7,672 research outputs found

    Adding Salt to Pepper: A Structured Security Assessment over a Humanoid Robot

    Get PDF
    The rise of connectivity, digitalization, robotics, and artificial intelligence (AI) is rapidly changing our society and shaping its future development. During this technological and societal revolution, security has been persistently neglected, yet a hacked robot can act as an insider threat in organizations, industries, public spaces, and private homes. In this paper, we perform a structured security assessment of Pepper, a commercial humanoid robot. Our analysis, composed by an automated and a manual part, points out a relevant number of security flaws that can be used to take over and command the robot. Furthermore, we suggest how these issues could be fixed, thus, avoided in the future. The very final aim of this work is to push the rise of the security level of IoT products before they are sold on the public market.Comment: 8 pages, 3 figures, 4 table

    Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS−MIROVA Thermal Data Series

    Get PDF
    In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new hot-spot detection algorithm developed for SENTINEL-2/MSI data that combines spectral indices on the SWIR bands 8a-11-12 (with a 20-meter resolution) with a spatial and statistical analysis on clusters of alerted pixels. The algorithm is able to detect hot-spot-contaminated pixels (S2Pix) in a wide range of environments and for several types of volcanic activities, showing high accuracy performances of about 1% and 94% in averaged omission and commission rates, respectively, underlining a strong reliability on a global scale. The S2-derived thermal trends, retrieved at eight key-case volcanoes, are then compared with the Volcanic Radiative Power (VRP) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) and processed by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during an almost four-year-long period, January 2016 to October 2019. The presented data indicate an overall excellent correlation between the two thermal signals, enhancing the higher sensitivity of SENTINEL-2 to detect subtle, low-temperature thermal signals. Moreover, for each case we explore the specific relationship between S2Pix and VRP showing how different volcanic processes (i.e., lava flows, domes, lakes and open-vent activity) produce a distinct pattern in terms of size and intensity of the thermal anomaly. These promising results indicate how the algorithm here presented could be applicable for volcanic monitoring purposes and integrated into operational systems. Moreover, the combination of high-resolution (S2/MSI) and moderate-resolution (MODIS) thermal timeseries constitutes a breakthrough for future multi-sensor hot-spot detection systems, with increased monitoring capabilities that are useful for communities which interact with active volcanoes

    Scalable Online Betweenness Centrality in Evolving Graphs

    Full text link
    Betweenness centrality is a classic measure that quantifies the importance of a graph element (vertex or edge) according to the fraction of shortest paths passing through it. This measure is notoriously expensive to compute, and the best known algorithm runs in O(nm) time. The problems of efficiency and scalability are exacerbated in a dynamic setting, where the input is an evolving graph seen edge by edge, and the goal is to keep the betweenness centrality up to date. In this paper we propose the first truly scalable algorithm for online computation of betweenness centrality of both vertices and edges in an evolving graph where new edges are added and existing edges are removed. Our algorithm is carefully engineered with out-of-core techniques and tailored for modern parallel stream processing engines that run on clusters of shared-nothing commodity hardware. Hence, it is amenable to real-world deployment. We experiment on graphs that are two orders of magnitude larger than previous studies. Our method is able to keep the betweenness centrality measures up to date online, i.e., the time to update the measures is smaller than the inter-arrival time between two consecutive updates.Comment: 15 pages, 9 Figures, accepted for publication in IEEE Transactions on Knowledge and Data Engineerin

    LiveRank: How to Refresh Old Datasets

    Get PDF
    This paper considers the problem of refreshing a dataset. More precisely , given a collection of nodes gathered at some time (Web pages, users from an online social network) along with some structure (hyperlinks, social relationships), we want to identify a significant fraction of the nodes that still exist at present time. The liveness of an old node can be tested through an online query at present time. We call LiveRank a ranking of the old pages so that active nodes are more likely to appear first. The quality of a LiveRank is measured by the number of queries necessary to identify a given fraction of the active nodes when using the LiveRank order. We study different scenarios from a static setting where the Liv-eRank is computed before any query is made, to dynamic settings where the LiveRank can be updated as queries are processed. Our results show that building on the PageRank can lead to efficient LiveRanks, for Web graphs as well as for online social networks

    A COMPARISON OF MACHINE LEARNING TECHNIQUES: E-MAIL SPAM FILTERING FROM COMBINED SWAHILI AND ENGLISH EMAIL MESSAGES

    Get PDF
    The speed of technology change is faster now compared to the past ten to fifteen years. It changes the way people live and force them to use the latest devices to match with the speed. In communication perspectives nowadays, use of electronic mail (e-mail) for people who want to communicate with friends, companies or even the universities cannot be avoided. This makes it to be the most targeted by the spammer and hackers and other bad people who want to get the benefit by sending spam emails. The report shows that the amount of emails sent through the internet in a day can be more than 10 billion among these 45% are spams. The amount is not constant as sometimes it goes higher than what is noted here. This indicates clearly the magnitude of the problem and calls for the need for more efforts to be applied to reduce this amount and also minimize the effects from the spam messages. Various measures have been taken to eliminate this problem. Once people used social methods, that is legislative means of control and now they are using technological methods which are more effective and timely in catching spams as these work by analyzing the messages content. In this paper we compare the performance of machine learning algorithms by doing the experiment for testing English language dataset, Swahili language dataset individual and combined two dataset to form one, and results from combined dataset compared them with the Gmail classifier. The classifiers which the researcher used are Naïve Bayes (NB), Sequential Minimal Optimization (SMO) and k-Nearest Neighbour (k-NN). The results for combined dataset shows that SMO classifier lead the others by achieve 98.60% of accuracy, followed by k-NN classifier which has 97.20% accuracy, and Naïve Bayes classifier has 92.89% accuracy. From this result the researcher concludes that SMO classifier can work better in dataset that combined English and Swahili languages. In English dataset shows that SMO classifier leads other algorism, it achieved 97.51% of accuracy, followed by k-NN with average accuracy of 93.52% and the last but also good accuracy is Naïve Bayes that come with 87.78%. Swahili dataset Naïve Bayes lead others by getting 99.12% accuracy followed by SMO which has 98.69% and the last was k-NN which has 98.47%

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    Facilitating and Enhancing the Performance of Model Selection for Energy Time Series Forecasting in Cluster Computing Environments

    Get PDF
    Applying Machine Learning (ML) manually to a given problem setting is a tedious and time-consuming process which brings many challenges with it, especially in the context of Big Data. In such a context, gaining insightful information, finding patterns, and extracting knowledge from large datasets are quite complex tasks. Additionally, the configurations of the underlying Big Data infrastructure introduce more complexity for configuring and running ML tasks. With the growing interest in ML the last few years, particularly people without extensive ML expertise have a high demand for frameworks assisting people in applying the right ML algorithm to their problem setting. This is especially true in the field of smart energy system applications where more and more ML algorithms are used e.g. for time series forecasting. Generally, two groups of non-expert users are distinguished to perform energy time series forecasting. The first one includes the users who are familiar with statistics and ML but are not able to write the necessary programming code for training and evaluating ML models using the well-known trial-and-error approach. Such an approach is time consuming and wastes resources for constructing multiple models. The second group is even more inexperienced in programming and not knowledgeable in statistics and ML but wants to apply given ML solutions to their problem settings. The goal of this thesis is to scientifically explore, in the context of more concrete use cases in the energy domain, how such non-expert users can be optimally supported in creating and performing ML tasks in practice on cluster computing environments. To support the first group of non-expert users, an easy-to-use modular extendable microservice-based ML solution for instrumenting and evaluating ML algorithms on top of a Big Data technology stack is conceptualized and evaluated. Our proposed solution facilitates applying trial-and-error approach by hiding the low level complexities from the users and introduces the best conditions to efficiently perform ML tasks in cluster computing environments. To support the second group of non-expert users, the first solution is extended to realize meta learning approaches for automated model selection. We evaluate how meta learning technology can be efficiently applied to the problem space of data analytics for smart energy systems to assist energy system experts which are not data analytics experts in applying the right ML algorithms to their data analytics problems. To enhance the predictive performance of meta learning, an efficient characterization of energy time series datasets is required. To this end, Descriptive Statistics Time based Meta Features (DSTMF), a new kind of meta features, is designed to accurately capture the deep characteristics of energy time series datasets. We find that DSTMF outperforms the other state-of-the-art meta feature sets introduced in the literature to characterize energy time series datasets in terms of the accuracy of meta learning models and the time needed to extract them. Further enhancement in the predictive performance of the meta learning classification model is achieved by training the meta learner on new efficient meta examples. To this end, we proposed two new approaches to generate new energy time series datasets to be used as training meta examples by the meta learner depending on the type of time series dataset (i.e. generation or energy consumption time series). We find that extending the original training sets with new meta examples generated by our approaches outperformed the case in which the original is extended by new simulated energy time series datasets
    corecore