film. Moreover, the MONOS
capacitor with nitrided LasO3 as CTL shows better electrical
characteristics (larger memory window, higher P/E speeds, and
smaller charge loss) than the sample with LasO3 as CTL
because the nitrided LasO3 film exhibits a larger quantity of
traps induced by nitrogen incorporation and suppressed leakage
through nitrogen passivation. Therefore, the nitrided LasOs
film is a promising CTL for high-performance nonvolatile
memory applications.
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