470 research outputs found

    SeeChart: Enabling Accessible Visualizations Through Interactive Natural Language Interface For People with Visual Impairments

    Full text link
    Web-based data visualizations have become very popular for exploring data and communicating insights. Newspapers, journals, and reports regularly publish visualizations to tell compelling stories with data. Unfortunately, most visualizations are inaccessible to readers with visual impairments. For many charts on the web, there are no accompanying alternative (alt) texts, and even if such texts exist they do not adequately describe important insights from charts. To address the problem, we first interviewed 15 blind users to understand their challenges and requirements for reading data visualizations. Based on the insights from these interviews, we developed SeeChart, an interactive tool that automatically deconstructs charts from web pages and then converts them to accessible visualizations for blind people by enabling them to hear the chart summary as well as to interact through data points using the keyboard. Our evaluation with 14 blind participants suggests the efficacy of SeeChart in understanding key insights from charts and fulfilling their information needs while reducing their required time and cognitive burden.Comment: 28 pages, 13 figure

    Enabling Accessible Charts Through Interactive Natural Language Interface for People with Visual Impairments

    Get PDF
    Web-based data visualizations have become very popular for exploring data and communicating insights. Newspapers, journals, and reports regularly publish visualizations to tell compelling stories with data. Unfortunately, most visualizations are inaccessible to readers with visual impairments. For many charts on the web, there are no accompanying alternative (alt) texts, and even if such texts exist they do not adequately describe important insights from charts. To address the problem, we first interviewed 15 blind users to understand their challenges and requirements for reading data visualizations. Based on the insights from these interviews, we developed \seechart, an interactive tool that automatically deconstructs charts from web pages and then converts them to accessible visualizations for blind people by enabling them to hear the chart summary as well as to interact through data points using the keyboard. Our evaluation with 14 blind participants suggests the efficacy of SeeChart in understanding key insights from charts and fulfilling their information needs while reducing their required time and cognitive burden

    Addressing Situational and Physical Impairments and Disabilities with a Gaze-Assisted, Multi-Modal, Accessible Interaction Paradigm

    Get PDF
    Every day we encounter a variety of scenarios that lead to situationally induced impairments and disabilities, i.e., our hands are assumed to be engaged in a task, and hence unavailable for interacting with a computing device. For example, a surgeon performing an operation, a worker in a factory with greasy hands or wearing thick gloves, a person driving a car, and so on all represent scenarios of situational impairments and disabilities. In such cases, performing point-and-click interactions, text entry, or authentication on a computer using conventional input methods like the mouse, keyboard, and touch is either inefficient or not possible. Unfortunately, individuals with physical impairments and disabilities, by birth or due to an injury, are forced to deal with these limitations every single day. Generally, these individuals experience difficulty or are completely unable to perform basic operations on a computer. Therefore, to address situational and physical impairments and disabilities it is crucial to develop hands-free, accessible interactions. In this research, we try to address the limitations, inabilities, and challenges arising from situational and physical impairments and disabilities by developing a gaze-assisted, multi-modal, hands-free, accessible interaction paradigm. Specifically, we focus on the three primary interactions: 1) point-and-click, 2) text entry, and 3) authentication. We present multiple ways in which the gaze input can be modeled and combined with other input modalities to enable efficient and accessible interactions. In this regard, we have developed a gaze and foot-based interaction framework to achieve accurate “point-and-click" interactions and to perform dwell-free text entry on computers. In addition, we have developed a gaze gesture-based framework for user authentication and to interact with a wide range of computer applications using a common repository of gaze gestures. The interaction methods and devices we have developed are a) evaluated using the standard HCI procedures like the Fitts’ Law, text entry metrics, authentication accuracy and video analysis attacks, b) compared against the speed, accuracy, and usability of other gaze-assisted interaction methods, and c) qualitatively analyzed by conducting user interviews. From the evaluations, we found that our solutions achieve higher efficiency than the existing systems and also address the usability issues. To discuss each of these solutions, first, the gaze and foot-based system we developed supports point-and-click interactions to address the “Midas Touch" issue. The system performs at least as good (time and precision) as the mouse, while enabling hands-free interactions. We have also investigated the feasibility, advantages, and challenges of using gaze and foot-based point-and-click interactions on standard (up to 24") and large displays (up to 84") through Fitts’ Law evaluations. Additionally, we have compared the performance of the gaze input to the other standard inputs like the mouse and touch. Second, to support text entry, we developed a gaze and foot-based dwell-free typing system, and investigated foot-based activation methods like foot-press and foot gestures. We have demonstrated that our dwell-free typing methods are efficient and highly preferred over conventional dwell-based gaze typing methods. Using our gaze typing system the users type up to 14.98 Words Per Minute (WPM) as opposed to 11.65 WPM with dwell-based typing. Importantly, our system addresses the critical usability issues associated with gaze typing in general. Third, we addressed the lack of an accessible and shoulder-surfing resistant authentication method by developing a gaze gesture recognition framework, and presenting two authentication strategies that use gaze gestures. Our authentication methods use static and dynamic transitions of the objects on the screen, and they authenticate users with an accuracy of 99% (static) and 97.5% (dynamic). Furthermore, unlike other systems, our dynamic authentication method is not susceptible to single video iterative attacks, and has a lower success rate with dual video iterative attacks. Lastly, we demonstrated how our gaze gesture recognition framework can be extended to allow users to design gaze gestures of their choice and associate them to appropriate commands like minimize, maximize, scroll, etc., on the computer. We presented a template matching algorithm which achieved an accuracy of 93%, and a geometric feature-based decision tree algorithm which achieved an accuracy of 90.2% in recognizing the gaze gestures. In summary, our research demonstrates how situational and physical impairments and disabilities can be addressed with a gaze-assisted, multi-modal, accessible interaction paradigm

    Designing Accessible Nonvisual Maps

    Get PDF
    Access to nonvisual maps has long required special equipment and training to use; Google Maps, ESRI, and other commonly used digital maps are completely visual and thus inaccessible to people with visual impairments. This project presents the design and evaluation of an easy to use digital auditory map and 3D model interactive map. A co-design was also undertaken to discover tools for an ideal nonvisual navigational experience. Baseline results of both studies are presented so future work can improve on the designs. The user evaluation revealed that both prototypes were moderately easy to use. An ideal nonvisual navigational experience, according to these participants, consists of both an accurate turn by turn navigational system, and an interactive map. Future work needs to focus on the development of appropriate tools to enable this ideal experience

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments

    Instructional eLearning technologies for the vision impaired

    Get PDF
    The principal sensory modality employed in learning is vision, and that not only increases the difficulty for vision impaired students from accessing existing educational media but also the new and mostly visiocentric learning materials being offered through on-line delivery mechanisms. Using as a reference Certified Cisco Network Associate (CCNA) and IT Essentials courses, a study has been made of tools that can access such on-line systems and transcribe the materials into a form suitable for vision impaired learning. Modalities employed included haptic, tactile, audio and descriptive text. How such a multi-modal approach can achieve equivalent success for the vision impaired is demonstrated. However, the study also shows the limits of the current understanding of human perception, especially with respect to comprehending two and three dimensional objects and spaces when there is no recourse to vision

    Enhanced Quality of Experience Based on Enriched Network Centric and Access Control Mechanisms

    Get PDF
    In the digital world service provisioning in user satisfying quality has become the goal of any content or network provider. Besides having satisfied and therefore, loyal users, the creation of sustainable revenue streams is the most important issue for network operators [1], [2], [3]. The motivation of this work is to enhance the quality of experience of users when they connect to the Internet, request application services as well as to maintain full service when these users are on the move in WLAN based access networks. In this context, the aspect of additional revenue creation for network operators is considered as well. The enhancements presented in this work are based on enriched network centric and access control mechanisms which will be achieved in three different areas of networks capabilities, namely the network performance, the network access and the network features themselves. In the area of network performance a novel authentication and authorisation method is introduced which overcomes the drawback of long authentication time in the handover procedure as required by the generic IEEE 802.1X process using the EAP-TLS method. The novel sequential authentication solution reduces the communication interruption time in a WLAN handover process of currently several hundred milliseconds to some milliseconds by combining the WPA2 PSK and the WPA2 EAP-TLS. In the area of usability a new user-friendly hotspot registration and login mechanisms is presented which significantly simplifies how users obtain WLAN hotspot login credentials and logon to a hotspot. This novel barcode initiated hotspot auto-login solution obtains user credentials through a simple SMS and performs an auto-login process that avoids the need to enter user name and password on the login page manually. In the area of network features a new system is proposed which overcomes the drawback that users are not aware of the quality in which a service can be provided prior to starting the service. This novel graceful denial of service solution informs the user about the expected application service quality before the application service is started

    Modern Socio-Technical Perspectives on Privacy

    Get PDF
    This open access book provides researchers and professionals with a foundational understanding of online privacy as well as insight into the socio-technical privacy issues that are most pertinent to modern information systems, covering several modern topics (e.g., privacy in social media, IoT) and underexplored areas (e.g., privacy accessibility, privacy for vulnerable populations, cross-cultural privacy). The book is structured in four parts, which follow after an introduction to privacy on both a technical and social level: Privacy Theory and Methods covers a range of theoretical lenses through which one can view the concept of privacy. The chapters in this part relate to modern privacy phenomena, thus emphasizing its relevance to our digital, networked lives. Next, Domains covers a number of areas in which privacy concerns and implications are particularly salient, including among others social media, healthcare, smart cities, wearable IT, and trackers. The Audiences section then highlights audiences that have traditionally been ignored when creating privacy-preserving experiences: people from other (non-Western) cultures, people with accessibility needs, adolescents, and people who are underrepresented in terms of their race, class, gender or sexual identity, religion or some combination. Finally, the chapters in Moving Forward outline approaches to privacy that move beyond one-size-fits-all solutions, explore ethical considerations, and describe the regulatory landscape that governs privacy through laws and policies. Perhaps even more so than the other chapters in this book, these chapters are forward-looking by using current personalized, ethical and legal approaches as a starting point for re-conceptualizations of privacy to serve the modern technological landscape. The book’s primary goal is to inform IT students, researchers, and professionals about both the fundamentals of online privacy and the issues that are most pertinent to modern information systems. Lecturers or teacherscan assign (parts of) the book for a “professional issues” course. IT professionals may select chapters covering domains and audiences relevant to their field of work, as well as the Moving Forward chapters that cover ethical and legal aspects. Academicswho are interested in studying privacy or privacy-related topics will find a broad introduction in both technical and social aspects
    • 

    corecore