
Facilitating and Enhancing the
Performance of Model Selection for Energy

Time Series Forecasting in Cluster
Computing Environments

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Shadi Shahoud

Tag der mündlichen Prüfung: 02.12.2022

Erster Gutachter: Prof. Dr. Veit Hagenmeyer

Zweiter Gutachter: Prof. Dr. rer. nat. Florian Steinke

Acknowledgement

This dissertation is the result of a very enjoyable challenging journey. Finishing it would

not have been possible without the constant support and assistance of many people.

First of all, I would like to give my deepest gratitude to my supervisor Prof. Veit Hagen-

meyer. Thank you for your guidance, trust, advice and continuous support. Thank you for

granting me the opportunity to carry out my research at the institute. I would also like to

extend my sincere thanks to Prof. Florian Steinke for agreeing to be my external reviewer

and providing feedback.

Thank you Clemens Düpmeier for your inspiring ideas, valuable suggestions and un-

bounded patience while discussing and building this research from ground. Working

directly with you helped me to deepen my knowledge in the research field through the con-

tinuous exchange of ideas. For you, I am incredibly thankful. Thank you Kevin Förderer

for your review and numerous suggestions that helped to improve the quality of my

dissertation.

I want to thank all my students with whom I had the pleasure to work: Sonja Gunnarsdottir,

Moritz Winter and Adrian Beer. Supervising you has been the most rewarding part of my

job. I hope I was able to give you as much as you gave to me.

My gratitude also goes to the old friend and best office mate Hatem Khalloof. Thank you

for all discussions, collaborative work, laughter, guidance and support you have given me

and, yes, also for your cheerful mood, for having listened to my imagination running, and

for having advised me on how to bring imagination back to science. Thanks also to my

colleagues at IAI for the great past five years, especially Dominique, Eric, Richard, Rafael,

Christian, Claudia, Thorsten, Christina, Jianlei and Jannik.

I would like to thank my friends, for always believing in me. Thank you to my family

for everything you gave me, without which I could not be here writing this dissertation.

Thank you for the love, encouragement and unwavering support over the years. Thank

you for having been always present, even when I was far and distracted. I am forever

indebted.

Karlsruhe, December 2022 Shadi Shahoud

i

Abstract

Applying Machine Learning (ML) manually to a given problem setting is a tedious and

time-consuming process which brings many challenges with it, especially in the context of

Big Data. In such a context, gaining insightful information, finding patterns, and extracting

knowledge from large datasets are quite complex tasks. Additionally, the configurations

of the underlying Big Data infrastructure introduce more complexity for configuring and

running ML tasks. With the growing interest in ML the last few years, particularly people

without extensive ML expertise have a high demand for frameworks assisting people in

applying the right ML algorithm to their problem setting. This is especially true in the field

of smart energy system applications where more and more ML algorithms are used e.g.

for time series forecasting. Generally, two groups of non-expert users are distinguished to

perform energy time series forecasting. The first one includes the users who are familiar

with statistics and ML but are not able to write the necessary programming code for

training and evaluating ML models using the well-known trial-and-error approach. Such

an approach is time consuming and wastes resources for constructing multiple models.

The second group is even more inexperienced in programming and not knowledgeable in

statistics and ML but wants to apply given ML solutions to their problem settings.

The goal of this thesis is to scientifically explore, in the context of more concrete use cases

in the energy domain, how such non-expert users can be optimally supported in creating

and performing ML tasks in practice on cluster computing environments. To support the

first group of non-expert users, an easy-to-use modular extendable microservice-based ML

solution for instrumenting and evaluating ML algorithms on top of a Big Data technology

stack is conceptualized and evaluated. Our proposed solution facilitates applying trial-

and-error approach by hiding the low level complexities from the users and introduces

the best conditions to efficiently perform ML tasks in cluster computing environments.

To support the second group of non-expert users, the first solution is extended to realize

meta learning approaches for automated model selection. We evaluate how meta learning

technology can be efficiently applied to the problem space of data analytics for smart

energy systems to assist energy system experts which are not data analytics experts

in applying the right ML algorithms to their data analytics problems. To enhance the

predictive performance of meta learning, an efficient characterization of energy time series

datasets is required. To this end, Descriptive Statistics Time based Meta Features (DSTMF),

a new kind of meta features, is designed to accurately capture the deep characteristics of

energy time series datasets. We find that DSTMF outperforms the other state-of-the-art

meta feature sets introduced in the literature to characterize energy time series datasets

in terms of the accuracy of meta learning models and the time needed to extract them.

iii

Abstract

Further enhancement in the predictive performance of the meta learning classification

model is achieved by training the meta learner on new efficient meta examples. To this

end, we proposed two new approaches to generate new energy time series datasets to be

used as training meta examples by the meta learner depending on the type of time series

dataset (i.e. generation or energy consumption time series). We find that extending the

original training sets with new meta examples generated by our approaches outperformed

the case in which the original is extended by new simulated energy time series datasets.

iv

Zusammenfassung

Die manuelle Entwicklung von Problemlösungen unter Nutzung von maschinellem Lernen

(ML) ist selbst für erfahrene Spezialisten ein mühsamer und zeitaufwändiger Prozess, der

viele Herausforderungen mit sich bringt, insbesondere, wenn man aus Skalierungsgründen

Big Data ML-Frameworks einsetzen möchte, die auf leistungsfähigen Rechenclustern

ausgeführt werden können. Durch das wachsende Interesse an ML in den letzten Jahren

besteht auch bei Personen wie z.B. Ingenieuren ohne umfassende ML-Kenntnisse eine

große Nachfrage nach Frameworks, die ihnen bei der Anwendung des richtigen ML-

Algorithmus auf ihre Problemstellung helfen. Dies gilt u.a. auch für Anwendungen im

Bereich intelligenter Energiesysteme, wo immer mehr ML-Algorithmen eingesetzt werden,

z. B. für die Vorhersage von Zeitreihen oder die Zustandsabschätzung.

Ziel dieser Arbeit war es, zu evaluieren, wie Meta-Learning-Technologie effizient auf den

Problemraum der Datenanalyse für intelligente Energiesysteme angewendet werden kann,

um Energiesystem-Experten, die keine Datenanalyse-Experten sind, bei der Anwendung

der richtigen ML-Algorithmen auf ihre Datenanalyse-Probleme zu unterstützen. Die Arbeit

wurde im Rahmen der Forschungsarbeiten zur Konzeption und Implementierung einer

digitalen Forschungsplattform für deutsche Energieforscher innerhalb des Helmholtz-

Forschungsprogramms ESD durchgeführt. Daher sollten die Ergebnisse dieser Arbeit

nahtlos als erweiterbare Lösung in diese größere digitale Forschungsplattform integriert

werden können. Für die Evaluation und Verifikation der erarbeiteten wissenschaftlichen

Ergebnisse wurden wesentliche Bausteine einer solchen integrierbaren Lösung unter Nut-

zung der entwickelten Methoden konzipiert und als Teile einer selbst-konzipierten und

entwickelten Evaluierungsplattform prototypisch implementiert: Diese enthält u.a. ein

einfach zu bedienendes, modular erweiterbares und auf einer Microservice-Architektur

basierendes Framework für die Instrumentierung, Nutzung und Evaluierung von ML-

Algorithmen unter Verwendung von Open Source Big Data ML Software Stacks, welches

auf Computer-Clustern lauffähig ist und über eine modulare, webbasierte Benutzeroberflä-

che ohne große Kenntnisse der Laufzeitumgebung genutzt werden kann, ein generisches

Meta-Learner-Framework, das diese Umgebung so erweitert, dass Verfahren zur automa-

tischen ML-Modellselektion basierend auf Meta Learning getestet und evaluiert werden

können sowie ein generisches Konzept, wie Meta-Features durch Meta-Feature-Sets zu-

nächst unabhängig von einer gegebenen Aufgabenstellung im Framework repräsentiert

werden können.. Des weiteren enthält das Framework Werkzeuge für automatisiertes Da-

tenmanagement, zur Vorverarbeitung und Bereinigung Zeitreihen-basierten Datensätzen

für Trainings- und Evaluationszwecke sowie zur Erzeugung, zum Management und zur

Pflege von Test- und Trainingsdatensätzen für das Meta Learning.

v

Zusammenfassung

Um die wissenschaftlichen Fragestellungen zur Nutzbarkeit von Meta Learning zur Un-

terstützung von Nicht-ML-Experten bei der Auswahl und Instrumentierung von ML-

Algorithmen mit Hilfe dieses Frameworks evaluieren zu können, wurden konkrete An-

wendungsfälle auf der Evaluierungsplattform instrumentiert, wobei der Schwerpunkt aus

pragmatischen Gründen (Verfügbarkeit von Daten, verfügbare Zeit) auf der Durchführung

von Zeitreihenanalysen und Prognosen für energie-bezogene Last- und Erzeugungszeitrei-

hen mit Hilfe dafür geeigneter ML-Modelle lag. Zur Instrumentierung der Algorithmen-

Selektion für diese Anwendungsfälle wurde des Weiteren ein neuer dedizierter Satz von

Meta-Merkmalen (DSTMF) für solche Zeitreihenanalysen zur Algorithmen-Selektion kon-

zipiert und mit anderen bekannten Meta Feature Sets verglichen. Unter Nutzung der

instrumentierten Anwendungsfälle wurden dann auf der Evaluierungsplattform zahlrei-

che Datenanalyse-Experimente durchgeführt, um die wesentlichen Aspekte der Meta-

Lernplattform quantitativ zu erfassen. Diese Evaluationsdaten wurden dann analysiert,

um die Hauptaussagen der in der Einleitung dieser Arbeit vorgestellten Forschungsfragen

zu verifizieren.

Dabei konnte gezeigt werden, dass das über eineWeboberfläche bedienbare selbst-konzipierte

Microservice-basierte Framework zum Management und zur Ausführung von ML-Jobs

selbst ML-Experten bereits ein spürbare Erleichterung in der Nutzung von Big Data ML-

Berechnungsumgebungen, welche auf Cluster-Computing Umgebungen laufen, bieten

kann, da sich in eine solche Umgebung einer Reihe weiterer Werkzeuge z.B. zur Erzeugung

und zum Management von Test- und Trainingsdatensätzen (hier wurden verschiedene

Lösungsansätze für die Generierung von Energiezeitreihen für Test- und Trainingszwecke

entwickelt und evaluiert), zur automatischen Parametrisierung eines Algorithmus auf

der Cluster-Computing Umgebung, zum Caching bereits trainierter Modelle sowie zur

Anzeige und Erfassung von Laufzeit- und Performanzdaten von Modellen, etc. integrieren

lassen, welche den ML-Experten bei der Evaluation, Parametrierung und Bewertung neuer

Algorithmen auf Cluster-Computing-Umgebung essentiell unterstützen. Dabei konnte

auch gezeigt werden, dass solche Werkzeuge die Laufzeitperformanz der Algorithmen

kaum beeinträchtigen sondern ab einer gewissen Komplexität des Lösungsraums drastisch

erhöhen, was wiederum den Entwicklungsaufwand solcher Lösungen reduziert. Die ge-

samte Umgebung kann dabei hochgradig skalierbar, modular und erweiterbar konzipiert

werden, und lässt sich damit problemlos in andere Microservice basierte Umgebungen wie

die Helmholtz-Plattform zur Energieforschung integrieren.

Des Weiteren konnte gezeigt werden, dass die Integration einer generischen Meta Lear-

ning Lösung eine sehr einfache Nutzbarkeit bereits in der Plattform implementierter

ML-Algorithmen durch Nicht-ML-Experten ermöglicht. Eine solche Meta-Learning Lö-

sung lässt sich weitgehend generisch von der Methodik her realisieren, wie dies im Rahmen

der Arbeit durch Entwicklung eines eigenen methodischen Ansatzes hierfür auch gezeigt

wurde. Allerdings konnte in der Evaluation unter Nutzung des DSTMF-Meta-Feature Satzes

auch gezeigt werden, dass eine solche Methodik für jede Anwendungsproblemklasse einen

spezifischen Satz von Meta-Feature-Attributen erfordert, damit die Algorithmen-Selektion

für diese Anwendungsklasse auch optimal durchgeführt wird. Bei der Realisierung von

Anwendungsframeworks ist es daher wichtig, dass sich solche Meta-Feature-Sets für neue

Problemklassen problemlos in eine bereits bestehende Framework-Umgebung integrieren

vi

Zusammenfassung

lassen, wobei der Meta Learner anschließend dann auch für die neue Aufgabenstellung

neu antrainiert und hierfür wiederum geeignete Trainingsdaten verwaltet, erzeugt und

bereitgestellt werden müssen, was dann wiederum Aufgabe von ML-Experten ist. Zur

Unterstützung dieser können dann wiederum die bereits oben erwähnten Ansätze genutzt

werden.

Im Fazit kann gesagt werden, dass die in der Arbeit entwickelten und beschrieben Ansätze

die Realisierung kommerzieller oder freier ML-Umgebungen zum Einsatz auf Cluster-

Computing-Umgebungen On-Premise oder in der Cloud ermöglichen, welche die Nutzung

von ML-Lösungen im kommerziellen Umfeld für Nutzer wesentlich erleichtern. Allerdings

ist hierzu noch einiger Entwicklungsaufwand nötig.

vii

Contents

Abstract . iii

Zusammenfassung . v

List of Figures . xiii

List of Tables . xvii

1. Introduction . 1
1.1. Motivation . 1

1.2. Research Questions and Contributions 5

1.3. Structure of the Thesis . 11

2. Theoretical Background . 13
2.1. Machine Learning . 13

2.1.1. Machine Learning Scenarios . 14

2.1.2. Performance Evaluation . 16

2.2. Big Data Software Environments . 18

2.3. Microservices . 20

2.3.1. Characteristics . 21

2.3.2. Bounded Contexts . 21

2.3.3. Communication Types . 22

2.3.4. REpresentational State Transfer (REST) 23

2.4. Time Series Datasets . 24

2.4.1. ENerGO+ . 24

2.4.2. Ausgrid Solar Home Electricity Data 25

2.4.3. Weather Time Series Dataset . 25

3. Related Work . 27
3.1. Machine learning software and tools . 27

3.1.1. Data analytic framework . 27

3.1.2. ML workflow management and visualization frameworks 29

3.2. Meta learning for energy time series model selection 31

3.3. Generating new time series datasets . 34

3.3.1. Summary . 35

ix

Contents

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environ-
ments . 41
4.1. Problem Statement . 42

4.2. Proposed Solution . 43

4.2.1. Conceptual Microservice-Based Architecture 43

4.2.2. Execution Workflow . 52

4.3. Evaluation . 54

4.3.1. Experimental Setup and Configurations 54

4.3.2. Results and Discussion . 58

4.4. Summary . 65

5. Characterizing Energy Time Series Datasets . 69
5.1. Problem Statement . 70

5.2. Proposed Solution . 71

5.2.1. Descriptive Statistics Time-Based Meta Features (DSTMF) 72

5.2.2. Energy Meta Learning System (EMLS) 73

5.2.3. Encoded Energy Meta Learning System (EEMLS) 77

5.3. Evaluation . 78

5.3.1. Use Case Study: Short-Term Load Forecasting Scenario 79

5.3.2. Similarity-based Clustering Analysis 81

5.3.3. Predictive Performance of Meta Learner: Original Representation

of Meta Features . 84

5.3.4. Predictive Performance of Meta Learner: Encoded Representation

of Meta Features Using Autoencoders 90

5.4. Summary . 96

6. Generating Efficient Meta Examples for Energy Time Series Model Selection . . 97
6.1. Problem Statement . 98

6.2. Proposed Solution . 98

6.2.1. Dataset . 100

6.2.2. Weather-based Approach . 102

6.2.3. Aggregation-Based Approach . 104

6.2.4. Model-Based Approach . 108

6.3. Evaluation . 112

6.3.1. Use Case Study: Power Generation Forecasting Scenario 113

6.3.2. Original Representation of Meta Features 118

6.3.3. Encoded Representation of Meta Features 123

6.4. Summary . 128

7. Automated Time Series Model Selection in Big Data Environments 131
7.1. Problem Statement . 132

7.2. Proposed Solution . 133

7.2.1. Conceptual Meta Learning Microservice-based Architecture . . . 134

x

Contents

7.3. Evaluation . 138

7.3.1. Deployment of Microservice-based Meta Learning Architecture in

Big Data Environments . 140

7.3.2. Results and Discussion . 142

7.4. Summary . 151

8. Summary and Outlook . 153
8.1. Summary . 153

8.2. Outlook . 157

Bibliography . 161

A. List of Publications . 179

xi

List of Figures

1.1. Overview of power grid with integrated renewable sources and its usage of

machine learning techniques in different steps [114]. 1

1.2. Simplified Machine Learning Pipeline (MLP). 3

2.1. Prediction of future energy demand and renewable energy generation. . . . 16

2.2. Characteristics of Big Data. 19

2.3. HDFS architecture [24]. 19

2.4. YARN architecture [80]. 20

4.1. Basic architecture of the proposed microservice-based framework [141][142]. 44

4.2. User Interface (UI). 46

4.3. User Interface (UI). 47

4.4. Layered architecture microservice. 49

4.5. Execution workflow. 53

4.6. 𝑇𝑡𝑜𝑡𝑎𝑙 required for training and testing models (untrained model pipeline) and

for testing (pre-trained model pipeline) on simulated energy multivariate time

series dataset with size 4 GB. 60

4.7. Effect of input datasets size used for training and testing MLR models on the

framework overhead. 61

4.8. Effect of input datasets size used for training and testing MLR models on the

framework overhead (detailed overview). 62

4.9. Mean 𝑇𝑡𝑜𝑡𝑎𝑙 in case of local and cluster (default, custom) configurations mode

to determine the 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for MLR, DT, RF and GBTs algorithms. . . . 64

4.10. Mean 𝑇𝑡𝑜𝑡𝑎𝑙 in case of local and cluster (default, custom) configurations mode

to determine the𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for MLR, DT, RF and GBTs algorithms. . . . 66

5.1. General methodology of meta learning for time series model selection [143]. 71

5.2. Methodology of extracting Descriptive Statistics Time-based Meta Features

(DSTMF). 72

5.3. Methodology of EMLS and EEMLS [144]. 78

5.4. Predictive performance in terms of RMSE for DT, RF, GBTs and LR for buildings

32, 617, 2713 and 459. 80

5.5. Result of applying the k-means algorithm with 8 clusters on the original input

time series datasets. 83

5.6. Predictive performance of meta learning classification models in case of using

Random Forest (RF) and Artificial Neural Network (ANN) as meta learners. . 86

5.7. Correlation matrix of 30 DSTMF meta features. 87

xiii

List of Figures

5.8. A part of DSTMF meta features after removing the features that are > 0.75%

correlated. 88

5.9. A part of time series meta features after removing the features that are > 0.75%

correlated. 89

5.10. Autoencoder architecture utilized for reconstructing the meta features in

another representation form. 92

5.11. The predictive performance of ANN meta learner in case of encoded and

original representation of meta features. 95

6.1. Methodology of enhanced meta learning approach, adapted from Chapter 5

with an additional component for generating new time series datasets. . . . 99

6.2. Methodology of enhanced meta learning approach. 100

6.3. Segmentation of daytime into different periods. 101

6.4. Day with a missing observation before and after linear interpolation. 102

6.5. Filtering input time series datasets based on weather conditions. 103

6.6. Methodology of the aggregation-based Approach for generating new time

series datasets. 105

6.7. Examples of the time series generated by the aggregation-based approach. . 107

6.8. Methodology of the model-based approach. 108

6.9. Examples of the time series generated by the model-based approach. 110

6.10. Examples of time series generated by the model-based approach. 111

6.11. Methodology of nested time series cross validation [15]. 117

6.12. One-day ahead forecasts, where ARIMA performed best. 118

6.13. One-day ahead forecasts, where NN performed best. 118

6.14. The mean relative accuracy improvement of the meta learner when extending

original with aggregation-based datasets. 121

6.15. The mean relative accuracy improvement of the meta learner when extending

original with weather-based datasets. 121

6.16. The mean relative accuracy improvement of the meta learner when extending

original with model-based datasets. 122

6.17. The mean relative accuracy improvement of the meta learner when extending

original with combination of aggregation- and weather-based datasets. . . . 123

6.18. The mean relative accuracy improvement of the meta learner when extending

original with encoded aggregation-based datasets. 125

6.19. The mean relative accuracy improvement of the meta learner when extending

original with encoded weather-based datasets. 126

6.20. The mean relative accuracy improvement of the meta learner when extending

original with encoded model-based datasets. 126

6.21. The mean relative accuracy improvement of the meta learner when extending

original with combination of encoded aggregation- and weather-based datasets. 127

7.1. Conceptual framework architecture for meta learning, adapted from Chapter 4. 134

7.2. Mapping the different steps of themeta learning approach to the corresponding

microservices. 135

7.3. Deployment of Microservices. 141

xiv

List of Figures

7.4. Methodology applied to improve the predictive performance of meta learning

classification model. 143

7.5. Model Distribution before applying SMOTE. 143

7.6. Model Distribution after applying SMOTE. 144

7.7. Meta feature extraction: overhead. 148

7.8. Meta feature extraction: execution time. 148

7.9. Meta feature extraction: extraction time by meta feature groups. 149

7.10. Forecasting feature extraction time. 150

7.11. The mean𝑇𝑡𝑜𝑡𝑎𝑙 in both evaluation and production modes required for building

RF meta learning classification model. 150

xv

List of Tables

1.1. User categories. 2

3.1. Comparison of the data analytic and ML workflow management frameworks

in related work to our framework. 36

4.1. List of the URL patterns of the J.M.-Service. 50

4.2. List of the URL patterns of the D.M.-Service. 51

4.3. Default and custom cluster configurations used in cluster context. 55

4.4. Default hyperparameters of MLR algorithm in MLlib. 55

4.5. Default hyperparameters of DT algorithm in MLlib. 56

4.6. Default hyperparameters of RF algorithm in MLlib. 56

4.7. Default hyperparameters of GBTs algorithm in MLlib. 56

4.8. ML algorithms hyperparameters after tuning. 57

4.9. Mean computation time for training and testing different algorithms in the

cases of caching and no caching of input data. 59

4.10. Execution time and the related overhead required for building MLR models

based on different sizes of datasets. 63

5.1. Internal measures of applying 10 clustering algorithms on time series datasets. 82

5.2. Clustering error for different groups of meta features. 84

5.3. Different groups of meta features after removing the highly correlated meta

features. 89

5.4. The meta features selected by Recursive Feature Elimination (RFE) procedure

for each group of meta features. 91

5.5. Setup configurations and evaluation results of EEMLS. 94

6.1. Weather classes defined in the weather-based approach. 104

6.2. Hyperparameters used in building model in the model-based approach. . . . 109

6.3. Different groups of the extracted meta features. 113

6.4. Different extending scenarios of the training dataset. 120

6.5. General comparison of the effect of different meta examples generation ap-

proaches in terms of mean relative accuracy in the case of original represen-

tation of meta features. 124

6.6. General comparison of the effect of different encoded meta examples genera-

tion approaches. 128

7.1. List of the URL patterns of the D.P.-Service. 137

7.2. List of the URL patterns of the M.K.E.-Service. 138

xvii

List of Tables

7.3. List of the URL patterns of the M.L.-Service. 139

7.4. The predictive performance of random forest meta learner after applying

SMOTE technique. 144

7.5. The predictive performance of neural network meta learner after applying

SMOTE technique. 145

7.6. The predictive performance of random forest meta learner after applying PCA

technique. 145

7.7. The predictive performance of neural network meta learner after applying

PCA technique. 146

7.8. General Comparison in the case of using random forest meta learner. 146

7.9. General Comparison in the case of using neural network meta learner. . . . 146

8.1. Relative performance improvement in terms of accuracy achieved by using

extended datasets in the case of using original representation of meta features. 156

8.2. Relative performance improvement in terms of accuracy achieved by using

extended datasets in the case of using encoded representation of meta features. 157

xviii

1. Introduction

1.1. Motivation

Machine Learning (ML) is a scientific discipline aiming at designing and developing specific

algorithms and concepts allowing computers to evolve behaviors and react to different

actions based on empirical data. Indeed, it can be seen as a core in the field of artificial

intelligence, in which computers can learn from existing data to predict future behavior,

results and trends. Over the last decade, ML has been applied in a lot of problem fields, such

as text classification [139], speech recognition [109], medical diagnostics [126], computer

vision [68] and computer graphics [3].

Machine Learning
Forecasting

Wind
Power

CSP

Machine Learning
Forecasting

Machine
Learning

Forecasting
Machine Learning

for Sizing and Location

Demand/Supply Forecasting

Demand
Forecasting

Prosumers

Conventional
Power Plant

Scheduling

Price
Forecasting

Consumers

Power Transmission

Machine Learning in Grid Management

Figure 1.1.: Overview of power grid with integrated renewable sources and its usage of machine learning

techniques in different steps [114].

In the field of energy, ML has also been successfully applied [12][179][43][1][178][38][170].

One usage area in this application domain is to use ML algorithms for intelligent decision

making in unit commitment of decentralized renewable energy resources and flexible loads

1

1. Introduction

at grid level, where e.g. an accurate prediction of future energy demand and renewable

energy generation is required as seen in Figure 1.1. Such predictions are prerequisites for

optimizing the usage and minimizing wastage of energy in the system, paving the road

for a more efficient usage of power networks at the grid level.

To support the German Energiewende aiming at maximizing the usage of renewable

energy resources, and thereby reducing non-renewable energy production, the German

government funded several larger scale energy labs, e.g. the Energy Lab 2.0 at the KIT or

the Living Lab Energy Campus (LLEC) at FZJ, which are used in context of the Helmholtz

research programme Energy Systems Design (ESD) as environments for research on new

smart digital solutions for controlling and managing future energy networks. Instrument-

ing and evaluating new digital system solutions for controlling hybrid energy systems

combining different technologies from different sectors is a very complex task requiring

an adequate software ecosystem for e.g. gathering data and performing data analytics,

modelling and executing control algorithms in experimental settings. Therefore, one main

research subtopic of the ESD programme focuses on the development of a new digital

energy research platform which easens the work of the energy researchers by providing

a ready to go integrated tool ecosystem that hides the IT-related complexities of data

gathering and managing, data analytics, managing and executing control algorithms and

simulation models on high performance computing clusters from the users, which can

then focus on their own research questions. This digital platform should also provide easy

solutions for applying and evaluating the use of existing and new ML algorithms as part

of new smart grid control solutions, and one important sub-case is the application and

evaluation of adequate ML algorithms for forecasting time series data of renewable energy

production and/or volatile load which are then used as part of more complex control

algorithms for e.g. unit commitment of energy resources.

Table 1.1.: User categories.

Category Nr. User category Properties

1 Expert

ML knowledge (+)

ML Programming skills (+)

2 Non-expert

A ML knowledge (+)

ML Programming skills (-)

B ML knowledge (-)

ML Programming skills (-)

The users performing such ML tasks on the digital research platform can be divided into

two different groups, namely experts and non-experts as shown in Table 1.1. On the one

hand, the expert users have a deep understanding of ML and also good programming skills

to implement ML models using, for example, some developing tools like Jupiter Note-

book [116].They have worked with ML libraries before and are capable of programming

algorithms themselves. On the other hand, many energy researchers are non-experts in

programming ML algorithms or even in understanding different ML algorithms. They

2

1.1. Motivation

are only interested in applying ML algorithms to their problem settings. Therefore, such

non-expert ML users of the platform are grouped into two sub-categories.

The first one includes the users who are familiar with statistics and ML but are not able

or interested in writing the necessary programming code for training and evaluating

ML models particularly in cluster computing or Big Data environments. The second

sub-category of non-expert users has only little to no knowledge about statistics and ML.

They only want to apply ML algorithms to their research problems. The general research

question for the digital energy research platform with respect to ML usage can now be

formulated as “How can we support the two different Non-expert user groups mentioned

before in applying ML algorithms to their research setting without forcing them to become

all ML experts with detailed knowledge in ML methodology and programming?”. This

thesis will try to answer this question while concentrating on a smaller group of use cases

related to time series forecasting for experimentally evaluating the basic ideas for solving

the above problem.

Generally, the process of building ML models, which can then later be applied to a given

problem setting, consists of multiple steps and is commonly called Machine Learning

Pipeline (MLP). Figure 1.2 shows a simplified MLP encompassing data preprocessing,

splitting the data into training and test data, model training and model testing.

Institute for Automation and Applied Informatics (IAI)

IT4ES

4 Sonja Gunnarsdottir11.02.2020

Data

Preprocessing
Training

Data

Test

Data

Model Training

Model

Testing

Figure 1.2.: Simplified Machine Learning Pipeline (MLP).

For training accurate models for more complex problem settings, often the size and

diversity of the dataset used for training the model is very important. Using large scale

datasets for training, testing, and executing MLP effectively is becoming more difficult

and even complex, requiring the utilization of computing clusters with dedicated ML

software designed for parallel execution of parts of the algorithm (e.g ML tools designed

for cluster computing environments or so called Big Data Platforms [50]). However, gaining

insightful information, finding patterns and extracting knowledge from such datasets are

quite complex tasks for ML users too. Additionally, the right cluster configuration of the

MLP pipeline on the cluster computing infrastructure beside setting up the the required

communication environments to send jobs to the cluster introduce more challenges for

running ML tasks for non-experts, who otherwise must know how parallel execution

of ML frameworks on a cluster computing environment can be optimized for a certain

problem setting.

Building on that, more in-depth research on new methodologies and an even-growing

software solutions for facilitating performing ML tasks for the aforementioned ML users

are existing, see e.g. [26][60][33][185][27][166]. Such solutions can be categorized into

3

1. Introduction

monolithic single user applications and service-oriented solutions often having web user

interfaces and/or command line interfaces (CLI) as user interface frontend. Newer service-

oriented solutions nowadays often use a microservice based architecture [30]. In contrast

to monolithic applications, an application with a microservice architecture is composed out

of several independent deployable services, where each individual microservice performs a

specific task based on its own technology stack [19]. Microservices represent state-of-the-

art technology, where each service is designed to be horizontally scalable in order to build

highly modular, flexible and scalable solutions. Additionally, microservice applications are

designed to be automatically deployable and manageable on computing clusters providing

a container runtime environment (e.g. Docker) and/or container orchestration software

(e.g. Kubernetes) which is quite common in cluster computing environments nowadays.

They can be easily integrated with other service-oriented applications, e.g. distributed

data analytics or data management environments which nowadays also run seamlessly on

computing clusters providing a container runtime environment. Thus, such applications

can be easily integrated with modern Big Data data analytics frameworks, e.g. Apache

Spark for parallel execution of classical machine learning algorithms or TensorFlow for

executing Deep Learning Algorithms in the same cluster computing environment.

However, most of the existing solutions to support non-expert users in performing ML

tasks were developed in the past as monolithic applications and often also do not support

executing ML jobs in cluster computing environments. These types of applications are

often tuned to allow users to easily perform certain ML tasks, e.g. classification, and

provide a great user experience. But they are not suitable when the problems get more

complex, the datasets for training will become too large for single computer environments,

and therefore the MLP has to be performed on cluster computing environments. Driven

by that, the research on modern energy system solutions must nowaday focus on more

complex real world usage scenarios for making the German Energiewende a reality. And

the evaluation of real world usage scenarios demand very complex system models and

often large scale datasets for e.g. train ML based data analytics algorithm as part of a

solution which can only be executed on computer cluster environments. Therefore, the

working group designing the architecture of the digital energy research platform for the

ESD research program of Helmholtz has decided that this platform will be conceptualized

and implemented using a microservice-based architecture, where all services will run

on Kubernetes based cluster computing environments and the user interfaces will be

implemented as (progressive) web applications which can be used from any frontend

device (e.g. desktop computer, laptop, tablet or smartphone). For executing MLP and

ML tasks on this microservice based platform, the first challenge of this thesis can be

formulated as “designing a Microservice based solution for supporting expert users and

non-expert users, category 2A, in performing ML tasks in a cluster computing environment

with container runtime automation”.

Another problem is, that according to the No Free Lunch (NFL) theorem [173] no single

learning algorithm has always the lowest performance error on a broad problem domain.

Hence, for solving a specific subclass of problems of this broad problem domain, a dedi-

cated learning algorithm must be selected from a set of available solutions with lowest

performance error. This selection process can be defined as an Algorithm Selection Prob-

4

1.2. Research Questions and Contributions

lem (ASP) [125], which is typically solved by the ML user using a trial-and-error approach.

I.e. all possible combinations of learning algorithms with their hyperparameters are tried

to find the most suitable solution. This can take a long time even when using a cluster

computing environment, and has a high computational complexity due to the size of the

search space of possible algorithm candidates. Moreover, expert knowledge is required to

perform such tasks. Driven by that, the second challenge of the thesis can be formulated

in conceptualizing a methodological approach which allows the digital energy research

platform to support non-expert users, category 2B, in selecting the most appropriate ML

model for a specific energy research related task.

According to [81][151][25][70][122][127][45][128], the usage of meta learning approaches

for solving this problem is not new. They have been proposed as good solutions to deal

with the problem of algorithm selection supporting non-expert users shown in Table 1.1

for automatically finding the most appropriate model in scientific literature for a long time.

But the challenge for this thesis is not to decide if meta learning in general can be used to

solve the problem, but more “how meta learning has to be instrumented in the field of

energy for successfully solving the algorithm selection problem”. The term meta learning

is based on the fact that a good set of characteristics of datasets captures powerful insights

into the behavior of these datasets paving the road for determining the most appropriate

ML algorithm [16][55]. But these characteristics of the datasets largely depend on the

characteristics of the system environment where the data was gathered, and therefore

also on the application domain. Consequently, the better the used set of characterization

indicators captures the behavior of a dataset with respect to their dependency on the

domain specific system environment, the more accurate the selection of the best ML

algorithm will be. Therefore, the main challenge for instrumenting meta learning for the

digital energy research platform is finding energy system environment specific metadata

sets for different ML tasks.

However, providing a generic meta learning machinery, which can be adapted by configu-

ration and recurring learning to solve the algorithm selection problem for different ML

tasks, and enhancing the predictive performance of the meta learning classification model

to perform well in a cluster computing environment still represents a challenge that needs

to be faced.

1.2. Research Questions and Contributions

This thesis has the main goal of supporting non-expert users, presented in Table 1.1, in

performing ML tasks in cluster computing environments using e.g. Big Data analytic tools.

Energy load and generation forecasting scenarios are used to experimentally evaluate the

efficiency of the proposed solution. The first group of non-expert users are supported by

developing a conceptual microservice-based framework with highly configurable web-

based UI hiding the low level complexities of the computing cluster infrastructure and

Big Data analytic tools running on the cluster from the users. Such framework can be

seamlessly integrated into the digital energy research platform of Helmholtz. The second

5

1. Introduction

group of non-expert users are supported by extending the microservice-based solution

to incorporate a generic meta learning solution. This solution is specifically designed for

solving the algorithm selection problem for energy related ML tasks such as energy time

series forecasting. Additionally, scientific questions of what are the good meta features for

e.g. solving the algorithm selection problem for the ML task forecasting of energy time

series and how can the performance of the algorithm selection process be enhanced by

enhancing the training datasets by generating new datasets are addressed. Four research

questions are formulated to cover the main goals of the thesis. The following description

of these research questions also lists the scientific contributions which were worked

out during the thesis to find the answers of these questions and address the motivation

presented in the previous section.

ResearchQuestion 1 [RQ1]: How should non-expert users withML knowledge, but
without programming skills be supported in performing ML tasks on computing
clusters using Big Data ML frameworks?

The rapid extension of successful large scale ML applications and the immense growth of

available data usable for training ML solutions aroused the interest of other developers

and researchers for developing solutions using ML based Big Data analytic tools on cluster

computing environments for solving complex data analytic problems. But programming

ML solutions using Big Data ML tools is challenging for non-expert users who do not have

programming skills in ML and modern Big Data technologies. In addition, a distributed

execution environment is required for training such solutions in a timely manner on a big

training dataset.

Supporting non-expert users, category 2A presented in Table 1.1, in performing ML tasks

by providing easy-to-use tools is nothing new. Such users have a deep understanding of

ML and its related learning scenarios but they are not able to write the programming code

required to perform ML tasks as already discussed before. To support them, there have

been a lot of research projects [23][26][27] which developed dedicated tools implementing

certain classes of ML algorithms (e.g. classification or regression) in a very generic fashion

that allows category 2A users to apply those algorithms to their problem setting without the

need for programming skills. Most of those tools are developed as monolithic applications

which have drawbacks in terms of scalability and maintainability as discussed before. The

majority of them do not have the ability to scale beyond a level where the computing

power or the data management capability of a single computer is not enough for coping

with either the computational complexity of the problem or the amount of training data.

There are some tools (e.g. Jupiter Notebook) found in literature, which use distributed ML

frameworks for executing more complex ML problems on cluster computing environments

using distributed parallel computation algorithms which also allow to distribute needed

data e.g. for learning onto different nodes of the cluster. Such tools are often called Big

Data analytics tools (e.g. Apache Spark for classical ML algorithms or TensorFlow for

Deep Learning). But these frameworks do not hide the low level complexities of the used

Big Data framework and require that the user should have skills and knowledge in both

ML and the structure and working of the underlying framework on a computing cluster

[33].

6

1.2. Research Questions and Contributions

In this thesis, we tackle the aforementioned challenges and answer the scientific question

of designing an efficient adequate solution for supporting non-expert users by proposing

a microservice-based framework which hides the complexities of the big data runtime

environment from the users allowing them to perform their tasks without caring too much

about the technical issues of the underlying big data platform. The solution can be set up on

any computing cluster providing a container runtime environment for efficient distributed

processing of MLPs by instrumenting already available Big Data ML frameworks and

hiding their usage from the ML users. A modern web-based user interface supports non-

expert users in performing ML tasks from anywhere with any device providing a web

browser. This framework can be integrated with the digital energy platform for ESD. E.g.

datasets stored in that platform can be easily used for training of ML algorithms or ML

algorithms can be directly applied to such datasets.

The scientific work to answer this research question is detailed in Chapter 4. The following

bullet points summarize the main scientific contributions presented in this chapter:

• Conceptualization of a microservice-based framework to support non-expert users

category 2A in training, testing, managing, storing, and retrieving ML models using

Big DataML frameworks installed on computing clusters with a container automation

runtime environment.

• A benchmark evaluation study was carried out for determining the overhead of

such a framework by prototypically implementing the microservice framework

and performing ML tasks instrumenting the use case of energy load time series

forecasting using classic ML algorithms already implemented in the Big Data ML

framework Apache Spark. In this study, the effect of instrumenting the caching of

data in Resilient Distributed Datasets (RDDs) in Apache Spark on the performance

of the forecasting algorithm was also evaluated. The efficiency of the framework

in terms of execution time and overhead is also measured focusing on the effect of

storing and retrieving ML models.

• Defining and evaluating the thresholds, at which it is highly recommended to switch

to a Big Data clustering infrastructure for time series forecasting because it outper-

forms the usage of the same ML frameworks in single computer context.

After conducting this work for supporting the first category of non-expert users, the focus

is moved to conceptualizing tools for supporting the second category of non-expert users.

After an extensive literature study (see Chapter 3), the instrumentation of a meta learning

solution for automating the process of model selection seemed to be very feasible. To

conceptualize and evaluate this approach,two major aspects and challenges need to be

addressed in this thesis. On the one hand, the meta features that adequately describe the

input datasets are largely dependent on the system context in which the datasets belong

and on the specific ML task which should be performed. Therefore, for evaluating the

meta learning approach by instrumenting the concrete use case forecasting time series

datasets with ML algorithms, adequate meta features need to be found which give a good

prediction performance for finding the right forecasting ML algorithm. On the other hand,

the prediction performance also depends on the number and availability of good training

7

1. Introduction

meta examples on which the meta learner is trained to recommend the best model for a

specific task. These challenges turned out to be complex research problems by themself

which lead to the second and third research question.

Research Question 2 [RQ2]: How to efficiently characterize energy time series
datasets to enhance the performance of automated model selection?

For evaluating our meta learning approach in the context of energy, time series data

forecasting in energy context is used as a use case. In this approach, the meta learner has

to learn to automatically assign the best ML forecasting model to an energy time series

dataset [38][91]. This is normally done by learning the mapping between the forecasting

performance of ML algorithms and the characteristics of energy time series datasets to

forecast. Meta learning leverages the capability of ML classification algorithms to find such

relationships and to classify input energy time series datasets according to ML candidates,

e.g. determining an adequate forecasting model [118]. Changing the characteristics of

energy time series datasets may affect the assigning process of the meta learner [16].

This raises the question, how to efficiently characterize energy time series datasets to

precisely assign the best forecasting model for them. In meta learning, the characteristics

of datasets are called meta features. They define a set of features (properties) derived from

a dataset which e.g. cover statistical properties describing the time-related behavior of

an energy time series dataset. Describing characteristics of energy time series datasets

using such meta features is not new. There has been a lot of research in this context

[91][151][29]. In addition to the high computation time for most of them, especially for

large amounts of energy time series datasets, the calculation of these meta features is

often subject to privacy and security issues. E.g., the meta features that are calculated by

using knowledge about the physical surroundings (e.g. a certain building) or about human

behavior of people in households. Therefore, those meta features are not optimal for using

them for meta learning because they would need to be applied on all training data sets.

Consequently, it is important for setting up the evaluation use case for the meta learning

framework to design a new set of meta features that indirectly and anonymously captures

the physical and other social properties in energy time series datasets with an acceptable

as well as efficient extraction time.

The scientific work done for designing and evaluating a more suitable set of meta features

for time series forecasting is described in Chapter 5. The main scientific contributions can

be summarized as follows:

• Introduction of Descriptive Statistics Time-based Meta Features (DSTMF) as a new

set of meta features for characterizing the forecasting behavior of time series datasets

to achieve a more accurate and more performant model selection for time series

energy load forecasting.

• A similarity-based clustering analysis study was carried out to evaluate the potential

of DSTMF’s meta features for capturing the deep characteristics of energy load time

series datasets in comparison to other state-of-the-art meta features used in the field

of energy.

8

1.2. Research Questions and Contributions

• To further assess the effectiveness of DSTMF in characterizing energy time series

datasets, a generic Energy Meta Learning System (EMLS) was conceptualized and

implemented. EMLS allows to perform meta learning with different sets of meta

features for comparison. Using that, an in-depth evaluation study was performed

whereby the predictive performance of our meta learning classification model using

DSTMF was compared to the predictive performance using other state-of-the-art

meta features from the literature.

• The EMLS system was further enhanced by designing the Encoded Energy Meta

Learning System (EEMLS) leveraging the advantage of unsupervised deep learning

to encode the extracted meta features by autoencoders. The resulting meta learning

classification model achieves a very good predictive performance with an average

accuracy value of 90%. This accuracy is achieved even when using a reduced number

of training examples.

Research Question 3 [RQ3]: How to enhance the performance of automatedmodel
selection in the context of energy by creating appropriate learning datasets?

Multiclass classification problems aim at assigning a class label from a set of classes to each

input example. It categorizes the input data according to different classes. Driven by that,

the well-known Algorithm Selection Problem (ASP) is considered as multiclass classifica-

tion problem, where an input dataset needs to be assigned an appropriate algorithm from

different ones available in the class space of algorithms. Typically, the predictive accuracy

of such a classification model not only depends on the features used for classification but

also on the availability of a bigger set of diverse examples required for training.

Similarly, meta learning as a solution of ASP is defined as a multiclass classification problem

[76][91]. The reason for that lies in the fact that the meta learning classification model

captures the mapping between meta features, that describe the data, and the predictive

performance of the best model. As a result, the output of meta learning will be assigning

each input dataset into the best ML model from different model candidates. In addition

to the challenge of availability of efficient meta features that has been tackled in the

previous scientific question, the availability of examples required for training meta learning

classifiers represents another challenge that needs to be faced. An appropriate diverse

training dataset containing time series datasets with different temporal behavior plays

a crucial role in supporting the meta learning classifier to efficiently learn the mapping

between meta features and the best forecasting model. But because of security and privacy

constraints, there aren’t too many load and generation time series datasets available to

the general public.

This led to much research work focusing on generating new synthetic time series datasets

for increasing the number of training examples required for the generalization process

of classifier [47][156][121][65][188][64]. In the present thesis, we answer the scientific

question of enhancing the predictive performance of ASP in the context of energy by

conceptualizing and developing new approaches for generating new adequate time series

datasets for the energy specific application domain for better training of our meta learner.

The advantages of our approaches over existing ones in literature lies in the simplicity of

9

1. Introduction

the training dataset generation approach, which nevertheless achieves a high predictive

performance of the meta learning classification model in assigning the best forecasting

model for input energy time series datasets.

More details on the scientific work done for answering this research question can be found

in Chapter 6. The following bullet points summarize the main scientific contributions

presented in this chapter:

• Developing and conceptualizing a weather-based approach for generating new en-

ergy time series datasets for i.e. generation scenarios leveraging the advantage of

weather data and its weather conditions. Such conditions are used to classify the

input energy time series dataset into different new ones.

• Developing and conceptualizing an aggregation-based approach for generating new

energy time series datasets by aggregating the input time series into different granu-

larity levels.

• A benchmark evaluation study was carried out using a power generation forecasting

scenario to evaluate the efficiency of the new generating time series datasets. In this

evaluation, the new approaches are compared to the model-based approach existing

in the literature for enhancing the predictive performance of the meta learning

classification model. Moreover, the advantage of unsupervised deep learning was

incorporated into meta learning for achieving a better performance in energy time

series model selection.

Research Question 4 [RQ4]: How should non-expert users with neither ML knowl-
edge, nor programming skills be supported in performing energy time series
forecasting in Big Data environments?

Meta learning in the field of energy is closely linked to the process of finding the map-

ping between meta knowledge that describes the energy time series datasets and the

best performing forecasting models. Having such a mapping, the Algorithm Selection

Problem (ASP) can be solved by recommending the best forecasting model based on the

characteristics of energy input energy time series datasets without the need to follow a

trial-and-error approach. But how can we instrument such a meta learning solution in a

data analytics platform for the energy engineering domain for users in category 2B which

can be integrated easily into the digital energy research platform developed in the context

of ESD research?

In some research projects, meta learning approaches were developed as frameworks with

wizard-like interfaces which are very easy to use for the non-expert [158][75][45][87].

Despite the promising advances achieved in this context, much work remains to be done.

None of those existing frameworks were developed with a software architecture - such as

a microservice-based architecture that allows to easily integrate the meta learner into a

bigger digital energy research platform, nevertheless providing a good maintainability as

well as efficiency of the system and scalability for future use. Moreover, these easy-to-use

meta learner tools typically do not use ML Big Data analytic frameworks for solving the

ASP on cluster computing environments for higher performance in the case of Big Data.

10

1.3. Structure of the Thesis

The scientific work done to answer the fourth research question brought together the

results of the aforementioned research questions to set up a very flexible data analytics

framework which can be easily integrated into the digital energy research platform of

the ESD project. It merges the concepts of meta learning addressed in RQ2 and RQ3 and

the microservice-based solution addressed in RQ1 as a microservice-based meta learning

framework in Big Data environments to automatically select the best forecasting model

for non-expert users of category 2B presented in Table 1.1.

By answering this research question in Chapter 7, the following scientific contributions

are summarized:

• Conceptualization and development of a microservice-based meta learning frame-

work solution to automate the process of Algorithm Selection Problem (ASP) in the

energy field which is easily integratable into the digital energy research platform of

the ESD research program. The proposed framework makes the use of a microservice

architecture built on top of a powerful big data stack for a manageable and highly

scalable solution to solve the problem of model selection in big data environments.

• A benchmark evaluation study was carried out to evaluate the accuracy of the meta

learner, the execution time and the overhead of the framework.

1.3. Structure of the Thesis

According to the research questions presented before, this thesis is structured as follows.

In Chapter 2, we present the basic background knowledge necessary to understand the

subsequent parts of this thesis. Chapter 3 summarizes a variety of previous research

projects that suggest scientific methods and frameworks related to our work. We discuss

the strengths and weaknesses of each project and clarify its relation to our work. Chapter

4 covers the research question RQ1 by developing an adequate runtime environment to

support non-expert users, category 2A in performing energy forecasting in the context

of big data. Besides the execution workflow and the conceptual architecture including

its services and the main functionalities, an in-depth evaluation study concerning the

performance of the proposed framework in terms of execution time and overhead is

presented in this chapter. In chapter 5, we further answer the research question RQ2 in

presenting Descriptive Statistics Time based Meta Features (DSTMF) as a new form of

meta features to deeply characterize energy time series datasets with respect to forecasting.

A benchmark evaluation study for evaluating the performance of DSTMF compared

to the performance of other state-of-the-art meta features existing in literature in the

field of energy is presented in this chapter. Chapter 6 covers the research question RQ3

by enhancing the predictive performance of the meta learning classification model by

generating new meta examples related to the input energy time series datasets. In chapter

7, we address research Question RQ4 by integrating the meta learning concepts introduced

in Chapter 5 and 6 into the overall ML microservice framework defined in Chapter 4 and

providing an easy-to-use wizard-like interfaces to assist non-expert users. The chapter

11

1. Introduction

focuses on the conceptual microservice-based architecture proposed to support non-expert

users, category 2B, in selecting the most appropriate forecasting model by meta learning.

Finally, in Chapter 8, the main findings of the thesis are summarized and an outlook on

further work are given.

12

2. Theoretical Background

For better understanding of the main contributions presented in this work, it is of great

importance to introduce some of the related theoretical background including fundamental

terms and state-of-the-art techniques. The structure of the background is as follows. We

start in Section 2.1 by explaining some fundamental concepts of Machine Learning (ML),

its learning scenarios, application area and the different measurements proposed in the

literature to evaluate the predictive performance of ML models. In Section 2.2, the basic

concepts of Big Data analysis for handling the increasing amount of data generated

everyday are explained. In addition, the microservice-based architecture style as a new

technology for building efficient software solutions is introduced in Section 2.3. Such

architecture is presented along with its characteristics, bounded contexts and the related

service communication types. All this knowledge is necessary for understanding key

concepts of this thesis [146].

2.1. Machine Learning

The ability to learn from already existing data and iteratively find a solution for performing

certain tasks by adjusting the application’s behavior according to knowledge gathered from

the data is the main goal of ML. An essential description of ML is provided by Alpaydin et.

al [10]:

“Optimizing a performance criterion using example data and past experience”.

Using machine learning, the computers are able to learn from historical data (experience)

and use the acquired knowledge to efficiently perform further tasks. Another more formal

definition of ML is given by Jordan et. al in [61]:

“A computer program is said to learn from experience E with respect to some task T and

some performance measure P, if its performance on T, as measured by P, improves with

experience E”.

In this definition, the “computer program” termed “machine learning model” can be seen

as an approximate solution of some complex mathematical function (model) which for

some given input variables calculates a set of outputs for performing the given task T

(e.g., a classification). By learning from experience E (i.e., from some data which contains

13

2. Theoretical Background

information about the correct function values for specific input variables settings) the

internal configuration of theMLmodel will be subsequently changed and thereby optimized

in a learning phase such that the model better performs its approximation. ML has already

been proven in many application areas to be able to provide very good approximate

solutions for problems which are otherwise too complex to e.g. set up differential equations

describing the problem environment with all its real world physical effects, and then

solve the differential equations appropriately. To this end, applying ML to extract useful

knowledge from raw data has become increasingly popular in a variety of areas. One such

field is the health sector where it helps with medical diagnosis [37][126]. Virtual voice

assistance, like Siri and Alexa, is another example, where ML is used to determine the

meaning of voice commands from people like setting the alarm clock or finding specific

information on the internet.

ML is nowadays also used for solving complex problems in technical industrial application

areas, such as smart energy systems. This thesis will later focus on facilitating the usage

of ML for energy load and generation forecasting [12][179][43][1][38][178][170]. Text

classification [62] is a further example of an application of ML which can be used to classify

documents according to more than one category such as sport, medicine, and health care,

to name a few. Moreover, the extraordinary increase in the size of multimedia data led to

an increasing interest in applying ML as a potential way to provide the opportunity to

index, restore as well as to browse such data via keywords semantically [174][119][160].

The field of bioinformatics represents another important application area of ML [80][147]

where proteins and genes are studied and classified according to their functional classes. In

chemical analysis [67], the major advancements in the pharmaceutical industry combined

with new achievements in ML algorithms and learning strategies pave the road for discov-

ering and developing multiple-action drugs. By using ML, it becomes possible to discover

the drugs that have the ability to achieve several therapeutic goals simultaneously.

2.1.1. Machine Learning Scenarios

On top level, four different learning scenarios can be distinguished in the field of machine

learning, namely supervised, unsupervised, semi-supervised, and reinforcement machine

learning scenarios. Those can be further divided into sub-types. The main distinction

between the mentioned scenarios depends on how the ML system knows and therefore

the ML model learns that a certain solution defines a correct answer to the problem for a

given set of input variables.

Supervised Machine Learning: In this scenario, the learning data (i.e. well known sets

of input variable values) are labeled with significant information called labels [7][150][107].

The learning dataset is then split into two parts. The training dataset and the test dataset.

The training dataset is then used to learn the existing mapping between input values

(predictors) and labels. For evaluation, if the trained model performs a good approximation

of this mapping, the test dataset will be used to predict the output values (and therefore

the label values of test data sets) of each test dataset. Then the prediction will be compared

with the labels, and an error for the deviation will be calculated (see later). The error

14

2.1. Machine Learning

will then be used to decide how to proceed with the learning. Both predictors and their

corresponding outputs could be nominal or numeric depending on the source of data. In the

supervised learning settings, we can think of a teacher which provides extra information

i.e., labels to the examples in the training dataset to e.g. give hints on how to predict such

information for the unlabeled examples in the testing dataset.

In the supervised learning scenario, the learning process involves finding the optimal

mathematical mapping between the input predictors and output labels. In practice, often

two well-known types of problems, namely classification and regression problems are

solved using supervised machine learning [135]. In classification, the output are discrete

values (i.e. class names of a classification system) whereas in regression, the output values

are continuous numbers (e.g. from a subset of the real numbers for instance). A common

classification problem is e.g. classifying whether an email is spam or not. In contrast,

regression can be used for the prediction of the prices of houses in certain areas of a town,

or for the prediction of the power generation of renewable energy sources.

When using supervised algorithms, the objective is to train models which generalize well

on input data. However, depending on the actual problem setting, model generalization is

often very difficult to achieve and related to it is the concept of the bias-variance tradeoff

[22][181], where models have either high bias and low variance or low bias and high

variance, and both characteristics cannot be optimised at the same time. Simple ML

models tend to have high bias and low variance in contrast to the real world problems

they should approximate, and therefore they are often unable to capture the complex

underlying patterns of data. The result of this is called underfitting [56] [189], where

the model performs poorly on the training data and is not able to generalise to new data.

On the other hand, overfitting [130][183] is when a model learns too many parameters

and gets too complex, resulting in a high variance but decreased bias. Overfitting is a

common problem in supervised learning, especially when the samples are few and the

feature dimensionality is high. Therefore, it is crucial that the number of data instances is

higher than the independent parameters to lessen the likelihood of overfitting.

Unsupervised Machine Learning: In contrast to the aforementioned scenario, in which

the examples are explicitly labeled, the examples here are unlabeled. There is no informa-

tion in the training set except the features (input variable values) without the corresponding

output [71][28]. In this context, the unsupervised machine learning process e.g. can try

to discover the similar characteristics between groups of input data and/or a significant

structure in data, for example, by grouping them into different meaningful clusters as

seen in Figure 2.1. Some important application examples in the context of unsupervised

machine learning scenario are:

• The k-means algorithm for clustering tasks [4][44].

• The Apriori algorithm for association rule learning tasks [90] [13]. This algorithm

is mainly used in recommendation systems aiming at discovering the behavior of

customers and presenting the appropriate products to them consequently.

15

2. Theoretical Background

Unsupervised Learning

Unknown Class

Class 1

Class 2

Supervised Learning

Figure 2.1.: Prediction of future energy demand and renewable energy generation.

Figure 2.1 shows the main differences between supervised and unsupervised learning

scenarios. The unsupervised learning scenario (shown in the right picture) aims at dis-

covering the structure of data in the context of exploratory analysis. Clustering is an

example of unsupervised learning in which the data points are grouped together into

different clusters based on their characteristics. The supervised learning scenario (see left

picture) aims at classifying the data points in different classes based on some classification

criteria. To achieve that, the learning algorithm learns the relationships between input

data points and the output classes. In this learning process, each data point is mapped to

its corresponding class to formulate the final classification distribution of points.

Semi-supervisedMachine Learning: It can be seen as a mixed form of the two aforemen-

tioned learning scenarios, whereby only a part of the data is labeled with some supervision

information i.e., labels [162][180][17]. Consequently, a semi-supervised machine learning

scenario is often easier to instrument than the supervised one because labeling all data sets

can be very difficult and time consuming. It is often difficult to get labeled data because

the annotation of data by humans is expensive and needs expert knowledge.

Reinforcement Machine Learning: In this learning scenario, the interaction with

the environment plays a crucial role to build the model [5]. Reinforcement machine

learning scenario aims at maximizing the rewards by involving an online performance

evaluation in the learning process. In such a learning process, the model will react

to the evaluation feedbacks aiming at increasing the rewards and achieving the best

performance. Reinforcement machine learning has become more important in recent

years, as it produces the best solutions in a lot of world wide used applications, for instance

helicopter flying [176], resource-constrained scheduling [49], robot control systems [59]

and playing backgammon [111].

2.1.2. Performance Evaluation

While performing machine learning tasks, the predictive performance of the model has to

be somehow measured. This is done by defining an adequate error function for the given

problem setting. Because this thesis discusses the forecasting of time series datasets an

16

2.1. Machine Learning

adequate error function for the problem “forecasting of time series data sets” has to be

defined.

In this section, the commonly used forecast error measurements are introduced and

discussed. When comparing different forecasting models for forecasting a time series

dataset, the predictive performance of those models needs to be compared and the lowest

forecast error is always preferred. To achieve such a comparison, an error metric is required.

These metrics measure the error in the model by comparing the actual values with the

predicted values. The difference between different metrics lies in the way of computing

those errors [32][72]. In the following, 𝑥 represents the predicted value, 𝑋 represents the

real value, and 𝑁 is the number of samples in testing set.

Mean Absolute Error (MAE): The MAE as defined by Equation (2.1) is normally used to

identify the average error. This value is more likely used as metric when the errors are

uniformly distributed over all forecasted values.

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
ℎ=1

|𝑋ℎ − 𝑥ℎ | (2.1)

Root mean square error (RMSE): The RMSE as defined by Equation (2.2) is used to

evaluate in average the performance of a certain model [32]. The sensibility to outliers in

the data is considered as a concern when using RMSE. Moreover, it gives more weight to

large error since it squares it. However, it has an advantage over the MAE metric because

it doesn’t compute the absolute error and is very suitable when the errors have normal

distribution.

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 (2.2)

𝑀𝑆𝐸 =

∑𝐽

𝑗=1
(𝑋 𝑗 − 𝑋 𝑗)2

𝐽
(2.3)

where: 𝑋 𝑗 is an observation and 𝑋 𝑗 is the corresponding predicted value.

According to Equation (2.3), the MSE is calculated as the sum of the squared forecasting

errors divided by the number of the observed values.

Mean Percentage Error (MPE): The MPE as defined by Equation (2.4) gives us the ability

to decide whether the predictive model estimates values lower than the true values or

higher them. If the sign of MPE is negative, then the model predicts values higher than

the true values i.e., it “over-predicts”. Nevertheless, if the sign is positive, then the model

estimates values below the true values i.e., it “under-predicts”.

𝑀𝑃𝐸 =
100

𝑁

𝑁∑︁
ℎ=1

𝑋ℎ − 𝑥ℎ
𝑋ℎ

(2.4)

17

2. Theoretical Background

Mean Absolute Percentage Error (MAPE): The MAPE as defined by Equation (2.5) eval-

uates the performance of a forecasting model by calculating the mean absolute percentage

error. This makes it more interpretable to any one even without a previous knowledge

about the modeling problem.

𝑀𝐴𝑃𝐸 =
100

𝑁

𝑁∑︁
ℎ=1

|𝑋ℎ − 𝑥ℎ |
𝑋ℎ

(2.5)

MAPE as well as MPE are not suitable when there are zero values or even very small

values in the ground truth since they are calculated by dividing the difference between

predicted value and actual value over the actual value. Hence, large values and undefined

values in certain situations, namely by dividing over zero can be obtained. Therefore, we

use Mean Error Relative (MER) as an alternative metric.

2.2. Big Data Software Environments

Driven by the rapid growth of Big Data in scientific and industrial domains, efficient

handling of large amounts of data has become an important research topic [133][108][35].

Big Data is often characterized by three properties, namely volume, variety and velocity

as seen in Figure 2.2. Handling data showing all these properties together will make the

process of managing, revealing and gaining insight, knowledge and information from the

data more complex and a challenging task. Typically, larger scale computing clusters are

needed for handling Big Data, because the data couldn’t be stored on a single storage

system or be analyzed on a single computer.

The large amount of high dimensional data leads to the problems of high computational

costs and instability in the performance of the learning algorithms. Moreover, gathering

such data from multiple data sources using different techniques leads to the challenges

of heterogeneity in data. To overcome these challenges, the need for software solutions

for data processing and analysis which make optimal use of high speed networking, large

capacity storage and scalable distributed/parallel processing increased dramatically. Such

software solutions and frameworks are typically called Big Data frameworks.

One of the best known open-source frameworks is Apache Hadoop which supports big

data processing and storage in a distributed computing environment [149]. It encompasses

various components including a distributed file system, the data processing toolMapReduce

and a cluster resource manager. Besides enabling the reliable storage of extensive files in a

cluster, the Hadoop Distributed File System (HDFS) provides fault tolerance by splitting

the files into blocks and replicating these blocks multiple times over the cluster. It provides

fault tolerance by splitting the files into blocks and replicating these blocks multiple times

over the cluster.

Figure 2.3 shows the architecture of HDFS which consists of a Name Node and multiple

Data Nodes. The name node coordinates the operations of the underlying file system (e.g.

18

2.2. Big Data Software Environments

B
ig

 D
at

a

Velocity

Structured

Unstructured

Semi-structured

Streams

Real Time

Near Real Time

Batch

Terabyte

Petabyte

Exabyte

…

Variety

Volume

Figure 2.2.: Characteristics of Big Data.

Institute for Automation and Applied Informatics (IAI)

IT4ES

5 Sonja Gunnarsdottir25.06.2020

Name node
Metadata (Name, replica, …):

/home/foo/data, 3, …

Client

Client

Data nodes

BlocksReplication

Rack 1
Rack 2

Write

Data nodes

Metadata ops

Read

Figure 2.3.: HDFS architecture [24].

opening and closing files, etc.) and manages metadata maps which provide the knowledge

on which piece of a file can be found on which Data Nodes. On the other hand, the data

nodes store the file blocks and serve the read as well write requests. For reliability, also

the Name Node functionality can be set up redundantly.

Hadoop MapReduce [40] is one Big Data processing framework which allows parallel

processing of data according to the well known Map-Reduce data processing method. This

method processes data using two separate steps, i.e. a first “Map” step responsible for

19

2. Theoretical Background

transforming data into key/value pairs and then a second step Reduce, which accepts the

output from the Map task as input, and aggregates the data from the map somehow to

produce the final output of the Map-Reduce operations.

Institute for Automation and Applied Informatics (IAI)

IT4ES

6 Sonja Gunnarsdottir12.02.2020

Node Manager

Scheduler

AMService

ResourceManager

Node ManagerNode Manager

MR

AMContainer

ContainerMPI

AM

Client

Client
Client - - RM

RM - - AM

Container
Container

Figure 2.4.: YARN architecture [80].

One of the state-of-the-art technologies in resource management is Yet Another Resource

Negotiator (YARN) [167]. It is based on the idea of decoupling the application and the

required computational resources e.g. CPUs, RAM, etc. Figure 2.4 illustrates YARN’s

architecture which is mainly composed of a Resource Manager (RM), multiple Node

Managers (NM) and an Application Master (AM) for each program. When an application is

submitted to the RM, the RM allocates a container accommodating the required resources

for the application and contacts the related NM to launch this container. The container

then executes the Application Master (AM) which coordinates the application scheduling

and task execution and sends resource requests to the RM.

Another Big Data Analytics framework is Apache Spark [134], which also supports theMap-

Reduce processing method but in general provides a more generic and more performant

parallel processing framework which also comes with a library of ready to use ML models

already implemented. The Map-Reduce implementation container in Spark is several

factors quicker than the original implementation in the MapReduce framework and also

more reliable.

2.3. Microservices

Developing web applications using a monolithic architecture where the database, the

server and the client code are maintained in a single codebase have drawbacks if the

application gets more complex in terms of maintainability and their ability for adding new

functionality quickly and easily. If the application can only be deployed as a whole, it is also

limited in terms of scalability. With the upcoming of cloud technologies, more and more

companies like Amazon, Netflix and Zalando have shifted from a monolithic architecture

20

2.3. Microservices

to a newer more scalable and maintenance friendly architecture called microservices

architecture [2][18][39]. In this section, the basic background required to understand the

advantages of a microservice architecture is provided. For the sake of simplicity, the term

service in this thesis refers to microservice.

2.3.1. Characteristics

The main idea behind microservices is that the whole application is decomposed into

multiple smaller services or runtime artefacts where each of them can be deployed and

run as an operating system process independently from the others. The decomposition of

the functionalities into services (runtime artefacts) are done according to the application’s

business functionalities. Each service follows the Single Responsibility Principle (SRP)

and implements only a certain business functionality [88]. By following the SRP, the

services become highly cohesive and decoupled, leading to an easier code maintainability.

In contrast to that, the monolithic applications lack hard boundaries and, with added func-

tionality, tend to become complex and tightly coupled which in turns leads to difficulties

when changes are made since they often span multiple components.

Another advantage of microservices is that they do not require the redeployment of the

whole application when implementing new features or fixing bugs. Instead, only parts of

the application including the corresponding service need to be adapted and redeployed.

Furthermore, microservices of a single application are not constrained to be implemented

with the same set of technologies and frameworks. This allows teams working on different

microservices to use independent technology stacks resulting in different programming

languages and data storage technologies suitable to the data they process.

2.3.2. Bounded Contexts

It is of great importance in the design and implementation process of a microservice-based

application to identify the scope of each microservice in the application. To find the

cohesive and loosely coupled boundaries in a system, a pattern called bounded context

which originated in Domain-Driven Design (DDD) is often utilized as a guideline [95].

Before describing the bounded context, the terms domain, domain model and subdomain

which are integral parts of DDD, first need to be introduced. The domain can be defined

as a sphere of knowledge, influence or activity [88]. Essentially, the domain is the problem

space that the system addresses. The domain model is used to depict the key elements of a

domain. This is done by establishing a ubiquitous language, an important communication

tool between developers and domain experts containing a fundamental knowledge about

the domain.

To facilitate the modeling of complex applications, the domain is usually decomposed into

subdomains. Each one of them is responsible for a separate business capability. These

subdomains are then mapped, preferably one-to-one, to bounded contexts which describe

the solution space of the system [120]. The main idea behind defining a bounded context is

21

2. Theoretical Background

to form the explicit boundaries of a domain model, delimiting its applicability to a specific

context which helps team members to have a shared understanding of what needs to be

consistent and how it relates to other contexts.

Although the bounded context is a favored approach to design a microservices architecture,

the scopes of the services are often affected by the boundaries of an organization. This

effect is called Conway’s law which states that organizations which design systems are

constrained to produce designs which are copies of the communication structures of these

organizations".

2.3.3. Communication Types

Driven by the nature of a microservices architecture in which the services are isolated

from each other and distributed over a network, the communication with and between

microservices are becoming the most relevant gluing part to assemble the set of microser-

vices into a full application. Therefore, it is often said that microservices should have smart

endpoints and dumb pipes, meaning that the smart logic should be inside of the services

and only lightweight mechanisms and standards should be used for their communication

[41].

Communication styles are usually divided into request/response and event-based tech-

niques [95]:

• Request/response: in this technique, two services can directly communicate with

each other, where one service initiates a request to another and in return expects a

response.

• Message-based: Using message-based communication, a communication partner

creates a message which is then sent to a Message Oriented Middleware (MOM)

which forwards the message asynchronously to one or more receivers. Receivers

typically register themself in a MOM for receiving messages from certain types of

message queues.

• Event-based: this is a special form of message-based communication where the sent

message corresponds to events, where one service or producer communicates an

event as a message to a MOM and all services that have subscribed to the event type

as message type will receive the message.

Typically request/response based communication will be instrumented by a microservice

application for directly invoking a certain business functionality provided by a service, e.g.

a user interface uses the business capability of a certain background service. It can also be

used when one service has to use the business functionality provided by another service.

For implementing such request/response interfaces, nowadays often REST-based com-

munication interfaces are used which are very “lightweight”. Asynchronous event-based

communication is often used in a microservice architecture to synchronize state or more

generic data between several microservices. The event-based MOM framework therefore

22

2.3. Microservices

often also implements coordination algorithms for performing necessary coordination

between the distributed instances of the microservices.

2.3.4. REpresentational State Transfer (REST)

To implement the request/response communication style, microservices follow the REST

(REpresentational State Transfer) principles, a protocol-agnostic architectural style that

commonly uses HTTP as a communication protocol. The term REST was first coined by

Fielding et al. in [46] and is made up of the following 6 constraints.

1. Client-server: to improve the portability of the client i.e. user interface and scalability

of the server entities, the client and server should be separated. This constraint

enables the independent involvement of both.

2. Stateless: this constraint affects the communication between the client and server

and declares that it should be stateless, meaning that the client requests to the server

must contain all necessary information.

3. Cache: improving the network efficiency by requiring data within a response to be

labeled as cacheable or non-cacheable.

4. Uniform interface: this constraint emphasizes the importance of a uniform interface

between components. To obtain it, a variety of interface constraints are defined

e.g. identification of resources, manipulation of resources through representations,

self-descriptive messages and hypermedia as the engine of application state.

5. Layered system: to reduce the complexity of an overall system, hierarchical layers

should be implemented which constrict the components’ behavior.

6. Code-on-demand: this is an optional constraint that allows client functionality to be

extended by downloading and executing code in form of applets or scripts.

As already said, REST-based communication interfaces (also called REST-APIs), will be

typically implemented using web technology and therefore HTTP(s) as request/response

protocol. URL patterns together with HTTP header fields and optionally a HTTP payload

define a request to a web server hosting the service which typically returns a HTTP

response consisting of a status code, HTTP header fields and a payload in an adequate

Multipurpose Internet Mail Extensions (MIME) format [136]. The payload of a response or

a request has often a machine and human readable structure which is often technically

implemented by using an application specific JSON or XML format. The usage of such

a communication interface requires only a small framework for performing HTTP calls

and creating, interpreting and manipulating JSON and/or XML, and is therefore very

lightweight. Such REST frameworks exist for all common generic computer languages and

REST API’s are typically designed so that they are completely independent from the under-

lying operating system and hardware environment. This makes REST services accessible

from any platform with any language and this makes REST services ubiquitous.

23

2. Theoretical Background

2.4. Time Series Datasets

A time series is defined as a sequence of values (univariate) or data tuples (multivariate)

which is indexed and ordered by points in time (often described by a timestamp), which

typically correspond to observations (measurements) made at that point in time. Time

series are used for a wide range of application scenarios, such as energy, weather and

finance. In this thesis different time series datasets are used to evaluate the proposed meta

learning concepts for the ML use case “forecasting of time series” and obtain the desired

results. Therefore, several sets of time series data will be used which will be described in

the following subsection.

2.4.1. ENerGO+

The ENerGO+ software system was set up at the KIT Campus North, the former Karlsruhe

Research Center and now a Helmholtz research center, as central measuring system which

records the consumption of Energy by the KIT institutes at Campus North. The datasets

collected in this system contain time series for the energy consumption of building parts

or technical plants for electricity, gas, thermal energy from the district heating system and

water.

All time series consumption data gathered between 01- 01-2006 and 06-08-2018 available

through web-based user interface ENerGO+ were extracted. About 70 GB of raw data

used in this thesis for evaluation was provided in CSV format which contains a variety of

different measurements. For providing a interpretation context for each dataset, a metadata

file was provided with additional information about each measuring station and the type

of consumption data contained in the time series:

• Stdid: unique identifier of measurement time series.

• Anlage: identifier of the building the measuring station is located in.

• Teilanlage: sub-division of the building or a single technical plant.

• Medium: Indicates what is measured. For example electricity, gas or water.

• Erfassungsart: Type of acquisition: manual or auto.

• Bm_zw_ausgang einheit: Unit of measured medium. For example kWh for electricity

or m3 for water flow

For the evaluations in this thesis, only electricity consumption is of interest, so all other

measurements were discarded. Because equidistant measurements are easier to handle

for forecasting, only electricity meters with equidistant auto-acquisition of data were

considered. Each electricity meter at the Campus is configured to provide energy con-

sumption data every 15 minutes. From the 2125 time series all but 761 were discarded in

this pre-selection phase. To further exclude unusable time series, a deeper analysis of the

actual data was required. We decided to not use time series data with a time span of less

24

2.4. Time Series Datasets

than one year, which also lead to a few discarded short time series. Some time series also

contained large gaps (maybe, because some meters were defect over a longer period in

time) which is also problematic. This led to the decision to discard all time series with

gaps greater than two weeks. Additionally, we decided to only use time series with less

than 2% of the data missing, therefore a few more time series had to be discarded as the

pre-processing of the data progressed. Finally, to enhance the quality of the data even

further - depending on the evaluation use case - several automatic quality enhancement

procedures e.g. interpolation missing data points were performed prior to the evaluation.

200 time series datasets are resulting from these filtering steps. Further details about these

will be provided later in this work in the corresponding evaluation chapters.

2.4.2. Ausgrid Solar Home Electricity Data

A further dataset used for some evaluations was the Ausgrid Solar Home Electricity Data

Set. This time series dataset provided by the state-owned Australian energy provider

Ausgrid
1
. It offers time series observations for 300 solar customers with installed PV

systems. All time series extracted from this dataset with time samples n= 1, . . . , N have a

temporal resolution of 30 minutes and contain measurements from 01-06-2010 to 30-07-

2013.

For each customer three readings categories were recorded at half-hourly intervals:

• GC: General Consumption.

• CL: Controlled Load Consumption.

• GG: Gross Generation.

Additionally, for every customer the generator capacity of the installed solar systems was

recorded in Kilowatt Peak (kWp). In this work we used only GG.

2.4.3. Weather Time Series Dataset

For the evaluation scenarios using the generation data from the Ausgrid Solar Home

Electricity dataset, also corresponding weather data was important. A corresponding

time series weather dataset is provided by the Bureau of Meteorology of the Australian

Government
2
. The measurements were carried out at a weather station in the city of

Sydney, which lies in the same area where the houses for capturing the time series dataset

explained in 2.4.2 were located. The weather dataset contains observations for the same

time frame as the power generation time series dataset from section 2.4.2. Namely, day-

to-day observations for evapotranspiration, maximum and minimum relative humidity,

maximum and minimum temperature, precipitation and solar radiation are provided.

1
https://www.ausgrid.com.au/

2
http://www.bom.gov.au/

25

3. Related Work

A variety of learning algorithms, methods and approaches are already offered for applying

MLmodels to different use cases whereby the selection and adaptation of a good performing

model is still a complex, long lasting and error prone process [166]. To simplify the usage

of ML, the ML community therefore also developed powerful techniques, frameworks

and tools to make the usage of ML more accessible to end users. In this chapter, several

research projects with the main goal of supporting users in performing ML tasks in Big

Data environments are presented. Section 3.1 summarizes a group of research projects

for facilitating and managing ML tasks. These projects are mainly categorized into data

analysis and ML workflow management frameworks. Section 3.2 covers another group of

research projects using meta learning to help the user in finding an adequate model for

a given ML task. This section introduces projects focusing on the type of meta features,

algorithms instrumented as meta learners and methodologies used to achieve the main goal

of automated model selection. In Section 3.3, state-of-the-art research projects existing in

the literature for the purpose of generating new time series datasets to augment the set of

training data are introduced.

3.1. Machine learning software and tools

The process of selecting, configuring and training a good performing ML model for a

given use case is still characterized by an iterative trial-and- error procedure where in each

iteration, the ML user discovers new essential insights into the effectiveness of certain

configuration settings on the model and thereby influencing future experiments. To aid

users to go in the right direction, many frameworks are developed which help users by

providing ML frameworks with already given configurable model implementations, or

tools for organizing and analyzing this trial-and-error approach. Such frameworks can

be categorized into data analytic and ML workflow management as well as visualization

frameworks.

3.1.1. Data analytic framework

Frameworks like Apache Spark [187] which is a data analytic framework containing a good

library for more traditional ML algorithms, or TensorFlow [110] which is dedicated to deep

learning, are low level frameworks that help data scientists in programming ML algorithms

which could then be executed on a local computer or even for better performance on a

27

3. Related Work

computing cluster. Such frameworks typically don’t provide easy-to-use user interfaces

for non-experts by themselves but there are additional (Open Source) tools (e.g. Jupiter

Notebook [73]) which provide lean web user interfaces to such frameworks for hiding

the details of the background cluster runtime environment from the user. Typically, these

interfaces are aimed towards more experienced data scientists and less towards non-expert

users who just want to apply ML algorithms.

Contrary to the tools aimed for the experienced ML programmers, there are nice User

Interface (UI)-based tools targeted to non-expert users with little to no programming

experience at all. Johanson et al. in [60] developed OceanTEA, a framework to analyze

time series datasets in a climate context. OceanTEA leverages web technology such as

microservices and a nice web UI to interactively visualize and analyze time series datasets.

It is a cloud-based software platform, consisting of a microservice back-end and a web UI,

similar to the framework implemented in this thesis. Both components communicate with

each other through an API gateway utilizing REST communication and each microservice

is deployed independently using container automation through a Docker. OceanTEA

provides four main UI interfaces for the exploration and analysis of oceanographic times

series data including functionalities of time series data management, data exploration,

spatial analysis and temporal pattern discovery.

Another project focused on the acceleration of research in energy data management and

analysis is WattDepot presented by Brewer and Johnson in [26]. This software platform

is also open source and internet-based. It supports the collection, storage, analysis and

visualization of data coming from energymeters. The architecture encompasses three types

of services, namely sensors, servers and clients. The sensors collect the data from different

energy meters and send it to the services which store the incoming data by utilizing the

provided RESTful APIs. Since the services are not coupled to a specific database, flexible

data storage options are provided. For analysis and visualization, the clients request the

data from the services in the format XML, JSON or CSV. The applications of WattDepot

include a web application for a dorm energy competition and a power grid simulation

mechanism.

However, both WattDepot and OceanTEA typically provide hard-coded dedicated ML

based analysis features which are specifically tuned towards specific application use cases

and therefore e.g. other ML tasks such as forecasting which is needed in the energy

application field are not included in them.

Shrestha et al. in [148] developed a user-friendly web application to analyze health

and education datasets. This tool also includes ML algorithms for the forecasting of

time series data. The application also has a nice and easy-to-use user interface that was

developed using human-computer interaction design guidelines and principles and targeted

at novice and intermediate users. The technologies used were Java, the Play framework

and Bootstrap. But only linear regression, logistic regression and back propagation were

utilized to perform forecasting on the input datasets. However, this framework is also not

able to solve more complex ML tasks by using Big Data analysis frameworks executable

on cluster computing environments, and it can only be used as standalone application on

a desktop computer.

28

3.1. Machine learning software and tools

Apache PredictionIO [33] is an open source ML framework for developers. Besides support-

ing the deployment of ML algorithms, Apache PredictionIO allows expert users to train

and test ML models and query results via RESTful APIs. It is built on top of state-of-the-art

scalable open source Big Data frameworks, e.g. Hadoop, HBase, Elasticsearch and Apache

Spark. The drawback here is the non-existence of an easy to use UI layer to facilitate

performing ML tasks by non-programmers.

With the increasing interest in ML, a new market called ML as a Service (MLaaS) is

existing, whereby ML functionalities like training and deploying ML models are typically

provided through web services. Ribeiro et al. [124] introduced a scalable and flexible open-

source MLaaS architecture, including a graphical user interface (GUI), for building multiple

predictive models from various data sources simultaneously. It is based on a service

component architecture and is implemented using Node.js and JSON. The architecture

was evaluated by implementing three algorithms; Multi-Layer Perceptron (MLP), Support

Vector Regression (SVR), and K-Nearest Neighbors (KNN). The resulting models were

compared based on their accuracy using mean absolute errors and mean squared error

as well as their computing performance, which the GUI visualizes in addition to their

predictions. Another leading cloud-based MLaaS platforms is google cloud machine

learning engine. This platform simplify the usage of ML by abstracting away the many

challenges related to ML including making the infrastructure more affordable and scalable

[182]. The distinguishing factor compared to the framework developed in this thesis is that

these MLaaS platforms at least until now do not provide an integrated model management,

and therefore the possibility to store and retrieve ML models for future usage.

3.1.2. ML workflow management and visualization frameworks

Model and data versioning is also an important area of research that has produced systems

to manage the process of building ML models. The process of building a satisfactory ML

model by a data scientist is characterized as an iterative trial-and-error procedure, where

in each iteration the user reveals essential insights into the effectiveness of algorithm

configurations. Since the models may become numerous, it is important to keep track of

the relevant information so that the model’s performance with different configurations can

easily be tracked and analyzed. This leads to the need of an efficient model management

which encompasses the storage and retrieval of the models and related metadata (e.g.

hyperparameters, evaluation performance, etc.) in order to analyze them collectively

[166].

Multiple recent research projects have been introduced addressing model management

as a part of the ML workflow. Vartak et al. in [166] introduced ModelDB, a system for

tracking and versioning ML models in the form of pipelines. The authors argued that data

scientists are reluctant in using other environments than their favored ones, especially

those with a GUI and therefore they provide native client libraries for scikit-learn and

Spark MLlib which can be used to track and store models and related metadata. The

framework consists of a front-end and a back-end encompassing a relational database and

custom storage engine. The front-end is implemented as a web UI and supports the review,

29

3. Related Work

inspection and comparison of the tracked and indexed models and pipelines through a

tableau-based interface. In addition, the information can be explored and analyzed using

SQL. The limitations here are that ModelDB is developed as a monolithic application

making it difficult to be maintained and further developed. Moreover, ModelDB do not

provide the ability to handle problems in the context of Big Data.

Vartak et al. [165] introduced another system to analyze ML models built with scikit-learn

and Tensorflow called Mistique (Model Intermediate STore and QUery Engine). It captures,

stores, and provides the ability to query model intermediates like the input data. Mistique

is implemented in Python and consists of three main elements, being a PipelineExecutor,

a DataStore, and a ChunkReader. It utilizes a column-based schema for its DataStore

which consists of an in-memory store and a persistent store. Also, a so-called MetadataDB

exists which is a central repository for the metadata of the pipelines and intermediates.

The authors focused on efficient storage and proposed two optimization strategies for

ML pipelines. First, columns that are found to be similar or identical are compressed.

Secondly, a query cost model and a storage model were implemented to determine if a

model should be rerun or the intermediate read and if an intermediate should be stored.

Finally, the authors assessed the storage gains and speedup for ML pipelines and deep

neural networks. Furthermore, the cost models were evaluated and found to be effective.

Also the overhead of utilizing the framework was estimated by comparing the runtime

performance of different pipelines.

Schelter et al. [137] introduced a system for auditing the ML workflows of more general

model types (e.g. neural networks), including the support for dataset schema management.

The system consists of a back-end running serverless on AWS and offers REST APIs for

communication, but unlike [165] it does not include a web UI. The metadata is stored in a

document database and the system is integrated with scikit-learn, Spark MLlib and MXNet.

For decoupling purposes, the authors chose a declarative approach where artefacts of

the workflow are described by metadata and not via compiled code. Additionally, they

guaranteed consistency by applying the immutability principle meaning that items are

only recorded once.

To manage ML models and their lifecycle, MLflow is introduced in [185]. Expert users

can develop and track ML experiments as well as share and deploy ML models. MLflow is

developed as an open source software system addressing typical problems of ML workflow

management, particularly experimentation, reproducibility and deployment. MLflow

supports programming of models with Python, Java and R, and provides REST APIs

encompassing three main elements. The first one, MLflow Tracking, offers APIs for

logging experiments and supports querying the results through APIs as well as visualizing

themwith a web UI. The second component, MLfow Projects, can be used to create reusable

software environments for reproducibility and is configured through YAML files. The last

item, MLfow Models, provides the functionality to package ML models in a generic format

and deploy them. Those models incorporate similarly to MLflow Projects a YAML file

which contains the metadata of the model.

To address the issue of model deployment, a variety of frameworks and tools are developed.

Tensorflow serving [106] provides a flexible and powerful system for serving tensorflow

30

3.2. Meta learning for energy time series model selection

models on google’s cloud platform. It allows expert users to achieve an efficient integration

of tensorflow models in production environments. Kubeflow [23] is a cloud platform for

ML built on top of google’s internal ML pipelines. It provides expert users with a lot

of functionalities including notebooks for training and serving tensorflow models. H2O

Flow [27] is another efficient framework for creating and managing ML and deep learning

workflows including training and testing models. This framework supports Python, R and

scala on top of Hadoop/Yarn and Apache Spark.

3.2. Meta learning for energy time series model selection

To select ML models following the well-known trial-and-error approach, the relevant

configurations of different learning algorithms are changed and tested until a model with

good performance is found. Consequently and due to the large number of available ML

algorithms and their relevant hyperparameters, this process is becoming more complex and

even difficult for non-expert users. To tackle this challenge, meta learning approaches have

been proposed [164][70][163][171]. The main aim of meta learning is to find indicators that

map datasets to the best suitable algorithm for performing a certain task (e.g. forecasting).

To this end, meta learning uses a set of attributes, referred to as meta features, to capture

the characteristics of the data mining task and searches for the correlation between these

features and the best machine learning algorithm for performing a given task.

While several studies have investigated the use of meta learning to select the most appro-

priate model, the majority of them studied the selection of classification algorithms, e.g.

[70][122][127][128][45][175][132][74][191][85][123], to name a few. With the growing

popularity of regression, the first use of meta learning in the context of time series was by

Ludmir et. al. in [118] who proposed an approach for time series model selection. Two

case studies have been investigated in their work. In the first one, the authors used a single

machine learning algorithm to select models for forecasting stationary time series. In the

second one, the well-known NOEMON approach [63] to select time series models for the

M3-competition has been used. As meta features, a set of 10 meta features including simple,

statistics and time series meta features are extracted to describe time series datasets.

In [98], Wang et. al. proposed a meta learning framework for recommending the most

appropriate forecasting method from 4 different candidates, namely random walk, expo-

nential smoothing, neural networks and ARIMA. As meta features used to characterize

time series datasets, serial correlation, kurtosis, strength of trend, nonlinearity, strength

of seasonality, skewness, periodicity, self-similarity and chaos are extracted. A decision

tree algorithm has been used as a meta learner to recommend one of the aforementioned

candidates for an input time series dataset based on its characteristics.

The same group of meta features has been later used by Widodo in [172]. The difference

is that the author tried to reduce the time series dimensionality by applying Principal

Component Analysis (PCA). Kück et. al. in [76] used feedforward neural networks as a

meta learner to select the best time series forecasting model for 78 time series from the

31

3. Related Work

NN3 competition. As algorithm candidates, single, seasonal, seasonal-trend and trend

exponential smoothingwere used. To characterize time series datasets, error-based features

(landmarkers) and statistical tests were used as time series meta features.

To achieve the main goal of meta learning in finding the mapping between meta features

and the learning algorithm, different algorithms as well as approaches have been proposed

as meta learners in literature. On the one hand, some of them used statistical methods to

induce meta learners [138][93]. On the other hand, neural networks, decision trees and

other computational intelligence methods [118][98][168] are used as meta learners. In

the cited scientific works, different categories of meta features such as simple, statistical,

time series, model-based and landmarking are utilized. A good overview summarizing

the state-of-the-art of meta learning approaches applied for time series forecasting can be

found in [151]. However, it is noticeable that although a large number of scientific papers

address the topic of meta learning, only a few are dedicated to take the advantage of it in

the case of energy forecasting.

Building Energy Model Recommendation System (BEMR), a meta learning based frame-

work to recommend themost appropriate forecasting algorithm for building energy profiles

based on building characteristics, is proposed by Cui et.al. [38]. As meta features, physical

features of the building combined with statistical and time series meta features extracted

from the operational and energy consumption data of the building were used for con-

structing efficient meta examples to be used by the meta learner. While the algorithm

selection is fully automatic, this approach has the disadvantage that the meta feature set

uses some physical construction properties that are often not available in praxis due to

privacy issues.

In the following, some meta learning approaches developed as frameworks with wizard

are discussed. A parallelized, component-based, modular and easily extendable meta

learning system for univariate and multivariate time series load forecasting is described

in [91]. Here, Matijaš et. al. built an ensemble of euclidean distance, CART decision

tree, LVQ network, MLP, AutoMLP, e-SVM and Gaussian Process (GP) algorithms to find

the association between the meta features and the forecasting performance. Minimum,

maximum, Standard Deviation (SD), skewness, length, periodicity, highest ACF, traversity,

kurtosis, granularity, exogenous, periodicity, trend and fickleness are considered as meta

features. These features were weighted with the Relief feature ranking method [153]

before being utilized by the ensemble-based meta learner.

Auto-WEKA [158] is a framework for automatically selecting classifiers and hyperparame-

ters implemented in WEKA. In the updated version Auto-WEKA 2.0 [75], the selection

of the best regression algorithm is provided. To solve the Algorithm selection and hy-

perparameter optimization (CASH), bayesian optimization is utilized. Due to the large

number of hyperparameters that can be tested while building ML models, such hyperpa-

rameters are structured as trees or as Directed Acyclic Graph (DAG). In the evaluation,

two Sequential Model-Based Optimization (SMBO) algorithms, namely Sequential Model

Based Algorithm Configuration (SMAC) and Tree-structured Parzen Estimator (TPE) are

used. As a baseline for the evaluation, the authors also used two algorithms which do not

perform hyperparameter optimization but only algorithm selection: exhaustive evaluation

32

3.2. Meta learning for energy time series model selection

and Hoeffding race. WEKA provides 47 classification algorithms grouped into 30 base

classifiers, 14 meta methods and 3 ensemble classifiers. The authors used 10 benchmark

datasets obtained from the UCI repository for evaluation. Each dataset was partitioned

into a 70/30 train/test random split and the hyper-parameter configurations were evaluated

based on standard 10-fold cross validation. As a result, the SMAC algorithm as a Bayesian

optimization method performed best.

The same principles of Auto-WEKA are used in Auto-Sklearn [45] which is a a meta

learning framework based on scikitlearn. To solve the Combined Algorithm Selection

and Hyperparameter optimization (CASH) problem, they built on the research from Auto-

WEKA and used the same Sequential Model based Algorithm Configuration (SMAC)

algorithm as Bayesian optimizer for hyperparameter tuning. To further improve the

results and increase the accuracy and robustness of the framework, Feurer et. al proposed

a meta learning approach to suggest some models which in turn are used as seed for the

optimization process. In an offline phase, they collected meta features and performance

data of 140 datasets from the OpenML repository, which is used to find the candidate

models for new datasets. The implemented 38 meta features include simple, information

theoretic and statistical features, but do not include landmarking meta features as they are

too computationally expensive to calculate. Performance evaluation was done using the

available 15 classification algorithms from scikit-learn.

As a benchmark evaluation, Auto-Sklearn is compared to Auto-WEKA which resulted in a

significantly better performance in some cases and a comparable performance in most of

the other cases. They also performed different experiments to evaluate the meta learning

and ensemble-generating approach which showed that both methods lead to a better

performance than vanilla Auto-Sklearn. The drawback in Auto-WEKA and Auto-Sklearn

is that they are implemented as monolithic applications which limit the scalability and

increase the difficulty of maintenance. Moreover, they did not provide the possibility to

handle model selection for large amounts of data.

Another meta learning framework developed with the R language is SmartML [87]. It is

implemented as a web application with REST APIs. SmartML can recommend a classifica-

tion algorithm including hyperparameter tuning based on a total of 25 meta features. The

limitation here is also that SmartML does not support the usage of Big Data ML frameworks

for large scale processing on computing clusters. In contrast to the aforementioned works,

the meta learning framework presented in Chapter 7 is developed as a microservice archi-

tecture runnable on a cluster computing platform to increase the scalability and facilitate

maintainability. Moreover, it utilizes powerful Big Data ML frameworks to perform model

selection in cluster computing environments.

To the best of our knowledge, all meta features used in meta learning for energy can be

subcategorized into simple, statistical, time series and domain-based meta features. Simple

meta features can be directly derived from time series datasets, e.g. the number of samples

and the number of attributes. Statistical meta features capture the statistical properties of

time series datasets such as cor and skewness, to name a few. Time series meta features

introduce in-depth insight into the characteristics of time series datasets, such as acf_-

features, pacf_features, arch_stat, crossing_points, heterogeneity, hurst, max_kl_shift as

33

3. Related Work

explained in [82]. Domain-based meta features, as its name implies, are derived from

the domain, in which the time series readings are collected, for example, the physical

characteristics of the buildings [38].

3.3. Generating new time series datasets

In this section, we cover some of the related work for generating new artificial time series

datasets. Talagala et al. [156] used a model-based time series generation technique to

increase the size of the original time series training dataset. Autoregressive integrated

moving average (ARIMA) and Exponential Smoothing (ETS) models were trained for every

time series and then a number of new time series were generated with each of these

models via simulation. To visualize the characteristics of the time series and compare the

distribution of the generated time series with the distribution of the original ones in the

meta feature space, Principal Components Analysis (PCA) is used. As a result, they found

that the new simulated time series increased the diversity and evenness of the dataset in

the meta feature space.

Another method for generating synthetic time series was proposed in [47]. This method is

based on differently averaging a set of time series from the same predefined class. The

averaged time series are then treated as new synthetic time series. The weights of the time

series for the average can be varied, making it possible to create many new time series

datasets. For calculating the average of a time series dataset, three different methods based

on DTW Barycentric Averaging (DBA) are proposed. The three methods are called average

all, average selected and average selected with distance. Each one of them distributes

the weights differently. Using the average selected with distance method, they doubled

the number of time series in each class for every dataset in the University of California

Riverside (UCR) archive. In an evaluation study on 85 datasets, they showed that the

augmentation increased the accuracy of a 1-NN DTW classifier on 56 datasets on average

of 3.81%, decreased the accuracy on 22 datasets on average of -1.72% and didn’t change the

accuracy on 7 datasets. Using the Wilcoxon signed rank test, they found that the increase

in accuracy was statistically significant at the 0.001 level.

A genetic algorithm for generating new time series based on user-defined meta features

is proposed by Reif et. al in [121]. The generation process involves the minimization of

the cost function 𝑓 (𝑥) where x is the meta feature vector of the current time series. The

genetic algorithm mutates the time series by shifting data points and recombining them

by swapping fractions of them. Note that this algorithm gives the user more control over

meta feature combinations than the algorithm described in [65], where only time series

with meta feature vectors on a 2-dimensional Principal Component (PC) space can be

targeted.

To learn the probability distribution of a real smart grid dataset and then to generate

synthetic time series, a Generative Adversarial Network (GAN) is used in [188]. The goal

is to make the newly generated time series datasets statistically in-differentiable from the

34

3.3. Generating new time series datasets

original ones. To train GAN, the authors used energy consumption and solar generation

records from 93 different users. To assess the similarity between the newly generated time

series datasets and the original time series, Maximum Mean Discrepancy and Dynamic

Time Warping (DTW) based k-means clustering as well as Short-term Load Forecasting

(STLF) forecasting errors of ARIMA models are used. The proposed approach was able

to learn the conditional probability distribution of input features and new samples are

produced based on the learned distribution.

In [64], Kang et al. proposed GeneRAting Time Series with Diverse and Controllable Char-

acteristics (GRATIS), a new approach to generate time series with diverse characteristics by

using Gaussian Mixture Autoregressive models (MAR). This approach is able to simulate

multi-seasonal time series. They showed this by simulating the half-hourly electricity

demand based on an original time series. In contrast to [65], they used a genetic algorithm

to tune the parameters of a MAR model so that the time series which are generated by

the MAR model gets closer to the target meta feature vector, instead of changing the time

series itself in a space whose dimensionality is equal to the length of the time series.

3.3.1. Summary

In this chapter, we gave a detailed overview of the state-of-the-art research projects related

to our work. We started in Section 3.1 by briefly presenting a group of ML software

tools aimed at facilitating and managing performing ML tasks. Many ML libraries (e.g.

scikit-learn [113], R [157], Spark MLlib [94]) provide the ability of training ML models,

but they require the user to have an understanding about the algorithm and are targeted

to expert users. However, making ML more accessible to a broader group has become

an active research topic, which can be explained by the increased interest in ML by non-

than expert users. Table 3.1 summarizes the aforementioned state-of-the-art solutions

presented in Section 3.1 highlighting their properties and differentiating them from the

solution presented in this thesis.

As seen in this table, none of the frameworks and tools presented in Section 3.1 perform

automatedmodel selection ofMLmodels. Some of them support non-expert users (category

2A) presented in Table 1.1, for example OceanTea, WattDepot and ML Flow. However,

the other category of non-expert users, namely 2B, still represents a challenge that needs

to be faced. Some of the frameworks also do not support or hide the high complexity

related to the configurations of big data environments which is another challenge for users

that needs to be faced. Retrieving ML models to be used in production for other tasks

without the need to build a new model for a new task is only supported by a few existing

frameworks, namely Apache PredictionIO, ModelDB, Mistique and tensorflow serving.

Caching of input data has the advantage of accelerating performing ML tasks, but it is also

not supported in all of the frameworks presented in Table 3.1.

The challenge of processing large amounts of data in terms of execution time and overhead

is tackled by using Big Data tools and a parallel distributed environment. However, such

solutions are also only existing in a few of frameworks and summarized in Section 3.1.

35

3. Related Work

Table 3.1.: Comparison of the data analytic and ML workflow management frameworks in related work to

our framework.

Fram
ewo

rk

Eas
y-to

-use WebU
I

Micro
serv

ice
Arc

hite
ctur

e

Sup
por

t Big
Dat

a

Hide Big
Dat

a Com
plex

ity

Non
-exp

ert

Mode
l Mana

gem
ent &Ret

reiv
al

Cac
hin

g

Gen
eric

Dist
ribu

ted Pro
cess

ing

Aut
omated Mode

l Sele
ctio

n

A
p
a
c
h
e
S
p
a
r
k
[
1
8
7
]

-
-

+
-

-
-

-
+

+
-

T
e
s
o
r
fl
o
w
[
1
1
0
]

-
-

+
-

-
-

-
+

+
-

J
u
p
i
t
e
r

N
o
t
e
b
o
o
k
[
7
3
]

-
-

+
-

-
-

-
+

+
-

O
c
e
a
n
T
E
A
[
6
0
]

+
+

-
-

2
A

-
-

-
-

-

W
a
t
t
D
e
p
o
t
[
2
6
]

+
+

-
-

2
A

-
-

-
-

-

A
p
a
c
h
e

P
r
e
d
i
c
t
i
o
n
I
O
[
3
3
]

-
+

+
-

-
+

-
+

+
-

M
i
c
r
o
s
o
f
t
A
z
u
r
e
[
3
6
]

+
+

+
-

2
A

-
-

+
+

-

M
o
d
e
lD
B
[
1
6
6
]

+
-

-
-

2
A

+
-

+
+

-

M
i
s
t
i
q
u
e
[
1
6
5
]

+
-

-
-

2
A

+
-

+
-

-

M
L
fl
o
w
[
1
8
5
]

-
-

-
-

-
+

-
+

+
-

T
e
n
s
o
r
fl
o
w

s
e
r
v
i
n
g
[
1
0
6
]

-
-

-
-

-
+

-
+

+
-

K
u
b
e
F
lo
w
[
2
3
]

-
-

+
-

-
-

-
+

+
-

H
2
O
F
lo
w
[
2
7
]

-
-

-
-

-
+

-
+

+
-

O
ur

Co
nt
ri
bu

tio
n

+
+

+
+

2A
+
2B

+
+

+
+

+

36

3.3. Generating new time series datasets

A microservice-based architecture that has the main advantages of high scalability and

easy maintainability of software solutions is found only in OceanTea, WattDepot, Apache

PredictionIO and microsoft azure [36]. The other research projects presented in Table

3.1 are developed as monolithic solutions which make it difficult to scale and require the

redeployment of the whole application when fixing bugs. While some of the discussed

frameworks are developed as data analytics ones, the others are considered more as

ML workflow management and visualization frameworks. None of them combined both

categories in one conceptual framework to introduce more functionalities to the end users

and facilitate performing ML tasks.

In this thesis, we tackle all of these challenges highlighting the novelty of our work by

developing a conceptual microservice-based meta learning framework. The distinguishing

factor of our conceptual framework lies in the fact that our framework combines all the

advantages presented in Table 3.1 in one conceptual solution :

• Model managements: the framework implemented in this thesis tracks and stores

the ML model and captures relevant metadata automatically for the user.

• It supports distributed processing, performing big data tasks and hides the low level

high complex configurations of big data environments for the users.

• Supporting both categories of non-expert users by introducing highly configurable

easy-to-use UI in which the user easily can manage and launch ML tasks on the

cluster and by automating the process of selecting ML models.

• Storing and retrieving ML models to be used later for further tasks.

• Caching of input data to increase the efficiency in performing ML tasks in big data

environments.

• The framework developed in this thesis is developed to be generic and able to handle

a variety of ML tasks. However, energy load and generation forecasting scenarios

are considered in the evaluation as will be seen later in this thesis.

• It combines both categories of software solutions namely, data analytics and ML

workflow management and visualization frameworks in one microservice-based

concept. This concept has the advantage of allowing plugging in several machine

learning and deep learning runtime environments for future enhancements.

In order to support non-expert users category 2B in selecting the most appropriate ML

model for a specific task, meta learning has been proposed to automate the process of

model selection. State-of-the-art research projects in the field of meta learning to solve

ASP are presented in Section 3.2. While some of them are proposed as concepts, the others

are developed as framework solutions to select the best ML model without following the

well-known trial-and-error approach.

Concerning meta learning concepts, a variety of meta features are extracted, namely

simple, statistical, information-theoretic and landmarking as presented in Section 3.2. In

terms of energy, for example, to solve ASP for a building, time series for building profiles

besides the physical properties of the building are used as seen in [38]. The limitation of

37

3. Related Work

this approach is related to privacy that leads to the non-availability of such properties in

many applications situations. However, employing statistical properties as meta features is

not new. Rossi et.al. in [131] used average, variance, minimum, maximum and median as

meta features to develop a meta learning based method for periodic algorithm selection in

time-changing data. The distinguishing factor in our thesis is that we extend the statistical

meta features introduced in [131] to include more fine-grained as well as coarse-grained

statistics in addition to the arithmetic mean asmeta features known as Descriptive Statistics

Time-based Meta Features (DSTMF) (see Chapter 5).

Our new set of meta features characterize energy time series datasets without having

security as well as privacy issues. Better predictive performance is acquired by DSTMF

compared to the cases existing in the literature. Another advantage and distinguishing

factor of DSTMF lies in the complexity of extracting such meta features, whereby DSTMF

introduces a smaller extraction time as well as overhead compared to the other meta

features when they are extracted for a large amount of energy time series datasets.

To the best of our knowledge and as seen in all of the research projects presented in Section

3.2, there is no application of deep learning in the context of meta learning related to

energy scenarios. It is clearly seen that only the original representation of meta features is

utilized to describe time series datasets. In this thesis, we use unsupervised deep learning

to encode the extracted meta features which can be seen as another novelty factor of our

solution distinguishing it from the ones existing in the literature. To achieve that, we

leverage the advantage of autoencoders to gain a deeper insight into the characteristics of

time series datasets by encoding meta features into another more efficient representation

form.

Concerning meta learning frameworks, such as Auto-WEKA, Auto-Sklearn, SmartML,

most of them are developed as monolithic applications to select the best model in the

context of classification. None of them is dedicated to perform automated model selection

in the context of regression, for example, for energy load as well as generation forecasting.

Moreover, they do not support ASP in big data environments. These challenges are tackled

in our solution by presenting a microservice-based meta learning framework in Chapter 8.

The distinguishing factor of our framework lies in the fact that it is built on top of a big

data stack allowing it to perform automated model selection for large amounts of energy

time series datasets. Another advantage of our solution over the existing ones presented in

Section 3.1 lies in the utilization of a microservice architecture to achieve better scalability

and maintainability.

Driven by the main definition of meta learning in which a meta learning problem is

considered as a multi-class classification one, the size of the training sample on which the

meta learner is trained, highly affects the predictive performance of the meta learning

model. To enhance the predictive performance of multi-class classification problems by

increasing the size of training examples, many solutions are proposed in the literature as

seen in Section 3.3. While some of them generated new time series datasets by following

model-based approaches in which new time series datasets are simulated, the others used

genetic approaches to generate new training examples that are efficient and statistically

in-differentiable from the original ones. The limitations of such approaches lies in the

38

3.3. Generating new time series datasets

complexity of building the models required to generate the new time series datasets. Also,

such approaches often don’t widen the diversity of the datasets because e.g. a model based

approach follows a certain model which limits the diversity of the generated datasets if

the model doesn’t address all possible variations which are possible in real situations.

In this thesis, we propose two new approaches to generate new energy time series datasets.

The aggregation of energy time series datasets has the advantages not only in DSTMF, but

also it is proposed as a new approach to generate new energy time series datasets. Weather

datasets are also used in our approach to generate new time series datasets based on the

conditions of weather in the area in which time series datasets are collected. Beside the

simplicity in calculation, our new approaches outperform model-based ones existing in

the literature whereby the meta learning classification model introduced better predictive

performance compared to the case of model-based approach as will be seen in Chapter

6.

39

4. Enhancing the Applicability of the
Trial-and-Error Approach in Big Data
Environments

Over the last decade, a variety of powerful algorithms and approaches for modeling and

decision making from data are provided in Machine Learning (ML). Implementing a ML

model is a complex, long lasting and error prone process whereby a large number of

hyperparameter configurations need to be tried to find the best ML model. With the

revolution of Big Data, where a large amount of data is generated and gathered each

day, various software solutions are proposed to perform ML tasks, such as Apache Spark

and Hadoop. Such solutions have the disadvantages of high complexity regarding the

configurations of the underlying backends. Driven by that, the ML tasks are even harder

to be performed by non-expert users.

In this chapter, we present our solution for supporting non-expert userswithML knowledge

but without programming skills (category 2A, see Chapter 1) in performing ML tasks in Big

Data environments. We start in Section 4.1 by clarifying the problem statement including

motivations, challenges we aim to face and the scientific question we need to answer in this

chapter. In this section, we precisely define the target group of non-expert users that are

supported in our solution. In Section 4.2.1, we present our conceptual microservice-based

architecture proposed to support non-expert users in performing ML tasks in Big Data

environments. After that, the main execution workflow required to understand the main

functionalities of our framework is explained.

We evaluate our work in Section 4.3 from four points of view. In the first one, the effect of

chaching on the execution performance of our big data engine, namely Apache Spark is

Parts of this chapter are reproduced from:

• S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2019). “Facilitating

andManagingMachine Learning and Data Analysis Tasks in Big Data Environments UsingWeb and

Microservice Technologies”. In: Proceedings of the 11th International Conference on Management

of Digital EcoSystems, pp. 80–87. doi: 10.1145/3297662.3365807.

• S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Facilitating

and Managing Machine Learning and Data Analysis Tasks in Big Data Environments Using Web

and Microservice Technologies”. In: Transactions on Large-Scale Data- and Knowledge-Centered

Systems XLV: Special Issue on Data Management and Knowledge Extraction in Digital Ecosystems,

pp. 132–171. doi: 10.1007/978-3-662-62308-4_6.

41

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

investigated. The major advantage of our framework in storing the pre-trained ML model

to be used later for new tasks is evaluated in terms of time. Thereafter, the efficiency of

our microservice-based framework in terms of overhead is also evaluated for different

sizes of energy time series datasets. To precisely define the best practice in using our

framework, we define and evaluate the required thresholds and conditions, at which it

is highly recommended to use big data environments in favor of single computers for

performing a given ML task. The research contributions presented in this chapter were

the main topics of our papers in [141][142].

4.1. Problem Statement

Besides the advantage of ML in solving many complex business problems, there are also

some downsides. It is a time-consuming process for the user to apply ML according to

the well-known trial-and-error approach whereby a lot of model hyperparameters need

to be configured to achieve the best performance. Such an approach is based on the idea

that all possible combinations of learning algorithms with their relevant parameters are

tried for each task until a good solution is found. Consequently, it wastes the resources

for constructing multiple models which can take a long time especially in the context of

Big Data.

In order to build an ML model, several steps including data preprocessing, splitting the

data into training and test data, model training and model testing are required. Such

process is more difficult in the context of Big Data where a large amount of data need to

be processed. With the increasing amount of available data, various libraries and systems

have been introduced to enable large-scale distributed/parallel processing. One of the

best known open-source frameworks is Apache Spark [187], Hadoop Distributed File

System (HDFS) [149] and Yet Another Resource Negotiator (YARN) [167], to name a few.

Apache Spark supports Big Data processing and storage in a distributed environment. It

encompasses various components including a distributed file system, the data processing

tool MapReduce and a cluster resource manager. HDFS enables the reliable storage of

extensive files in a cluster. It provides fault tolerance by splitting the files into blocks

and replicating these blocks multiple times over the cluster. YARN is a technology that

decouples the application and the required computational resources (e.g. CPUs, RAM, etc.)

for processing from the resource management infrastructure of the cluster. Besides the

advantages of such technologies, they do have some drawbacks for non-expert users. It will

be difficult or even impossible for them to execute ML tasks in Big Data environments. This

is due to the lack of experience needed to set up such tasks, and the required configurations

to successfully submit and execute jobs in Big Data environments.

In this chapter, we answer the research question RQ1 presented in Section 1.2. We sup-

ported non-expert users category 2A presented in Table 1.1 in performing ML tasks in

Big Data environments. We developed a new microservice-based solution helping the

aforementioned non-expert users to solve ML problems in Big Data environments without

caring too much about technical issues of the underlying Big Data and cluster computing

42

4.2. Proposed Solution

environment as a runtime platform. Our solution facilitates training, testing, managing,

storing and retrieving ML models. It is provided with an easy-to-use highly configurable

UI in which the model and the required hyperparameter can be set.

To evaluate our concept, the short-term (hourly) power generation forecasting scenario

is taken into consideration. In the following sections, the conceptual architecture of the

proposed framework, the execution workflow, evaluation and the experimental results are

explained in detail.

4.2. Proposed Solution

In this section, we present our conceptual microservice-based architecture proposed to

answer the aforementioned research question RQ1. To this end, we clarify in detail the

layers, the microservices and the communication between them to achieve the main

goal of our framework. For better understanding of the functionalities of the different

layers involved in our microservice-based framework, the general execution workflow is

presented and explained in detail in Section 4.2.2.

4.2.1. Conceptual Microservice-Based Architecture

Figure 4.1 illustrates the conceptual architecture of the presented framework. As seen in

this figure, the architecture consists of three main layers, namely the UI layer, service layer

and persistence and processing layer. The UI is split into separate sub-parts (e.g. separate

web applications) providing dedicated functionalities for data and model management,

model training and cluster management which are wrapped into one logical web applica-

tion forming the UI of the application. Two microservices are incorporated together to

perform the service layer. Each service is a small and self-contained application that can

be deployed independently e.g. on the runtime cluster with a single responsibility. While

one service is responsible for data and model management, where models can be seen as

special data objects, the other service focuses on the management of running ML jobs e.g.

for training and testing.

To allow web applications in the UI layer to interact with the runtime environment,

the services provide RESTful APIs. The persistence and processing layer provides the

basic model and data storage capabilities according to the underlying runtime computer

infrastructure. Moreover it provides generic interfaces for running and managing ML jobs

on this infrastructure independent of the used low level ML framework.

4.2.1.1. User Interface (UI) Layer

As seen in the architecture presented in Figure 4.1, the User Interface (UI) layer consists

of separate web applications providing the dedicated functionalities of the framework.

43

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Institut für Angewandte Informatik (IAI)

IT-Methoden und -Komponenten für Energiesysteme (IT4ES)

5

Jobs

Execution

UI

Service Data Management

Service

Data-analytics-job-

coordination Service Data-analytics-job-

coordination Service Job Management

Service

DB

UI Layer

Service

Layer

Persistence

and

Processing

Layer

Model

Management

UI

Data

Management

UI

Cluster

Configuration

UI

Big Data Environment

Machine Learning Engine Deep Learning Engine

Spark/MLlib Tensorflow

Figure 4.1.: Basic architecture of the proposed microservice-based framework [141][142].

These applications interact with the service layer via RESTful APIs and are wrapped into a

container application which provides navigation between the views to form the complete

UI. To make the user experience of the UI as pleasant as possible, the famous 10 Usability

Heuristics for UI Design by Nielsen [102][103][57] are applied while conceptualizing and

implementing the UI. Multiple technologies including HTML5, CSS and React are utilized

to implement the UI. React [152], the JavaScript (JS) library from facebook, is chosen

because it simplifies the development of complex user interfaces. Its good performance

can be attributed to its use of a virtual Document Object Model(DOM) which is a copy

of the HTML DOM and enables efficient rendering updates of the otherwise slow HTML

DOM. React is based on declarative programming and the concept of encapsulating and

reusing of components. Such components are implemented through a specific syntax

called JavaScript Syntax Extension (JSX) which is a combination of HTML and JS code.

In this UI, Node Package Manager (NPM) is used to simplify the configuration of the build

tools and the setup of React application. For better data management and to organize the

side effects related to asynchronous RESTful API calls, Redux and redux-saga are used

[21]. To distinguish different functions and to provide good navigability on the website,

React Router is utilized. For implementing a responsive and nice web design, the popular

framework React Bootstrap [154] which provides easy to use pre-styled components is

utilized.

A recent trend in web development has been to develop web UIs as Single Page Applications

(SPAs) [96]. Essentially, SPAs are front-end applications that consist of a single HTML

document that can be dynamically updated through JavaScript (JS). This makes it possible

to refresh only particular regions of the screen instead of reloading the whole page when

changes take place. This is especially convenient in interactive web pages, since these

applications can respond much faster to user input and therefore provide better user

44

4.2. Proposed Solution

experience. Additionally, the number of requests between the SPAs and services is often

dramatically decreased, since much of the logic can be implemented in the front-end. For

these reasons, the web UI is implemented as an SPA communicating with the service tier

through HTTP requests using the RESTful APIs. In the current version of the concept,

the UI contains separate web applications for “data management”, “model management”,

“execution of jobs” (e.g. for training and testing) and “cluster management”. Figures 4.2

and 4.3 show some web page views related to these applications. In following, the main

UIs in the UI layer are presented in more detail.

Data Management UI: It is responsible for uploading, managing and configuring data

sources which provide data to ML jobs. To understand the different characteristics and

properties of input datasets, an interactive visualization and statistical analysis can be

performed in this UI. For example, in the case of time series datasets, the user has the ability

to zoom in/out and select a part of the chart for more detailed view. This allows the user

to discover trends and outliers in the selected part of the time series dataset. Additionally,

when the user hovers over a specific point in the chart, the related information will appear

in a small box, for example the value of the power generation at this point. The interactive

visualization of statistics and performance data in our framework is implemented using

the HighChart Java-script library [42].

Job Execution UI: As mentioned before, the main goal of our microservice-based frame-

work is to support non-expert users in performing ML tasks in Big Data environments.

To this end, this UI provides functionalities for executing a job for training and testing

a ML model. An example for ML job can be the building of a model for load forecasting.

To ease the usage for non-experts category 2A presented in Table 1.1, the UI provides

a wizard interface which guides the user through the process of choosing a dataset, a

type of analysis to be performed on the dataset, an adequate ML model (e.g. model, either

pre-trained or untrained) for performing the wanted type of analysis and afterwards for

tuning the execution parameters of the model based on an already existing parameter

set.

One of the main advantages of the proposed framework is to be very generic. I.e., in the

step of selecting a given type of analysis to be performed on a dataset, the user should be

able to select many different types of ML based analysis. But what kind of ML analysis

methods and algorithms will be available is directly dependent on what kind of low level

ML frameworks will be integrated on the persistence and processing layer. Because in the

present work only Apache Spark is integrated as a low level ML framework and Apache

Sparks standard ML library mainly provides algorithms for classification, clustering and

regression, our framework currently only provides these three categories for choosing an

analysis category as shown in Figure 4.2a.

After choosing one of these categories, the user is navigated to the datasets tab view

in order to select an already uploaded dataset or data source, or directly upload one

to perform the ML task. Thereafter, the wizard navigates to the next wizard screen

shown in Figure 4.2b. This figure shows that a ML framework can provide a variety of

ML algorithms for performing a certain analysis category to cover a wide range of ML

application scenarios. I.e., it can be seen in Figure 4.2b that Apache Spark provides several

45

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

(a) Job Execution UI - Choosing ML Category

(b) Job Execution UI - Building ML Model

Figure 4.2.: User Interface (UI).

algorithms for “regression analysis”, e.g. “linear regression”, “decision tree regression” and

46

4.2. Proposed Solution

(a) Model Management UI

(b) Job Execution UI - Summary

Figure 4.3.: User Interface (UI).

so on. If at a later time more than one ML framework is incorporated into the present

47

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

framework, different algorithms implementing another analysis category can even be

provided.

Another advantage of our framework is the storage and re-usability of pre-trained ML

models on new datasets. This reduces the time needed by the user to solve his problem for

a new dataset. It can be seen from Figure 4.2b, that the user has the possibility to use an

already existing pre-trained model or alternatively create and train a new ML model. Here,

the user can adapt a given collection of algorithm hyper-parameters for tuning the model

performance. After appropriate options are chosen in Figure 4.2b, the ML task including

learning and testing can be executed on the runtime platform. The wizard will then show

a screen which allows to monitor the execution state. When the execution is done, the

model and the other results of execution are saved in the persistence and processing layer

and a comprehensive visualization of results as well as an execution summary are shown

as depicted in Figure 4.3b.

Model Management UI: As its name implies, the model management UI is responsible

for managing ML models which are pre-trained in the framework. Figure 4.3a shows

a view of this UI which lists the available models. Each model is described with some

associated metadata (e.g. id, creation date, model name, a textual description of what the

model does, etc.) which are shown in the tabular view. Each row (e.g. a pre-trained model)

represents a ML pipeline corresponding to a specific ML task. For each task, the related

general information resulting from performing this task such as ML algorithm, dataset

used for training and testing, hyperparameters and performance results, to name a few,

are shown if the user hovers over the model entry in the model list. To this end, the user

can compare models and select the best one for executing it on a new dataset. Moreover,

the user can perform actions on a selected model, namely delete a pipeline, extract the

best hyperparameters, extract cluster configurations or extract the whole parameters and

use them to build a new ML model.

Cluster Configuration UI: As mentioned in the introduction, a Big Data infrastructure

as a runtime environment for ML tasks can introduce great challenges for configuring

and running the framework on the cluster with best performance for a given task. To

tackle this challenge, the cluster configuration UI implemented in this framework gives

the possibility to tune the low level execution framework configurations in relation to the

usage of CPU cores, RAM usage and executors instances, to name a few.

4.2.1.2. Service layer

In this layer, the generic interfaces to the runtime environment are provided via currently

two microservices, namely the Job Management Service (J.M.-Service) and the Data Man-

agement Service (D.M.-Service) as shown in Figure 4.1. These interfaces are accessed by

UI applications to setup and execute ML jobs in Big Data environments. Each microservice

has dedicated responsibilities and contains a layered architecture based on the Separation

of Concerns (SoC) design principle. Keeping the code in distinct layers enforces a logical

encapsulation of functionalities and dependencies leading to better code maintainability

48

4.2. Proposed Solution

and loose coupling. Figure 4.4 depicts this architecture, where only upper layers are

allowed to access lower layers.

To handle HTTP requests and form the entry point of the microservices, the presentation

layer is provided. It contains controllers which map HTTP URLs and provide Create, Read,

Update and Delete (CRUD) functionality to the outside through RESTful APIs. For simple

read requests, the layer accesses the persistence layer to acquire the relevant data from

the database. However, for complex logic, it communicates with the service layer which

contains the business logic. This has the advantage that common operations required by

multiple controllers can be abstracted to the service layer. The persistence (i.e. data access)

layer consists of repositories and entities. The repositories interact with the underlying

data source i.e. database and manage the entities which encapsulate the domain objects.

Microservices

Pr
es

en
ta

tio
n

La
ye

r
Se

rv
ic

e
La

ye
r

Pe
rs

is
te

nc
e

La
ye

r

Controllers

Database

Services

Repositories Entities

Figure 4.4.: Layered architecture microservice.

A comprehensive description of both microservices, which are called as services for a

simplicity’s sake is provided in the following two sections. The established RESTful pattern

is chosen as the communication tool instead of the event-driven pattern, because the

microservices are just two in total and the RESTful communication is easier to implement.

In addition, the JSON format is selected for requesting and sending data via the RESTful

APIs because of its popularity, ease of use and interpretability.

J.M.-Service: To create and submit ML jobs to be executed by an available low level

ML execution framework (e.g. Apache Spark) on the available runtime environment

(e.g. a cluster or single computer), this service is developed. This job includes data

preprocessing and building forecasting models, to name a few. It interfaces with the

persistence and processing layer below which encapsulates the specification of a certain

runtime environment. For better execution and managing of ML tasks, the J.M.-Service is

49

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Table 4.1.: List of the URL patterns of the J.M.-Service.

URL Pattern Description

/jobs A GET request on this URL is used a list of spark jobs

/jobs

A POST request on this URL is used to create of a spark job and its

corresponding processing directory in HDFS

/jobs/id A GET request on this URL is used to retrieve a spark job for a specific id

/jobs/id

A DELETE request on this URL is used to delete a spark job for

a specific id with its corresponding processing directory in HDFS

/jobConfigurations A GET request on this URL is used to show a list of spark configurations

/jobConfigurations A POST request on this URL is used to create spark configuration

/jobConfigurations/id

A DELETE request on this URL is used to delete

a specific spark configurations for specific id

/jobSetup

A POST request on this URL is used to copy the packaged jars

and pre-trained saved machine learning models into HDFS

/submitJob/id A POST request on this URL is used to submit a spark job

not only responsible for executing ML tasks but also tracking and monitoring the status of

the running tasks.

Moreover, it reads the execution results stored by the executing framework somewhere in

the runtime environment (e.g. in an execution directory of the task on e.g. a file system)

and sends them to the D.M.-Service for storage in a database, so that the execution statistics

and results can later be visualized in the UI. The J.M.-Service provides an abstract job

execution and monitoring interface to the web application UI through its RESTful APIs.

This completely decouples the UI from the specification of the runtime environment.

The main functionalities of J.M.-Service REST-APIs are summarized by the URL patterns

presented in Table 4.1.

D.M.-Service: To performML tasks, the required input datasets and ML algorithms as well

as scripts need to be available and prepared. This service is responsible for the storage and

preparation of required inputs to execute a job on the runtime environment, namely storing

and providing datasets, models containing (pre-trained) algorithms and hyperparameters,

to name a few. To store the required data and the results produced from performing

ML tasks, the D.M.-Service uses its own database. On the one hand, the UI applications

interact with this service to upload, manage and retrieve data, model information as well

as configurations. On the other hand, the J.M.-Service interacts with the D.M.-Service to

retrieve information about datasets, models and configurations. J.M.-Service service is also

responsible for copying models from the database to the execution environment of a task

and pushing results back to the D.M.-Service. The D.M-Service then stores all information

about the execution of a task and the results in its own database, so that these information

can be later used for the visualization of the results and the overall performance of the ML

jobs as already shown in Figure 4.3b.

50

4.2. Proposed Solution

Table 4.2.: List of the URL patterns of the D.M.-Service.

URL Pattern Description

/algorithms

A GET request on this URL is used to retrieve a list of the

available machine learning algorithms

/algorithms/id

A GET request on this URL is used to retrieve a specific

machine learning algorithm

/categories

A GET request on this URL is used to retrieve a list of the

available machine learning categories, for example classification, regression,

clustering, to name a few

/dataSets A GET request on this URL is used to show available datasets

/dataSets

A POST request on this URL is used to create meta data of a

dataset

/dataSets/id

A GET request on this URL is used to retrieve the metadata

of a specific dataset

/dataSets/id/data

A POST request on this URL is used to upload a local

data file into HDFS and upload the dataset’s reference

/dataSets/id/descriptiveStatistics

A POST request on this URL is used

to prepare model for calculating the descriptive statistics for a specific dataset

/mlModels

A GET request on this URL is used to retrieve a list of pre-

trained machine learning models

/mlModels/id

A GET request on this URL is used to retrieve metadata

of a specific machine learning model

/mlModels/id

A DELETE request on this URL is used to delete a specific

pre-trained machine learning model

/mlModelPredictions/id

A GET request on this URL is used to retrieve

the predictionfile for a specific machine learning model

/mlPipelines

A GET request on this URL is used to retrieve a list of

machine learning execution pipelines

/mlPipelines/id

A GET request on this URL is used to get the meta data

for a specific machine learning pipeline

The main functionalities of the D.M.-Service REST-APIs are summarized by the URL

patterns presented in Table 4.2.

4.2.1.3. Persistence and Processing Layer

Hiding the low level details of the runtime environment from the implementation of the

services is one of the major advantages of this layer. Both J.M.-Service and D.M.-Service

uses generic functions implemented in this layer to interface with the job runtime directory

in HDFS and the database infrastructure installed on the runtime as well as performing

dedicated tasks on the runtime environment for instrumenting installed ML frameworks

to e.g. perform job execution. For each ML runtime environment, the persistence and

processing layer will contain an adapter which maps model and execution details to

the specific framework (see Section 4.2.2 for further discussion on issues related to the

prototype and interfacing to the Apache Spark runtime environment).

51

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Typically, a job runtime directory is created in the file system of the runtime platform

to store all information related to the execution of a certain job. To achieve that, the

persistence and processing layer contains functionalities for creating such directories

depending on the execution framework. More generally, all data items managed by the

D.M.-Service are stored in a database infrastructure which is defined by an abstract object-

like interface. This interface can be implemented in the runtime infrastructure by using

different database technologies as shown in the next section.

4.2.2. Execution Workflow

The previous sections elaborated on the architecture and the design of the framework. The

focus now is shifted to how the main components communicate with each other to achieve

the main goals of the framework, that is, assisting non-expert users in training, testing

and managing ML tasks in Big Data environments. To this end, we introduce the basic

execution workflow necessary to understand the main functionalities of our framework.

Apache Spark as one of the state-of-the-art Big Data processing environment is installed

on a Big Data computing cluster using an Apache Hadoop software stack as runtime

engine for executing ML jobs. ML execution environments typically use a job runtime

directory in a file system for storing all information needed for job execution (e.g. for

storing models to be executed, algorithm configurations and results). On a Big Data cluster

based on Apache Hadoop, HDFS is typically used as a distributed file system and the

runtime directory for a job can be accessed by all computing nodes of the cluster using the

HDFS interfaces. Therefore, for implementing the persistence and processing layer on the

cluster, HDFS and a postgreSQL [105] database are utilized to store the required input and

the output produced from performing ML tasks. The postgreSQL database system is used

as an object-relational database to store all information managed by the D.M.-Service, e.g.

ML categories, ML algorithms, hyperparameters, pre-trained models, jar files, references

of datasets stored in HDFS, pre-trained model pipelines and untrained model pipelines.

The main difference between pre-trained and untrained model pipelines is explained in

detail in Section 4.3.

To store datasets and the output of successful jobs executed in Apache Spark before being

read by the J.M.-Service, HDFS is also utilized. The dataset storage on HDFS allows it to

have “Big Data” as input, i.e., datasets which are extremely large. To achieve the goal of

storing pre-trained ML models in the form of binary objects, the Large Object feature of

PostgreSQL is used. This feature uses the Large Object Manager Interface which stores

only a reference named oid in the database table pointing to the actual object stored in the

system table pg_largeobject. This method breaks the binary data into chunks and allows

storing objects of up to 2GB within the database. However, another format such as the

Predictive Model Markup Language (PMML) will be considered in the future.

Figure 4.5 shows the basic methodological workflow for task execution as it is implemented

in the prototype for submitting jobs to the Apache Spark runtime. For each new job, the

persistence and processing layer generates on behalf of the J.M-Service a Universally

52

4.2. Proposed Solution

1. Start new job

2. Create job directory

4. Input 5. Input

8. Job submit

9. Result

Job
Management

Service

Data
Management

Service

MLlib

3
.

Jo
b

ID

11.Result12. Result
1

0
.

R
e

su
lt

Data
Command
Result

6
.

A
V

R
O

7
.

JA
R

Figure 4.5.: Execution workflow.

Unique Identifier (UUID) as jobID which is sent back to the D.M.-Service. The usage of

a UUID guarantees the uniqueness of the id, making it suitable to use in a distributed

environment, such as a Big Data environment.

A temporary job runtime directory with the UUID as a name is created in HDFS by

the J.M.-Service for each jobID. To this end, the J.M.-Service uses the File System (FS)

shell instruction of HDFS . After that, the J.M-Service calls the D.M.-Service to fetch the

necessary artifacts (e.g. model, runtime configurations) from the database and pass it to

the J.M-Service as an Apache Spark AVRO file. After that, the J.M-Service places the AVRO

file in the persistence and processing layer in the job runtime directory.

The decision for utilizing AVROwas made, because AVRO uses a schema that decouples the

solution from the implementation including error prevention. An AVRO file contains the

received jobID and the chosen cluster configurations. However, if no cluster configurations

are chosen in the UI, the default one are fetched from the database and used in this task.

Besides cluster configurations, algorithm hyperparameters and metadata related to the

execution of algorithms, namely the name of the application main class are included in

the AVRO file for execution. The name of the application main class is required by Apache

Spark to find the main code entry point for executing the task. While all datasets are

stored in the HDFS, path references pointing to the files are stored in the database of the

D.M.-Service.

Once the user chooses a dataset, the path reference of the dataset in HDFS is fetched

from the database and included in the AVRO file. After that, the D.M.-Service fetches the

corresponding jar file from the database and sends it to the J.M.-Service. At this point,

all required information to perform the task is passed to the J.M.-Service which creates a

spark-submit job and sends it for execution to Apache Spark.

https://hadoop.apache.org/docs/stable/

53

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

As a result of executing e.g. a task performing forecasting on a time series dataset, the

forecasting results, forecasting performance and the forecasting model in the form of

a binary object are located in the temporary job runtime directory of the task. After

executing the job, all of these results are stored in the temporary job runtime directory

and read afterwards by the J.M.-Service to be passed to the D.M.-Service. The D.M.-Service

receives the results and stores them in the form of a pipeline in the database to be retrieved

later. Simultaneously, the D.M.-Service sends the results to the UI to be rendered and

visualized for the user.

4.3. Evaluation

In this section, four aspects related to the evaluation of our microservice-based framework

are investigated. We start by analysing and discovering the effect of caching in Apache

Spark. In this context, we compare the execution time of training and testing the benchmark

evaluation models in case of memory caching and without memory caching of the input

time series datasets. Moreover, the execution time and framework overhead for evaluating

the efficiency of the framework are measured, highlighting the advantage of storing and

retrieving ML models and discovering the threshold, at which the use of the proposed

framework is recommended for better performing machine learning tasks in Big Data

environments. In these experiments, datasets presented in 2.4.2 and 2.4.3 are used. Before

presenting the obtained results, the experimental setup and the related configurations are

presented.

4.3.1. Experimental Setup and Configurations

We implemented the aforementioned microservice architecture using Java on a local

workstation which is a MacBook with a 2.7 GHz Intel Core i5 processor and 8GB of

RAM. Both microservices are implemented as standalone Spring Boot applications which

are configured to run on different HTTP ports, namely 8090 and 8080. To run our web

application, the embedded Apache Tomcat server from Spring Boot is utilized.

To precisely investigate the effectiveness of the framework, a local execution context and

cluster execution context have been configured and used in our experiments. In the local

context, Spark (v. 2.3.0) on top of Hadoop (v. 2.7.6) as state-of-the-art technologies to

perform ML tasks is installed on the aforementioned workstation, where the executors

and drivers run in a single JVM. In the cluster context, we utilize a powerful Big Data

stack, in which Apache Spark is fit on top of Yet Another Resource Negotiator (YARN) as

a resource manager and Hadoop Distributed File System (HDFS) as a primary data storage.

The Big Data stack is deployed on a cluster of 3 logical machine nodes. Each of them has

32 cores and 80.52 GB RAM. The nodes are connected to each other by a LAN with 10

GBit/s bandwidth.

54

4.3. Evaluation

Table 4.3.: Default and custom cluster configurations used in cluster context.

Default Custom

Drivers.cores = 1 Drivers.cores = 1

Driver.memory = 1 GB Driver.memory = 1 GB

Executors.cores = 2 Executors.cores = 2

Executors.memory = 1 GB Executors.memory = 70 GB

Executors.instances = 1 Executors.instances = 3

To tune an application’s performance, Spark provides an abundance of configuration

parameters. A focus of this evaluation is on adjusting the cluster’s main resources, the

CPUs and amount of RAM, used by the applications, since they can greatly impact the

computational performance. In the cluster context, we distinguish two configuration

setups, namely default and custom including driver cores, driver memory, executor cores,

executors memory and executors instances as presented in Table 4.3.

Random Forest (RF) [140], Multiple Linear Regression(MLR) [100], Gradient Boosted Trees

(GBTs) [115] and Decision Tree (DT) [161] are used as base classifiers to build the data-

driven forecasting models. The focus is on forecasting the hourly generated power of the

solar PV systems using the weather condition and time features. MLlib, which is a Spark

scalable ML library, is employed to build the models. To train and test the forecasting

models, Ausgrid solar home electricity data presented in Section 2.4.2 is used. MLR is a

widely used supervised algorithm which assumes a linear relationship between one or

multiple independent input variables and a dependent output variable. Table 4.4 presents

the default values of the MLR hyperparameters.

Table 4.4.: Default hyperparameters of MLR algorithm in MLlib.

Hyperparameter Description Default

MaxIter Maximum number of iterations 100

RegParam Regularization/Shrinkage parameter 0.0

The DT algorithm is a supervised ML algorithm that has the ability to capture the non-

linear structures in data. It is based on the idea of building a binary tree which recursively

partitions the input space and consists of internal nodes and leaves (i.e. terminal nodes).

It is constructed starting from the root and its nodes are split down based on the largest

decrease in impurity. For classification trees, the impurity is often measured with the Gini

impurity or entropy. However, for regression trees, where the target is continuous, the

impurity is based on variance reduction. Table 4.5 presents the default values of the DT

hyperparameters.

https://spark.apache.org/docs/latest/ml-guide.html

55

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Table 4.5.: Default hyperparameters of DT algorithm in MLlib.

Hyperparameter Description Default

MaxBins

Maximum number of bins for split decision and

discretization of continuous features

32

MaxDepth Number of trees in the forest 5

MinInstancesPerNode

Minimum number of trees (training instances)

in children must have by splitting

1

A forest of multiple DTs is built in RF algorithm. Each DT is trained independently. While

single DTs are often said to overfit, the RF algorithm does not overfit because of the law of

large numbers [53]. Also, randomness is applied to the training process of RF by utilizing

random feature subsets for node splitting. Since, each DT is trained separately, multiple

trees can be trained in parallel. For the final prediction, the individual votes of all trees are

combined. Table 4.6 presents the default values of the RF hyperparameters.

Table 4.6.: Default hyperparameters of RF algorithm in MLlib.

Hyperparameter Description Default

MaxDepth Maximum depth of individual trees in the forest 5

NumTree Number of trees in the forest 20

In contrast to RF which trains the trees independently, GBTs algorithm employs the

Boosting technique training one tree at a time. Successively, to correct the errors made

by previous trees, a DT is fitted on the residuals of the previous tree, instead of a fraction

of the original data. The final prediction is based on a weighted majority vote. Table 4.7

presents the default values of the GBTs hyperparameters.

Table 4.7.: Default hyperparameters of GBTs algorithm in MLlib.

Hyperparameter Description Default

MaxDepth Maximum depth of individual trees in the forest 5

MaxIter Maximum number of iterations 20

StepSize Controls the contribution/weight of each tree 0.1

SubsamplingRate Training data proportion used for learning each tree 1.0

Typically, tuning hyperparameters is an important step of the Machine Learning Pipeline

(MLP), since they can not only significantly influence the forecasting performance of a

model, which is not our focus in the present work, but also the processing time.

Based on the main property of our microservice-based framework in facilitating training

and testing ML models in Big Data environments, an efficient hyperparameter tuning is

56

4.3. Evaluation

Table 4.8.: ML algorithms hyperparameters after tuning.

ML Algorithm Hyperparameters

Multiple Linear Regression (MLR)

Max iterations (ntree) = 20

Regularization parameter = 0.5

Decision Tree (DT)

Max bin = 5

Max depth = 5

Min instance split = 1

Gradient Boosted Trees (GBTs)

Max depth = 5

Number of trees = 20

Step size = 0.1

Sampling rate = 1.0

Random Forest (RF)

Max depth = 5

Number of trees (ntree) = 20

performed for the aforementionedML algorithms to ensure that the timemeasurements are

taken for a best case scenario of the aforementioned algorithms. The results are depicted

in Table 4.8.

One of the main advantages of the proposed framework is the ability to store pre-trained

models in order to use them later in production. Thus, for evaluation, two execution

contexts are determined, namely the untrained model pipeline and pre-trained model

pipeline. In the first one, as its name implies, the user follows the general methodology

to perform an ML task, in which the model is trained from scratch and afterwards tested.

In the second one, the user selects a pre-trained model from the database and uses it to

perform or test an ML task with a new dataset without the need for building a new model.

As mentioned before, the main goals of evaluation are discovering the effect of caching

in Apache Spark, the advantage of storing ML models and reusing them, measuring the

framework overhead and determining the thresholds for efficiently performing ML tasks

on the cluster. To this end, time measurements need to be precisely defined. As time

measurements, we defined𝑇𝑡𝑜𝑡𝑎𝑙 and𝑇𝑓 𝑜 according to Equation (4.1) and (4.2) respectively.

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑡 +𝑇𝑓 𝑜 (4.1)

where:

• 𝑇𝑠𝑡 : is the execution time required by Apache Spark to perform a ML task in context

of pre-trained pipelines or untrained pipelines.

• 𝑇𝑓 𝑜 : is the framework overhead.

𝑇𝑓 𝑜 = 𝑇𝑐𝑜 +𝑇𝑑𝑏𝑜 (4.2)

where:

57

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

• 𝑇𝑐𝑜 : describes the communication overhead between microservices and inside the

Big Data infrastructure.

• 𝑇𝑑𝑏𝑜 : describes the overhead for storing and retrieving required data from the

database.

4.3.2. Results and Discussion

So far the experimental setup and the configurations required to perform ML tasks on

clusters are presented. In the following, the evaluation results are discussed. As the focus

lies on the execution time and the framework overhead raised while performing ML tasks,

the accuracy of forecasting will not be taken into account.

4.3.2.1. Effect of Caching in Apache Spark

The basic data structures of Apache Spark, namely Resilient Distributed Datasets (RDDs),

are developed as a fault-tolerant immutable collection of data objects and can be computed

on different nodes of the cluster [186]. In this context and in order to speed up the running

applications, caching RDDs in Apache Spark plays an essential role. This is especially

helpful, when running iterative ML applications, where the data is accessed repeatedly.

If RDD is not cached, nor check-pointed, it is re-evaluated again each time an action

is invoked on that RDD. In our evaluation, the training time is measured as the time it

takes to fit the model on the training data. The prediction time is similarly computed for

applying the resulted model on testing data. Since Spark utilizes lazy evaluation for data

transformations, meaning an operation is not executed until an action is called on the data,

the prediction time has to be measured in combination with performing an action. The

main advantages of the lazy evaluation mechanism in Apache Spark are:

• Increased manageability of RDDs because the source code of our machine learning

algorithms is organized into smaller operations which in turns reduces the number

of passes on data by grouping the operations.

• More efficient computation time and an increased speed, as only the necessary values

are computed saving the communication round-trip time between the drivers and

clusters.

• Better optimization of operations on data by reducing the number of queries.

Table 4.9 shows how the caching of the input time series datasets affects the performance

of the implemented algorithms, using their default hyperparameters and default cluster

configurations. For calculating these values, the experiments are repeated three times.

Afterwards, the mean values are calculated as final performance indicators. Obviously, the

need for caching is larger in the case of large datasets, as more operations are required

and larger amounts of data are loaded and accessed repeatedly, therefore and to precisely

discover the effect of caching, the models are trained and tested on a small dataset size i.e.,

58

4.3. Evaluation

Table 4.9.: Mean computation time for training and testing different algorithms in the cases of caching and

no caching of input data.

Machine Learning
Algorithms Training Time (s) Prediction Time (s)

No Caching Caching No Caching Caching

Multiple Linear Regression (MLR) 16.07 3.57 3.92 0.87

Decision Tree (DT) 15.88 3.21 3.41 0.86

Gradient-boosted trees (GBTs) 37.04 21.74 8.61 1.77

Random Forest (RF) 23.11 12.48 5.75 1.12

4 MB. As shown in this table, combining lazy evaluation with caching reduces the training

and prediction time of all algorithms by approximately 75%.

4.3.2.2. Advantage of Storing and Retrieving ML Models

In the second group of our experiments, we evaluate the advantage of storing and retrieving

ML models. The main ML task is to perform short-term power generation forecasting

using MLR, RF, DT and GBTs data-driven models on the Ausgrid solar home electricity

data presented in Section 2.4.2. The weather dataset presented in 2.4.3 is used to extract

the required features for building forecasting models. The algorithm hyperparameter

configurations shown in Table 4.8 are used. For better utilization and exploitation of the

available abilities of the underlying Big Data cluster, the custom configurations shown in

Table 4.3 are used. A feature space consisting of 5 features, namely temperature, humidity,

cloud coverage, hour and day is used to build the forecasting models. A dataset of 4 GB

size is used for training and testing ML models, where 80% of the input time series dataset

are used as a training set and 20% as testing set. For each ML algorithm, the experiment

is repeated three times. Afterwards, the mean values are calculated as final performance

indicators. Figure 4.6 shows the total time required by the framework to perform the

aforementioned task in case of a pre-trained and untrained model pipeline.

In general, the total time 𝑇𝑡𝑜𝑡𝑎𝑙 is strongly related to the complexity of ML models. As this

complexity increases, 𝑇𝑡𝑜𝑡𝑎𝑙 required to perform the task will dramatically increases. The

base classifier of both RF and GBTs algorithms is the DT algorithm. Consequently, the

complexity of RF and GBTs models is higher than the complexity of the DT model. As

seen in Figure 4.6, RF and GBTs introduced higher 𝑇𝑡𝑜𝑡𝑎𝑙 than DT and MLR algorithms.

Both GBTs and RF are algorithms for learning ensembles of trees, but the training processes

are different. While the GBTs algorithm trains one tree at a time, the RF algorithm can

train multiple trees in parallel. This can be seen clearly in Figure 4.6, in which GBTs shows

higher 𝑇𝑡𝑜𝑡𝑎𝑙 than RF. In our experiments, both MLR and DT algorithms introduce lower

𝑇𝑡𝑜𝑡𝑎𝑙 compared to RF and GBTs.

59

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

MLR DT GBTs RF
Machine Learning Algorithm

0

200

400

600

800

1000

1200

1400

1600

To
tal

 Ti
me

 (s
)

Untrained model pipeline
Pre-trained model pipeline

Figure 4.6.:𝑇𝑡𝑜𝑡𝑎𝑙 required for training and testing models (untrained model pipeline) and for testing (pre-

trained model pipeline) on simulated energy multivariate time series dataset with size 4 GB.

The efficiency of storing ML models can clearly be seen in case of complex ML models,

namely GBTs and RF models, and will rise with growing complexity of the model. As the

complexity of the model increases, the time needed to perform the same task with each

new dataset will dramatically increase and the benefit of using pre-trained models will

also increase. E.g. by performing forecasting, we gain a time of 690 and 411 seconds in

case of GBTs and RF respectively. In contrast to that, only a little time is gained in case of

retrieving and reusing simpler models such as MLR and DT as seen in Figure 4.6.

As a result, the recommendation of storing ML models and reusing them in testing (or in

production) is higher in case of complex models than for simpler ones. This experimental

study gives evidence for the importance of storing and retrieving ML models as a major

property in our framework. However, the experiments are performed only with a dataset

of 4 GB size. As this size increases, the complexity of the ML models will increase too,

paving the road to save and gain more time for performing ML tasks with new datasets

based on pre-trained models without the need for training these models.

4.3.2.3. Framework Overhead

In this group of experiments, the framework overhead resulting from performing ML tasks

is measured. As a ML task, short-term energy generation forecasting using MLR models is

taken into consideration. The algorithm hyperparameter configurations shown in Table

4.8 besides the custom cluster configurations are used. The evaluation instruments the

untrained model pipeline, in which the training and the testing steps of ML models are

required. The goal of the study is to evaluate the effect of input dataset size on framework

performance in terms of the framework overhead defined in Equation (4.2). To achieve

that, the size of the input datasets is upscaled to 64 GB, as bigger datasets typically expose

more load on the framework infrastructure.

60

4.3. Evaluation

2.5 8 16 32 64 128 256 512
1024

2048
4096

8192
16384

32768
65536

Dataset size (MB)

0

25

50

75

100

125

150

175

200

Fra
me

wo
rk

ov
erh

ea
d (

s)

Figure 4.7.:Effect of input datasets size used for training and testing MLRmodels on the framework overhead.

As defined in Equation (4.2), the framework overhead encompasses communication over-

head and database overhead. The obtained results depicted in Figure 4.7 show that the

proposed framework introduces an approximately constant communication overhead aver-

aging at around 26 seconds for datasets with sizes up to 512MB. The framework overhead

starts to increase for a size of input datasets larger than 512MB. The reason behind this is

the additional overhead inside the Big Data environment needed for resource scheduling,

coordination and network communications in the cluster. More precisely, an increasing

size of the input dataset naturally leads to an increased overhead due to data replication,

disk I/O and the serialization of data inside the execution environment of the cluster. A

detailed increase in overhead can be seen also in Figure 4.8.

Despite this increment, the introduced framework overhead is still low compared to the

execution time spent in performing a ML task as shown in Table 4.10. For example, the

portion of framework overhead is 210.47 seconds in the worst case, namely for 65 GB

input multivariate time series datasets. Consequently, our evaluation demonstrates that it

maintains high performance ML processing with low framework overhead to facilitate

and solve ML tasks in Big Data environments.

4.3.2.4. Cluster Utilization Threshold

This section discusses the question “when to use the proposed framework for performing

ML tasks more efficiently on a cluster?”. Clearly, the dataset size has a significant effect on

the complexity of machine learning models and therefore on runtime performance. As the

size of the dataset used for training and testing ML models grows, the complexity of the

61

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

2.5 8 16 32 64 128 256 512 1024 2048 4096
Data set size (MB)

0

100

200

300

400

500

600

700

800

Tim
e (

s)

T_st
T_co
T_dbo

Figure 4.8.:Effect of input datasets size used for training and testing MLR models on the framework overhead

(detailed overview).

model increases which dramatically affects the total execution time in our microservice-

based framework. While MLR forecasting models have the lower complexity, the GBTs

forecasting models represent the models of higher complexity in our evaluation study for

the same dataset size as seen in Figure 4.6. The algorithm hyperparameter configurations

shown in Table 4.8 are used. We changed the input dataset size between 2.5 MB and 4 GB

in the experiments for investigating the effect of dataset size on the framework overhead

and execution time. The total time 𝑇𝑡𝑜𝑡𝑎𝑙 is compared to the time required for performing

the same task in local and cluster context. The ratio of local time and cluster time is defined

as 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in Equation (4.3).

𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑇𝑙𝑜𝑐𝑎𝑙

𝑇𝑡𝑜𝑡𝑎𝑙
(4.3)

where:

• 𝑇𝑙𝑜𝑐𝑎𝑙 : encompasses the total time required to locally execute a machine learning

task.

The main idea behind defining 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is to find the dataset size for which the total

time in local context exceeds the total time required by the framework to execute tasks in

the cluster context. From this point, it is highly recommended to use a cluster. Precisely,

to effectively perform machine learning tasks, this ratio should be greater than 1.

Generally, performing ML tasks in a cluster context introduces additional overhead. The

main reason behind this lies in the time cost for resource scheduling, coordination and

62

4.3. Evaluation

Table 4.10.: Execution time and the related overhead required for building MLR models based on different

sizes of datasets.

DataSet Size(MB) Execution Time(s) Framework Overhead(s)

4 19.99 28.78

8 21.79 28.53

16 22.6 27.41

32 25.88 26.21

64 30.54 27.05

128 41.7 27.13

256 68.54 25.82

512 113.25 30.2

1024 200.66 37.06

2048 383.75 53.54

4096 724.98 79.37

8192 1016.48 85.65

16384 4724.98 110.66

32768 6383.75 150.88

65536 11804.36 210.47

network communications in the cluster. Figure 4.9 shows the mean total time in local and

cluster modes, including default and custom configurations, using various dataset sizes. It

can be observed that enlarging the dataset size from 2.5 MB to 64 GB has no significant

effect on both 𝑇𝑙𝑜𝑐𝑎𝑙 and 𝑇𝑡𝑜𝑡𝑎𝑙 .

As seen in Figure 4.9a and for data less or equal to 256 MB, 𝑇𝑡𝑜𝑡𝑎𝑙 in both cluster modes

is greater than 𝑇𝑙𝑜𝑐𝑎𝑙 in local mode which can be explained by the added overhead for

processing the application on the cluster. Thus, running Spark applications locally for

these dataset sizes is more efficient. For a dataset size less than 256 MB, 𝑇𝑡𝑜𝑡𝑎𝑙 with custom

configurations is greater than𝑇𝑡𝑜𝑡𝑎𝑙 with default configurations, since two additional nodes

are used in these configurations where each of them introduces an overhead. As expected,

when the dataset size grows larger, utilizing a cluster becomes more desirable which is

shown by the intersection points highlighted by the two red lines, where these points

depend on the configurations. As the 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑐 (cc: custom configurations) is

found at a dataset size of 512 MB making the custom configurations the most efficient

beyond that point, the 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑑𝑐 (dc: default configurations) lies at a dataset size

of >= 1024 MB. Consequently, the computing power of the cluster can be seen and the

63

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

ab
s_

th
re

sh
ol

d_
cc

ab
s_

th
re

sh
ol

d_
dc

Local
Cluster , Default Config.
Cluster , Custom Config.

(a) Multiple Linear Regression (MLR).

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

ab
s_

th
re

sh
ol

d_
cc

ab
s_

th
re

sh
ol

d_
dc

Local
Cluster , Default Config.
Cluster , Custom Config.

(b) Decision Tree (DT).

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

ab
s_

th
re

sh
ol

d_
cc

ab
s_

th
re

sh
ol

d_
dc

Local
Cluster , Default Config.
Cluster , Custom Config.

(c) Gradient-boosted trees (GBTs).

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

ab
s_

th
re

sh
ol

d_
cc

ab
s_

th
re

sh
ol

d_
dc

Local
Cluster , Default Config.
Cluster , Custom Config.

(d) Random Forest (RF).

Figure 4.9.: Mean 𝑇𝑡𝑜𝑡𝑎𝑙 in case of local and cluster (default, custom) configurations mode to determine the

𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for MLR, DT, RF and GBTs algorithms.

time consumed locally to perform a task will exceed the time required to perform the same

task on cluster. Therefore, it is recommended here to use the cluster.

Comparing Figures 4.9a, 4.9b, 4.9c and 4.9d, we conducted that as the complexity of ML

models increases, the 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is early arrived. The reason is that the complex models

need more calculation costs. As a result, the performance in the cluster context will earlier

outperform the performance in the local context because of the power of the underlying

deployed Big Data cluster. Concerning the GBTs model which represents the most complex

model in our benchmark evaluation, the 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is arrived at an input dataset in

size of about 64 MB. In contrast to that, lower complexity models such as DT models

introduced 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for 300 MB.

As mentioned before, there is an inherent overhead in the framework arising from e.g.

database communication and the use of the cluster. The smaller this overhead is compared

to Spark’s execution time, the more efficient the framework is. To gain insight into how

64

4.4. Summary

the efficiency of the framework varies as the dataset grows, a new threshold, referred as

𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , is defined and formulated in Equation (4.4):

𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑇𝑒𝑥𝑒

𝑇𝑓 𝑜
(4.4)

where:

• 𝑇𝑒𝑥𝑒 is the execution time required by Apache Spark to perform a ML task in context

of pre-trained pipelines or untrained pipelines, same as 𝑇𝑠𝑡 defined before.

This threshold is defined based on the fact that for an efficient execution of a task, the

overhead time should not exceed the time required for the execution. Consequently, to

effectively perform machine learning tasks, this threshold should be greater than 1. The

main difference between𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 lies in the context, in which

they are calculated. While 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 compares the total time required to perform

a machine learning task in local and cluster context, the other one is calculated only in

cluster context comparing the framework overhead with the execution for different dataset

size. As a result, we discovered the point at which it is recommended to use our framework

in cluster context.

This group of experiments is conducted using the default cluster configurations summa-

rized in Table 4.3 and also repeated three times for more robust results. The obtained

mean results, presented in Figure 4.10 show that𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 has the same behavior

of 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . It is evident that for very small dataset sizes, the𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is less

than 1 since more time is spent on 𝑇𝑓 𝑜 than 𝑇𝑒𝑥𝑒 . The𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 comes closest to 1 at

the size of 64 MB and 32 MB for MLR and DT respectively as seen in Figures 4.10a and

4.10b. Beyond this point,𝑇𝑒𝑥𝑒 starts to exceed𝑇𝑓 𝑜 which implies that for larger dataset sizes

it is recommended to use the framework in cluster context. Precisely, the gap between

𝑇𝑓 𝑜 and 𝑇𝑒𝑥𝑒 increases proportionally to the dataset size, since 𝑇𝑒𝑥𝑒 is strongly dependent

on it. As the complexity of the model increases, the 𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is shifted to meet

smaller dataset sizes i.e., 2.5 MB as seen in Figures 4.10c and 4.10d. Combining the results

of 𝑎𝑏𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , it is recommended to perform ML tasks using the

proposed microservice-based framework if both of these thresholds are greater than 1.

4.4. Summary

In this chapter, we presented a new highly scalable generic microservice-based architecture,

our solution to support 2A non-expert users to performML tasks in Big Data environments.

We started in Section 4.1 by introducing the problem statement, in which the challenges

and the problem to be solved are explained. In Section 4.2, the conceptual microservice-

based architecture is introduced including the different layers that communicate with

each other to achieve the main goals of the framework. We explained the different layers,

65

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

m
in

_t
hr

es
ho

ld
_d

c

Framework_Overhead
Execution_Time , Default Config.

(a) Multiple Linear Regression (MLR).

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

m
in

_t
hr

es
ho

ld
_d

c

Framework_Overhead
Execution_Time , Default Config.

(b) Decision Tree (DT).

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T
to

ta
l (

s)

m
in

_t
hr

es
ho

ld
_d

c

Framework_Overhead
Execution_Time , Default Config.

(c) Gradient-boosted trees (GBTs).

2.5 8 16 32 64 128 256 512 1024 2048 4096
Dataset size (MB)

0

200

400

600

800

1000

T t
ot

al
 (s

)

m
in

_t
hr

es
ho

ld
_d

c
Framework_Overhead
Execution_Time , Default Config.

(d) Random Forest (RF).

Figure 4.10.: Mean 𝑇𝑡𝑜𝑡𝑎𝑙 in case of local and cluster (default, custom) configurations mode to determine the

𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for MLR, DT, RF and GBTs algorithms.

their services and the REST-APIs developed in this thesis. To understand the interaction

between services, a brief execution workflow was introduced.

We evaluated our solution in Section 4.3. We started by presenting the experimental setup

and configurations required to conduct our experiments. In a comprehensive evaluation

study, the advantage of storing and retrieving ML models is demonstrated. The results

also show that the caching of RDDs in Apache Spark plays an essential role in saving the

execution time required for performing the task on the cluster. Precisely, the training and

prediction time is reduced by approximately 75% when combining lazy evaluation with

caching techniques.

Moreover, bymeasuring the framework overhead and comparing it to themodel calculation

time, it could be demonstrated that the proposed framework introduces an acceptable low

overhead relative to an increasing size of an input dataset. The advantage of storing and

retrieving MLmodels as a major property of our solution is also investigated. We have seen

66

4.4. Summary

that it is of great importance to store ML models in order to be used later in production

for other tasks, especially in the case of complex models. For efficient utilization of the

proposed framework, certain thresholds are defined to determine the dataset size, in which

it is highly recommended to use clusters in favor of single computers for performing a

given ML task.

As a result from the evaluation, our framework introduced a suitable solution to enhance

the applicability of the trial-and-error approach for building ML models in cluster en-

vironments. Such suitability is derived from different reasons. Firstly, hiding the low

level complexities of big data infrastructure from the user. Secondly, the low overhead

during performing ML tasks. Thirdly, the advantage of storing and retrieving ML models.

Fourthly, caching the input energy time series datasets which positively affects the execu-

tion performance of the framework. Lastly, the best practice for using such framework for

performing ML tasks on clusters.

67

5. Characterizing Energy Time Series
Datasets

As established in the motivation, the accurate forecasting of future energy demand and

renewable energy generation provides better sustainability and intelligent decision making

in managing energy resources at grid level. A plethora of machine learning algorithms

are existing in the literature to forecast energy time series datasets. In order to select the

respective algorithm for a given time series dataset, the end user often uses a trial-and-error

approach which takes a long time for constructing multiple models. To address this issue,

meta learning is existing attempting to find the most appropriate model for forecasting

based on the characteristics of the given datasets [81][151][25].

The characteristics of energy time series datasets may provide useful insights into which

methods are most appropriate for forecasting [55][16]. To this end, we propose Descriptive

Statistics Time based Meta Features (DSTMF) as a new group of meta features to describe

energy time series datasets. Descriptive statistics are a set of summary statistic properties

that quantitatively describes the numerical properties of a dataset and summarizes its

features with regard to the distribution of data. The well known five-number summary

is a set of descriptive statistics that characterizes the dataset in five sample percentiles,

namely minimum, maximum, median, 1st Quartile and 2nd Quartile which are derived

from the well-known boxplot/box-and-whisker plot [79].

In this chapter, we present our meta learning approach including a new type of meta

features for selecting themost appropriate forecastingmodel for energy time series datasets.

We start in Section 5.1 by explaining the problem statement including the main challenges,

goals and problems we aim to solve and the research question we answer in this chapter.

Then, Descriptive Statistics Time-based Meta Features (DSTMF) as a new art of meta

features is presented in Section 5.2.1. For efficient instrumenting of meta features, we

propose Energy Meta Learning System (EMLS) and Encoded Energy Meta Learning System

Parts of this chapter are reproduced from:

• S. Shahoud, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Descriptive Statistics Time-

based Meta Features (DSTMF) Constructing a Better Set of Meta Features for Model Selection

in Energy Time Series Forecasting”. In: Proceedings of the 3rd International Conference on

Applications of Intelligent Systems, pp. 1–6. doi: 10.1145/3378184.3378221.

• S. Shahoud, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Incorporating Unsupervised

Deep Learning into Meta Learning for Energy Time Series Forecasting”. In: Proceedings of the

Future Technologies Conference, pp. 326–345. doi: 0.1007/978-3-030-63128-4_25.

69

5. Characterizing Energy Time Series Datasets

(EEMLS) in Sections 5.2.2 and 5.2.3. respectively. While the original representation of meta

features is used in the first one, we encode the meta features using autoencoders in the

second system to leverage the advantage of unsupervised deep learning in enhancing the

predictive performance of meta learning classification models.

We evaluate our work in Section 5.3 in three points of view. In the first one, similarity-based

clustering analysis is performed to measure the accuracy of the extracted meta features in

characterizing energy time series datasets. In the second and third one, we evaluate this

accuracy by incorporating the original and encoded representation of meta features into

a complete meta learning scenario for energy time series model selection. The research

contributions presented in this chapter were the main topics of our papers in [143][144].

5.1. Problem Statement

In view of more renewable energy being injected in the energy systems, accurate fore-

casting of electrical load and generation has attracted significant attention for optimizing

the usage of energy to achieve better management as well as distribution of energy at

grid level. To this end, there has been historically a lot of research around performing

energy load and generation forecasting, in which the users often used the well-known

trial-and-error approach for finding the best forecasting model for a given time series.

Based on the utilized modeling approach, we can classify these forecasting models into

five categories, namely artificial intelligence models [43][179][97], averaging models [170],

time series models [11], regression models [12][69][84], as well as hybrid models [190].

The trial-and-error approach is based on the idea that all possible combinations of the

learning algorithms with their relevant hyperparameters are tried for each task to find

the most suitable one. However, this is typically tedious. It wastes the resources for

constructing multiple models which can take a long time especially in the case of large

datasets to be forecasted. Moreover, expert knowledge is required to perform such tasks.

To address this issue, some meta learning approaches have been proposed for automatically

finding the most appropriate model for time series forecasting based on the characteristics

of input time series datasets [92][6][151][25]. These approaches consist of three main

input spaces, namely problems, algorithms and meta feature space. The problem space

is reflected by a datasets pool that includes a variety of datasets for training models and

extracting meta features. The algorithm space includes a set of forecasting algorithms,

from which the most suitable candidate is selected as the best solution for forecasting.

The meta feature space contains a set of meta features that capture the characteristics of

datasets.

A meta learning approach is based on the fact that the good feature set capturing the

characteristics of a time series dataset gives powerful insights into the future behavior of

this dataset paving the road for determining the most appropriate forecasting algorithm.

According to that, the better the used meta features characterizes the behavior of a time

series dataset, the more accurate the selection of the best forecasting algorithm will be.

70

5.2. Proposed Solution

Time Series
Dataset 1

Time
Series

Dataset 2

C
a

lc
u

la
te

 M
e

ta
 F

e
at

u
re

s

…

..

Knowledge Matrix
Meta Features Label

𝑴𝑭𝟏 𝑴𝑭𝟐 𝑴𝑭𝟑 … 𝑴𝑭𝒏
Best Performance

𝑀𝐹11 𝑀𝐹12 𝑀𝐹13 𝑀𝐹1𝑛 Algo.1

𝑀𝐹21 𝑀𝐹22 𝑀𝐹23 𝑀𝐹2𝑛 Algo.4

… … … … … Algo.3

… … … … …

𝑀𝐹𝑚1 … … … 𝑀𝐹𝑚𝑛 Algo.j

Traning
Meta

Learner

Best Forecasting
Model for New

Time Series Dataset

New Energy
Time Series

Dataset ?

Testing Meta Learner

Calculate Meta Features

+

Algo.1
Algo.2
Algo.3

Algo.j

…

𝑀𝐹11, 𝑀𝐹12, . . ,𝑀𝐹1𝑛

𝑀𝐹𝑚1, 𝑀𝐹𝑚2, . . , 𝑀𝐹𝑚𝑛 …

Time Series
Dataset m

𝑀𝐹21, 𝑀𝐹22, . . ,𝑀𝐹2𝑛

Existing Solutions: Automated Forecasting Model Selection
(Meta Learning)

Figure 5.1.: General methodology of meta learning for time series model selection [143].

Typically, a meta learning approach solves the problem of model selection by formulating

it as a supervised learning task incorporating training and testing phases. The main task of

the training is that an algorithm, referred to as meta learner, learns the mapping between

available forecasting algorithms and the corresponding set of meta data indicator values

for the same dataset. Therefore, a set of meta examples are needed, that correspond to the

already mentioned set of learning datasets which are accordingly tagged by predictors and

labels as shown in Figure 5.1. The predictors correspond to the meta features extracted to

describe the datasets. The labels indicate the most appropriate algorithms. In the testing

phase, given a new time series to be forecasted, the meta features are extracted. Based on

these features, the trained meta learner will suggest the most appropriate model.

Building on that, the good characteristics of energy time series datasets plays an essential

role in precisely achieving the main goal of meta learning and assigning the best model for

the input time series datasets. Such characteristics are considered as a challenge in building

an efficient meta learning model. In this chapter, we tackle this challenge and answer

the research question RQ2 “How to efficiently characterize energy time series datasets

to enhance the performance of automated model selection?” by proposing Descriptive

Statistics Time-based Meta Features (DSTMF) as a new art of meta feature to capture the

deep characteristics of energy time series datasets.

5.2. Proposed Solution

To address the problem stated in Section 5.1, we propose Descriptive Statistics Time based

Meta Features (DSTMF) as a new group of meta features to describe energy time series

71

5. Characterizing Energy Time Series Datasets

datasets. Furthermore, we propose the Energy Meta Learning System (EMLS) and Encoded

Energy Meta Learning System (EEMLS) to efficiently instrument the new art of meta

features in a meta learning scenario for recommending the most adequate forecasting

model.

5.2.1. Descriptive Statistics Time-Based Meta Features (DSTMF)

In this section, we introduce Descriptive Statistics Time-based Meta Features (DSTMF),

our new type of meta feature to characterize energy time series datasets. As its name

implies, DSTMF is based on the descriptive statistics which are a set of summary statistic

properties that quantitatively describe the numerical properties of a dataset and summarize

its features with regard to the distribution of data. The well known five-number summary

is a set of descriptive statistics that characterizes the dataset in five sample percentiles,

namely minimum, maximum, median, 1st Quartile and 3rd Quartile which are derived

from the well-known boxplot/box-and-whisker plot.

Five-number summary statistics provide information about the location (from the median),

the spread (from the quartiles) and the range (from the minimum and maximum of the

observations). While the main advantage of the five-number summary introduced with

boxplots is to detect outliers in datasets, we leverage it to support our meta learner with

some new meta features capturing the behavior of time series datasets. The proposed

DSTMF approach is based on extracting the aforementioned five-number summary statis-

tics extended by the arithmetic mean for different aggregation levels of the input datasets

as seen in Figure 5.2. For each input time series dataset in the problem space, we have n

possible aggregation levels. In this context, we distinguish between calculating DSTMF in

terms of load and generation time series datasets.

Institute for Automation and Applied Informatics (IAI)

IT4ES

3

Dataset-Aggregation Level 2

Dataset-Aggregation Level 1

Dataset- Aggregation Level 3

Dataset-Aggregation Level n

Dataset 1

M
e

ta
 F

e
a

tu
re

 (
M

F
)

E
x
tr

a
c
ti
o

n

Dataset 2

Dataset 3

Dataset m

…

…

DSTMF Meta

Feature Matrix

…

Figure 5.2.: Methodology of extracting Descriptive Statistics Time-based Meta Features (DSTMF).

In the case of load time series datasets, 10 target aggregation levels are defined, namely

1-hour, daily, monthly, weekend, workday, workday_sum, winter, summer, spring and

autumn. The final meta feature set results from combining the meta features of the

aggregations with that from the original dataset. It gives a detailed representation and

72

5.2. Proposed Solution

characterization of the input time series at different aggregation levels. The reason for

this approach is that, if we have an input time series with 1-hour measurement values,

capturing the characteristics of a time series dataset only at the fine-grained aggregation

level is not always a good idea, because of the effect of changing in the readings for the

same time point from day to day. E.g., assume that we have a time series of an energy load

for a building. On one day, the peak energy load in the morning is at 7 an (work-day) while

on the next day the peak is at 9 an (weekend). Such changes in the energy load may affect

the accuracy of understanding the time series and capturing the deep characteristics of it.

As a result, if we aggregate the hourly energy load in a daily energy load moving toward a

coarse-grained energy load, we can hide these changes and reduce the bias toward specific

values at the fine-grained aggregation level.

In case of power generation time series datasets, some of the aforementioned aggregation

levels do not exist, e.g. workdays and weekends. The reason for that lies in the fact that the

power generation of photovoltage is mainly dependent on the weather and not affected

by human behaviour. As a result, such aggregation levels are excluded and DSTMF is

calculated for the rest of the resulting aggregation levels of the generation time series

datasets.

To operationalize DSTMF, we start with the original input time series dataset extracting the

aforementioned meta features. Then, the dataset is aggregated to each target aggregation

level larger than the original aggregation level. An aggregation level A is considered to

be larger than an aggregation level B, if the time horizon between the data points in A

is larger than the time horizon between data points in B. For instance, given an input

time series dataset with daily aggregation level. From this, a load time series dataset with

1-hour aggregation level cannot be derived without losing the accuracy of respective time

series measurements. Therefore, the possible aggregation levels will be monthly, weekend,

workday, workday_sum, winter, summer, spring and autumn.

For each possible aggregation level, the five-number summary in addition to the arithmetic

mean is calculated. The results are combined to one meta feature set forming the first

row in the matrix illustrated in Figure 5.2. We repeat this process for all input time series

datasets to have the final shape of the meta features dataset as a matrix, as shown in Figure

5.2 which will be used by meta learners to select the most appropriate forecasting model.

While each row in this matrix corresponds to a specific input time series dataset from 1 to

m, each column is calculated for a specific possible aggregation level from 1 to n. In order

to avoid having missing values in the final meta features dataset, one has to consider one

important property that all input time series datasets should have, i.e., the same granularity

level. This ensures that we have the same number of possible aggregation levels producing

the same number of meta features for each input time series dataset.

5.2.2. Energy Meta Learning System (EMLS)

As we have mentioned before, to assess the effectiveness of DSTMF in characterizing

energy time series datasets, EMLS as depicted in phase 1 and phase 2 of Algorithm 1 is

73

5. Characterizing Energy Time Series Datasets

conceptualized and implemented. Our system will support the selection of the appropriate

forecasting algorithm for the respective dataset. A variety of meta features groups are

extracted in the present work, namely simple, statistical, information-theoretic, time series

and DSTMF meta features. Both Random Forecast (RF) and Artificial Neural Network

(ANN) are involved in EMLS as the meta learners. To ensure better applicability of the

classification rules by the meta learner, an efficient feature selection and importance

analysis procedure is integrated into EMLS.

Algorithm 1 Energy Meta Learning System (EMLS)

Phase 1: Prepare energy time series datasets and build meta learning classification
model
Input:
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}: Problem space (energy time series datasets)

𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚}: Algorithm space

𝐴𝑔𝑔 = {𝐷𝑎𝑖𝑙𝑦,𝑊𝑒𝑒𝑘𝑙𝑦,𝑀𝑜𝑛𝑡ℎ𝑙𝑦, ...}: Aggregation levels of 𝑋

𝑃𝑃 : Set of functions to preprocess 𝑋

𝑀𝐹 : Set of functions to extract meta features categories

𝐷𝑆𝑇𝑀𝐹 : Set of functions to extract DSTMF meta features

𝐹𝐹 : Set of functions to calculate forecasting features

Output:
Meta learning classification model

preprocessing and features extraction of problem space 𝑋

1: for 𝑖 = 1 to 𝑛 in 𝑋 do
2: Apply 𝑃𝑃 to preprocess 𝑥𝑖

3: for 𝑖 = 1 to 𝑛 in 𝑋 do
4: Calculate forecasting features 𝐹𝐹 for 𝑥𝑖

Extract Meta knowledge

5: for 𝑖 = 1 to 𝑛 in 𝑋 do
6: Split 𝑥𝑖 into training set 𝑥𝑖_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and test set 𝑥𝑖_𝑡𝑒𝑠𝑡𝑖𝑛𝑔

7: for 𝑗 = 1 to 𝑛 in 𝐴𝑔𝑔 do
8: Aggregate 𝑥𝑖_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 based on 𝐴𝑔𝑔

9: Calculate meta features 𝐷𝑆𝑇𝑀𝐹 on the aggregated datasets

10: Calculate meta features𝑀𝐹 on training set 𝑥𝑖_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

11: for 𝑘 = 1 to𝑚 in 𝐴 do
12: Train model 𝑎𝑘 on 𝑥𝑖_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

13: Test model 𝑎𝑘 on 𝑥𝑖_𝑡𝑒𝑠𝑡𝑖𝑛𝑔 and save forecasting error

14: Select model with best performance measure as a label for 𝑥𝑖

15: Build Knowledge Matrix (KM)

16: Split KM into 𝐾𝑀_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐾𝑀_𝑡𝑒𝑠𝑡𝑖𝑛𝑔

17: train and test meta learning classification model on 𝐾𝑀_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐾𝑀_𝑡𝑒𝑠𝑡𝑖𝑛𝑔

74

5.2. Proposed Solution

Algorithm 1 - Phase 2: Model selection for a new energy time series dataset
Input:

Meta learning classification model

𝑥𝑛𝑒𝑤 : energy time series dataset to classify (a new building)

𝐹𝐹 and 𝐷𝑆𝑇𝑀𝐹 functions

Output:
The adequate forecasting model

18: Apply 𝑃𝑃 to preprocess time series dataset 𝑥𝑛𝑒𝑤
19: Aggregate 𝑥𝑛𝑒𝑤 based on 𝐴𝑔𝑔

20: Apply 𝐷𝑆𝑇𝑀𝐹 functions on the aggregated results

21: Apply𝑀𝐹 functions on 𝑥𝑛𝑒𝑤
22: Pass the extracted meta features of 𝑥𝑛𝑒𝑤 to the meta learning classification model to

predict the best forecasting model for 𝑥𝑛𝑒𝑤
23: Update KM with 𝑥𝑛𝑒𝑤

One of the main advantages of EMLS proposed in this thesis lies in the dispensing with

the usage of physical features to describe the buildings. EMLS indirectly and anonymously

captures physical and other social properties influencing the load behavior of a building,

which are usually difficult to get explicitly due to privacy and security issues. Such

information is implicitly contained with time series load data of the building and can be

efficiently instrumented asmeta features. Moreover, EMLS presents a generic meta learning

system which is able to handle a variety of energy use cases, not only for buildings but

also for other energy time series use cases. Regardless of the concrete goal of forecasting,

EMLS is able to assign an adequate model to a given energy time series dataset. Precisely,

EMLS could be utilized in the case of short, mid and long term for both energy load and

generation forecasting.

EMLS is explained utilizing the Energo+ time series dataset presented in 2.4.1 with loads

for 200 buildings. As depicted in Algorithm 1, EMLS incorporates two main phases, in

which the meta learning model is first trained on a set of time series datasets describing the

electricity loads of buildings and afterwards tested on new load datasets to recommend the

most appropriate short term forecasting model for them. In the following, the approach

outlined in Algorithm 1 is briefly explained.

Phase 1: Prepare Energy Time Series Datasets and Build Meta Learning Classifica-
tion Model

1. Time series preprocessing. To ensure a better quality of time series datasets which

leads to an accurate load forecasting, EMLS applies a preprocessing procedure. First,

the negative values are automatically set equal to zero. After that, Hampel Filter

[112] which is a widely used method to detect outliers in time series is used. After

performing normalization in which time series are re-scaled to values between zero

and one, linear interpolation defined in [52] is used to fill gaps if they are small,

ranged between one missing value and up to eight missing values (2 hours).

75

5. Characterizing Energy Time Series Datasets

To fill bigger gaps, a more elaborate method is required. As we often have a high

similarity of the same days every week, it is possible to use values from past or future

weeks to impute the missing data with. To compensate for some of the variance, we

impute the mean of several weeks taken from the past and the future of the currently

considered gap of missing data. These samples are only used if they themselves don’t

contain any missing data.

2. Short-term Load Forecasting Scenario. Depending on the use-case, different

forecasting horizons can be considered. For example, larger forecasting horizons are

considered for maintenance related issues. Most studies however focus on short-term

or very-short term forecasting, because they are the most important in the areas of

storage control, automatic generation control, unit commitment and the electricity

market [169]. In fact, most energy is traded in one-day-ahead markets, which raises

the significance of one-day-ahead forecasts [14]. For this reason, we will focus on

the task of predicting a solar power generation time series one-day-ahead in the

form of multi-step forecasts.

The algorithm space is comprised of all the algorithms in the target space of the meta

learning multi-class classification problem. In other words, it contains all algorithms

which can be recommended by the meta learning system. For each input time series

dataset, we build forecasting models including 4 algorithms developed for time series

forecasting, namely DT, RF, GBTs and LR. Further details about the way in which

our input time series datasets are forecasted using these algorithms, is provided in

Section 5.3.1.

3. Meta Features Extraction. As mentioned before, the characteristics of energy

time series datasets paves the road into which methods are most appropriate for

forecasting. As seen in Algorithm 1, the next step in the proposed EMLS is to extract

the meta information required to describe time series datasets. Such meta features

are extracted on the training parts of time series datasets. According to the DSTMF

methodology depicted in Figure 5.2, the original input time series datasets which

have a time resolution of 15 minutes, are then aggregated to 1-hour, daily, monthly,

weekend, weekend sum, workday, workday sum, winter, summer, spring and autumn.

For each aggregated dataset, the five-number summary and the arithmetic mean are

calculated resulting in six meta features.

For robust evaluation, it is of great importance to compare DSTMF to state-of-the-art

meta features existing in literature in the field of energy. (1) Simple meta features

(S.F.) can be directly derived from time series datasets, e.g. the number of samples and

the number of attributes. (2) Statistical meta features (St.F.) describe the statistical

properties of time series datasets such as Standard Deviation (SD), skewness, average,

variance, median, kurtosis, step, to name a few. (3) Information-theoretic meta

features (I.F.) are directly based on entropy measures, e.g. entropy and noise-signal

ratio [29]. (4) Time series meta features (T.F.) are types of statistical features but are

grouped in another category because they are strongly related to time series datasets

[48], e.g. lumpiness, stability, max level shift, max var shift, max kl shift, crossing

76

5.2. Proposed Solution

points, flat spots, stl features, acf features, pacf features and heterogeneity, to name a

few. All these meta features could be computed using methods available in R [157].

The following matrix sketches a formal representation of the extracted meta features,

whereby each row corresponds to a specific time series dataset:(
𝑆.𝐹 ., ..., 𝑆𝑡 .𝐹 ., ..., 𝐼 .𝐹 ., ...,𝑇 .𝐹 ., ..., 𝐷𝑆𝑇𝑀𝐹, ...

𝑆 .𝐹 ., ..., 𝑆𝑡 .𝐹 ., ..., 𝐼 .𝐹 ., ...,𝑇 .𝐹 ., ..., 𝐷𝑆𝑇𝑀𝐹, ...

...

𝑆 .𝐹 ., ..., 𝑆𝑡 .𝐹 ., ..., 𝐼 .𝐹 ., ...,𝑇 .𝐹 ., ..., 𝐷𝑆𝑇𝑀𝐹, ...

)
The DSTMF meta features group is constructed by combining the calculated de-

scriptive statistics from all aggregation levels and the original time series. With

six values per aggregation level, there are a total of 72 meta features. To discover

the effectiveness of DSTMF, seven different groups of meta features are proposed,

namely simple, statistical, information-theoretic, time series, DSTMF, all meta fea-

tures without DSTMF and all meta features including DSTMF. The distribution of

meta features is 2, 7, 2, 45, 72, 56 and 128 meta features for the aforementioned

groups respectively. After extracting the meta features, EMLS will construct the

meta knowledge in the form of a knowledge matrix. In this matrix, each row corre-

sponds to one building containing meta features of this building as predictors and

the best forecasting model as a label. This step is followed by training random forest

and artificial neural networks as meta learners to learn the mapping between the

extracted meta features and the best forecasting models. Based on this mapping,

the resulting meta learning classification model is used later to recommend the

best forecasting model for new buildings as depicted in Algorithm 1. The results

of training and testing meta learners are explained and discussed in more detail in

Section 5.3.

Phase 2: Model Selection for New Energy Time Series Datasets

In this phase, the best short term load forecasting model for new buildings is recommended.

According to Algorithm 1, we start by preprocessing time series and aggregating them in

different aggregation levels. After that, DSTMF and the other groups of meta features are

extracted. These meta features will then be passed to the meta learning classification model

setup and trained in the previous phase to assign the most appropriate short term load

forecasting model for them. After the new load datasets of buildings have been classified,

the knowledge matrix is updated for improving the predictive performance of the meta

learner over the time.

5.2.3. Encoded Energy Meta Learning System (EEMLS)

For better exploitation of meta information included in the extracted meta features, this

section discusses the use of deep learning to encode the extracted meta features by au-

toencoders. The main idea behind autoencoders is that we use unsupervised learning for

leveraging the advantage of neural networks for the task of meta features representation

77

5. Characterizing Energy Time Series Datasets

learning. We design a neural network architecture such that we impose a bottleneck in

the network forcing a compressed knowledge representation of meta features.

Autoencoder

New energy
time series

data

Preprocess
time series

Extract forecasting
features

Training set

Formulate training and testing sets

Testing set

Training forecasting
models

Testing

Apply aggregation

Calculate meta features

Build Meta Learning Classification Model

Split Encoded KM into training
and testing sets

build Encoded Knowledge
Matrix (KM)

Energy time
series data

build Knowledge
Matrix (KM)

Split KM into training
and testing sets

Appropriate forecasting model

+ EMLS + EEMLS

Figure 5.3.: Methodology of EMLS and EEMLS [144].

Figure [EEMLS] demonstrates the main methodological approach of EEMLS. As seen

is this figure, EEMLS follows the same methodology of EMLS with the main difference

that it utilizes autoencoders to encode the input meta features in a new representation

form for capturing the deep characteristics of energy time series datasets in an “Encoded

Knowledge Matrix”. We adapted EMLS to employ autoencoders by adding an encoding

step between the steps 15 and 16 in the aforementioned Algorithm 1.

5.3. Evaluation

The key focus of the evaluation is to investigate the accuracy of the new art of meta features,

DSTMF, in characterizing the energy time series datasets. We aim to support meta learner

with new art of meta feature to enhance its performance in recommending the best

forecasting model from the ones presented in 5.3.1. To this end, we conducted three groups

of experiment on the dataset presented in 2.4.1. Based on a similarity-based clustering

analysis in the first group of experiments, the potential of DSTMF’s meta features for

capturing deep characteristics of energy load time series datasets is evaluated and compared

78

5.3. Evaluation

to other state-of-the-art meta features. In the second and third group of experiments, we

build a complete meta learning use case according to the main methodologies of EMLS

and EEMLS to evaluate DSTMF in an original and encoded representation form. In these

experiments, we compare the predictive performance of our meta learning classification

model using DSTMF with the predictive performance using other state-of-the-art meta

features introduced in the literature. The encoded representation of meta features enabled

us to leverage the advantage of unsupervised deep learning in the context of energy time

series model selection as will be seen in the following sections.

5.3.1. Use Case Study: Short-Term Load Forecasting Scenario

Accurate load forecasting of individual buildings has attracted significant attention in

recent years, especially in energy management systems which monitor, optimize and

control the smart grid energy market [97]. The reason for that lies in the fact that an

accurate knowledge about the future energy patterns helps to reshape the load, paving

the road for better management as well as distribution of energy at grid level. However,

there are many approaches to predict the electrical load. In the past, physical models

were often used leveraging the physical knowledge of buildings and domain expertise to

forecast electrical load [86][89][99]. The emergence of automatic data collection and other

technological advancements enabled the use of data-driven models [52][9].

Massive amounts of data can be used to unfold the underlying knowledge without expert

knowledge about the domain. In addition to the raw load data, exogenous variables like

weather or calendar data can be used to support the forecasting model which can be

categorized by their forecasting horizon as: Short Term Load Forecasting (STLF) with a

horizon up to one week is important for real-time operations and short-term decisions.

Medium Term- (MTLF) and Long Term Load Forecasting (LTLF) are used for monthly or

yearly planning and energy management.

In this chapter, the focus lies on one-day ahead STLF data driven models with few calendar-

based exogenous variables. The reason for choosing such a use case lies in the increasing

importance of energy load forecasting in the modern power systems [97][184][54][8][77]

In our evaluation, each time series dataset is a series of load (kW) values with sampling

rate of 15 minutes which leads to 96 values to be predicted for one day. Based on the fact

that the periodicity is one of the main characteristics in electricity load time series datasets,

calendar features such as hour, day, month and weekend are extracted for each building as

exogenous variables to be used as predictors for short-term forecasting. Additionally, we

choose to use the load values of one-day-ago and the corresponding value in one-week-ago

as forecasting features, as the energy load patterns of the investigated time series of office

buildings likely have daily and weekly seasonality.

DT, RF, GBTs and LR are utilized to forecast one day ahead load. Generally and for all

buildings, only the last year is used for testing and the rest for training. Based on the

main idea of the meta learning approach, the model with best forecasting performance

is considered as a label in the final knowledge matrix to represent the best solution for

79

5. Characterizing Energy Time Series Datasets

(a) One-day ahead forecasting of building Nr. 32. (b) One-day ahead forecasting of building Nr. 617.

(c) One-day ahead forecasting of building Nr. 2713. (d) One-day ahead forecasting of building Nr. 459

DTGround Truth LR RF GBT

Figure 5.4.: Predictive performance in terms of RMSE for DT, RF, GBTs and LR for buildings 32, 617, 2713

and 459.

a building, as explained in Algorithm 1. To indicate the accuracy of the short-term load

forecasting model, RMSE metric [32].

Only the forecasting of 1 hour is depicted in Figure 5.4. Interesting is that not all models

have the same predictive performance on a specific time series dataset. The reason for that

lies in the characteristics of time series dataset. While DT achieves the best performance

for building 32, LR introduces the smallest RMSE for forecasting the load of building 617.

80

5.3. Evaluation

5.3.2. Similarity-based Clustering Analysis

The experiments are conducted on datasets of 60 energy time series selected from Energo+

presented in 2.4.1. These time series are measurements of the energy load from 60 institu-

tional buildings at a granularity level of 1-hour for 5 years. The original granularity level

is 15 minutes, therefore we aggregate the readings in 1-hour before starting this group

of experiments. Before applying the DSTMF methodology to extract the meta features,

a preprocessing procedure is applied to cleanup and harmonize the energy time series

datasets. The procedure includes detecting gaps and NA values and performing outlier

analysis.

According to the DSTMF methodology presented in Section 5.2.1, the input time series

datasets which had a time resolution of 1-hour, are then aggregated to daily, monthly,

weekend, workday, workday_sum, winter, summer, spring and autumn. For each aggre-

gated dataset, the five-number summary and the arithmetic mean are calculated resulting

in 6 meta features. As a result, 60 meta features are extracted for each input time series

dataset formulating a final meta feature matrix of 60 columns and 60 rows.

As mentioned before, it is a great of importance to perform a benchmark evaluation, in

which the DSTMF’s meta features are compared to state-of-the-art meta features of other

approaches existing in literature and applied in meta learning model selection for time

series forecasting. For this benchmark evaluation, the four different groups presented

in 5.2.2 are used. To this end, 2 S.F., 8 St.F., 2 I.F., 26 T.F. and 60 DSTMF’s meta features

are extracted for the 60 time series energy load datasets forming the final meta feature

matrix.

After extracting the meta features for our input load time series datasets, a similarity-based

clustering analysis is performed to measure the accuracy of the extracted meta features in

representing the behavior of those datasets. The goal of clustering is to identify similarities

between unlabeled datasets by organizing the datasets into homogeneous groups with the

help of some similarity-criteria where this criteria value is minimized for datasets within

the same group and the between-groups dissimilarity is maximized.

The main idea behind clustering lies in the fact that, if a set of meta features accurately

captures the characteristics of a set of datasets, then a clustering algorithm applied on

those datasets and their corresponding meta features separately should arrive at the same

cluster classification. Or more precisely, the meta features that are grouped together in

one cluster should represent the datasets which are also located together in one cluster for

applying the same clustering algorithm.

To ensure that the clustering analysis works as expected, an appropriate clustering al-

gorithm is needed. Our decision for choosing the right clustering algorithm is based on

internal measures which use the intrinsic information in the time series datasets to assess

the quality of the clustering. Internal measures entail the connectivity, the silhouette

coefficient and the Dunn index. Briefly, connectivity indicates the degree of connectedness

of the clusters, as determined by the k-nearest neighbors algorithm. The connectedness

corresponds to what extent items are placed in the same cluster as their nearest neighbors

81

5. Characterizing Energy Time Series Datasets

Table 5.1.: Internal measures of applying 10 clustering algorithms on time series datasets.

Clustering
Category

Hierarchical
Clustering k-means PAM DIANA CLARA SOTA Agnes Model-based SOM FANNY

Connectivety 43.1948 19.2528 34.8175 45.9135 34.1147 51.7861 25.8881 60.8845 64.4861 54.4458

Silhouette 0.1428 0.2819 0.1511 0.1313 0.1527 0.1184 0.2015 0.0984 0.0901 0.1004

Dunn Index 0.4955 0.7319 0.5143 0.4978 0.6126 0.3998 0.7009 0.2011 0.1184 0.3126

in the data space. The connectivity ranges from 0 to infinity and should be minimized for

better clustering. Silhouette width and Dunn index combine measures of compactness and

separation of the clusters. The values of silhouette width range from -1 as poorly-clustered

observations to 1 as well-clustered observations. The Dunn index is the ratio between

the smallest distance between observations not in the same cluster to the largest intra

cluster distance. It has a value between 0 and infinity and should be maximized for better

clustering.

Normalization is an essential step before clustering. This is due to the fact that normaliza-

tion controls the variability of the dataset by converting it into a specific range to generate

good quality clusters and improve the accuracy of clustering algorithms.

Table 5.1 summarizes our results after applying a wide range of clustering algorithms

[177], namely hierarchical clustering, k-means, PAM, DIANA, CLARA, SOTA, Agnes,

Model-based, SOM and FANNY, on our 60 normalized energy load time series datasets.

From the aforementioned results, the clustering algorithm that outperformed all others is

chosen to evaluate the accuracy of meta features. Overall, according to Table 5.1, the k-

means clustering algorithm performed best with regard to the connectivity, the silhouette

coefficient and the Dunn index, therefore, it was chosen as the clustering algorithm for

our experiments to evaluate the accuracy of meta features.

However, determining the optimal number of clusters in the k-means algorithm is a great

challenge. For the presented work, the statistical testing method, called gap statistic

proposed by Tibshirani et. al. in [159] is used to determine the optimal number of clusters.

The gap statistic compares the total within intra-cluster variation for different values of

k with their expected values under null reference distribution of the data points. The

estimation of the optimal number of clusters will then be the value that maximizes the gap

statistic. As a result, k = 8 is considered as an optimal number of clusters for the k-means

clustering algorithm. Based on the aforementioned configurations, the clustering analysis

is performed on the 60 normalized energy load time series datasets and their corresponding

meta features with the following cluster groups: simple, statistical, information-theoretic,

time series, DSTMF, all without DSTMF and all meta features.

Figure 5.5 illustrates the distribution of the 60 time series datasets on 8 clusters after

applying the k-means clustering algorithm. As each dataset is represented by multiple

meta features, k-means clustering algorithm will perform Principal Component Analysis

(PCA) and plot the data points in 2 dimensions corresponding to the first two principal

components that explain the majority of the variance in data.

The Clustering Error (CE) is defined based on Equation (5.1).

82

5.3. Evaluation

𝐶𝐸 =

𝑛∑︁
𝑖=0

𝐶𝑊𝑖

𝐶𝑇𝑖
(5.1)

Where:

• 𝐶𝑊𝑖 : the number of the dataset that are wrongly clustered in cluster i.

• 𝐶𝑇𝑖 : the total number of datasets in cluster i.

• n: the total number of clusters.

1

2

3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
44

45

46

4748

49

50

51

52

53

54

55

56

57

58

59

60

−100

−50

0

50

100

−100 0 100 200
Dim1 (27.5%)

Di
m

2
(5

.1
%

)

cluster

a

a

a

a

a

a

a

a

1

2

3

4

5

6

7

8

Cluster plot

Figure 5.5.: Result of applying the k-means algorithm with 8 clusters on the original input time series

datasets.

To understand how the error is calculated, consider the cluster number 5 (depicted in

light blue in Figure 5.5) as an example. In this cluster, the datasets number 58, 16, 35,

9, 13, 21, 47, 43 and 45 are grouped together in one cluster. Assume that the k-means

83

5. Characterizing Energy Time Series Datasets

clustering algorithm is applied on the group of statistical meta features. As a result, only

the meta features datasets number 58, 16, 35, 9 and 43 are grouped together in one cluster

and the others are clustered in different clusters. The majority of meta features datasets

that are grouped together are taken as a reference of correct clustering and all others are

considered as wrongly clustered. According to this, 4 out of 9 meta features datasets are

in the wrong clusters. This calculation is repeated for the other clusters to discover the

meta features datasets which are clustered in wrong clusters. This error is accumulated to

find the final error of clustering.

Table 5.2.: Clustering error for different groups of meta features.

Clustering Category Clustering Error

Simple meta features 80%

Statistical meta features 70%

Information-theoretic meta features 56%

Time series meta features 41%

DSTMF’s meta features 39%

Simple + Statistical + Information-theoretic + Time series meta features 31%

All meta features 18%

Table 5.2 shows the comparison of results for applying the clustering on different groups

of meta features. Note that both simple and statistical meta features characterize time

series datasets only to a low extent. This can be seen in clustering error of 80% and 70% for

simple and statistical meta features respectively. An improvement of 14% is achieved by

information-theoretic meta features. An acceptable capturing of the characteristics of time

series datasets is obtained by time series meta features, where the clustering error is 41%.

DSTMF’s meta features outperform all previous meta features by achieving a clustering

error of 39%.

A better clusteringwith an error of 31% is attainedwhen using simple, statistical, information-

theoretic and time series meta features together. The major effect of our new meta features

can be clearly seen when applying clustering on all meta features including DSTMF’ s

meta features, whereby a further improvement of 13% is realized with a clustering error

of 18%. This gives good evidence for the effectiveness of our proposed meta features in

capturing the deeper properties of time series datasets.

5.3.3. Predictive Performance of Meta Learner: Original Representation of
Meta Features

In this part of the evaluation, the experiments are conducted on the dataset presented

in Section 5.2.2. We extracted 128 meta features categorized in seven different groups

to describe the energy time series datasets. To discover the association between the

84

5.3. Evaluation

meta features and forecasting models explained in Section 5.3.1, Random Forest (RF)

and Artificial Neural Network (ANN) are employed as meta learners. For achieving

the best predictive performance of the meta learner, it is important that the best set of

hyperparameters for both meta learners is used. This is done by using the GridSearchCV

technique [58], in which an exhaustive set of hyperparameter combinations is created and

the model is then trained on each combination.

In this context, the used meta learner tries to achieve the goal of meta learning in selecting

the most appropriate learning algorithm by formulating it as a supervised machine learning

problem, in which a multi-class classification problem is solved. 140 time series datasets

corresponding to 140 buildings are randomly selected from the original 200 buildings for

training in this group of experiments.

For fair evaluation, three testing scenarios are taken into consideration. In the first one,

the testing datasets represents 10 buildings that are partly covered by the training dataset.

Secondly, the testing dataset represents 10 buildings that are completely contained in the

training dataset. The last testing scenario defines the testing set by load datasets of 10 new

buildings that are not covered by the training dataset. Concerning the difficulty for meta

learner to recommend the best model, the second testing scenario represents a simple easy

case compared to the last scenario that presents the difficult one. The experiments are

repeated five times. Each time a new group of buildings is randomly chosen for training.

After performing the tests, the mean of the results is computed and presented in Figure

5.6.

An overall comparison between the different categories of meta features is presented in

this figure. This comparison is based on the number of buildings that have been assigned

the correct short term load forecasting model. Generally, a relatively bad classification

performance is introduced by both meta learners especially in the third testing scenario,

in which a new group of buildings that are not covered by the training dataset is used

as seen Figures 5.6a and 5.6b. This bad performance has two main reasons, namely the

curse of dimensionality and multicollinearity between meta features. The negative effect

of multicollinearity can be interpreted as some meta features are highly correlated in a

way that can negatively affect the performance of the meta learner. This is due to the fact

that multicollinearity problem can lead to a false interpretation of feature importance as

the importance level of certain features can be underestimated or overestimated.

85

5. Characterizing Energy Time Series Datasets

Partly Covered Completly Covered Not Covered (New)
Testing Dataset

0

2

4

6

8

10

N
r.

 B
ui

ld
in

g
As

si
gn

ed
 th

e
Co

rr
ec

t F
or

ec
as

tin
g

M
od

el

Best Performance

Total Nr. Buildings in Testing

(a) RF - before feature selection

Partly Covered Completly Covered Not Covered (New)
Testing Dataset

0

2

4

6

8

10

N
r.

 B
ui

ld
in

g
As

si
gn

ed
 th

e
Co

rr
ec

t F
or

ec
as

tin
g

M
od

el

Best Performance

Total Nr. Buildings in Testing

(b) ANN - before feature selection

Partly Covered Completly Covered Not Covered (New)
Testing Dataset

0

2

4

6

8

10

N
r.

Bu
ild

in
g

As
si

gn
ed

 th
e

Co
rr

ec
t F

or
ec

as
tin

g
M

od
el

Best Performance Total Nr. Buildings in Testing

(c) RF - after feature selection

Partly Covered Completly Covered Not Covered (New)
Testing Dataset

0

2

4

6

8

10

N
r.

 B
ui

ld
in

g
As

si
gn

ed
 th

e
Co

rr
ec

t F
or

ec
as

tin
g

M
od

el

Best Performance Total Nr. Buildings in Testing

(d) ANN - after feature selection

Time SeriesStatisticalSimple Information-theoretic DSTMF ALLALL without DSTMF

Figure 5.6.: Predictive performance of meta learning classification models in case of using Random Forest

(RF) and Artificial Neural Network (ANN) as meta learners.

To overcome these problems, the proposed EMLS applies an efficient feature engineering

procedure for identifying the main independent from each other meta features and delete

all predictors that have no effect on the response variable. Pearson’s correlation [112] is

applied to find the highly correlated meta features in order to remove them. As seen in

Figure 5.7, a relatively high correlation is found among meta features which negatively

affected the predictive performance of the meta learner. Due to the large number of DSTMF

meta features, we will show the correlation between 30 meta features.

86

5.3. Evaluation

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

au
tu

m
n_

fir
st

Q
u

au
tu

m
n_

m
ax

au
tu

m
n_

m
ea

n

au
tu

m
n_

m
ed

ia
n

au
tu

m
n_

m
in

au
tu

m
n_

th
ird

Q
u

da
ily

_f
irs

tQ
u

da
ily

_m
ax

da
ily

_m
ea

n

da
ily

_m
ed

ia
n

da
ily

_m
in

da
ily

_t
hi

rd
Q

u

fir
st

Q
u

m
ax

m
ea

n

m
ed

ia
n

m
in

m
on

th
ly

_f
irs

tQ
u

m
on

th
ly

_m
ax

m
on

th
ly

_m
ea

n

m
on

th
ly

_m
ed

ia
n

m
on

th
ly

_m
in

m
on

th
ly

_t
hi

rd
Q

u

sp
rin

g_
fir

st
Q

u

sp
rin

g_
m

ax

sp
rin

g_
m

ea
n

sp
rin

g_
m

ed
ia

n

sp
rin

g_
m

in

sp
rin

g_
th

ird
Q

u

su
m

m
er

_f
irs

tQ
u

autumn_firstQu

autumn_max

autumn_mean

autumn_median

autumn_min

autumn_thirdQu

daily_firstQu

daily_max

daily_mean

daily_median

daily_min

daily_thirdQu

firstQu

max

mean

median

min

monthly_firstQu

monthly_max

monthly_mean

monthly_median

monthly_min

monthly_thirdQu

spring_firstQu

spring_max

spring_mean

spring_median

spring_min

spring_thirdQu

summer_firstQu

Figure 5.7.: Correlation matrix of 30 DSTMF meta features.

87

5. Characterizing Energy Time Series Datasets

After discovering the highly correlated meta features, the next step is to remove them.

To this end, we remove the meta features that are > 0.75% correlated. Figure 5.8 and 5.9

illustrates a part of the time series and DSTMF meta features after removing the highly

correlated meta features.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M
in

st
1

_
Q

u
.

M
a

x
M

a
x_

d
a

ily
M

in
_

w
e

e
kl

y_
w

o
rk

d
ay

_
a

g
g

re
g

a
te

d
st

1
_

Q
u

_
w

e
e

kl
y_

w
o

rk
d

ay
_

a
g

g
re

g
a

te
d

M
e

d
ia

n
_

w
e

e
kl

y_
w

o
rk

d
ay

_
a

g
g

re
g

a
te

d
M

e
a

n
_

w
e

e
kl

y_
w

o
rk

d
ay

_
a

g
g

re
g

a
te

d
M

in
_

w
o

rk
d

ay
st

1
_

Q
u

_
w

o
rk

d
ay

st
1

_
Q

u
_

m
o

n
th

M
e

d
ia

n
_

m
o

n
th

M
e

a
n

_
m

o
n

th
rd

3
_

Q
u

_
m

o
n

th
M

a
x_

m
o

n
th

M
a

x_
w

e
e

ke
n

d
M

in
_

w
in

te
r

st
1

_
Q

u
_

w
in

te
r

rd
3

_
Q

u
_

w
in

te
r

M
a

x_
w

in
te

r
M

in
_

su
m

m
e

r
M

in
_

a
u

tu
m

n
st

1
_

Q
u

_
a

u
tu

m
n

M
a

x_
a

u
tu

m
n

Min
st1_Qu.

Max
Max_daily

Min_weekly_workday_aggregated
st1_Qu_weekly_workday_aggregated

Median_weekly_workday_aggregated
Mean_weekly_workday_aggregated

Min_workday
st1_Qu_workday

st1_Qu_month
Median_month

Mean_month
rd3_Qu_month

Max_month
Max_weekend

Min_winter
st1_Qu_winter

rd3_Qu_winter
Max_winter
Min_summer

Min_autumn
st1_Qu_autumn

Max_autumn

Figure 5.8.: A part of DSTMF meta features after removing the features that are > 0.75% correlated.

88

5.3. Evaluation

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

lu
m

pi
ne

ss
fla

t_
sp

ot
s

hu
rs

t
un

itr
oo

t_
kp

ss
un

itr
oo

t_
pp

di
ff1

_a
cf

1
di

ff2
_a

cf
1

be
ta

ar
ch

_r
2

ga
rc

h_
r2

no
nl

in
ea

rit
y

fir
st

m
in

_a
c

fir
st

ze
ro

_a
c

tre
v_

nu
m

m
ot

ift
w

o_
en

tro
3

w
al

ke
r_

pr
op

cr
os

s
sp

re
ad

ra
nd

om
lo

ca
l_

m
ea

nt
au

l
hi

st
og

ra
m

_m
od

e
ou

tli
er

in
cl

ud
e_

m
dr

m
d

flu
ct

an
al

_p
ro

p_
r1

tre
nd

sp
ik

e
lin

ea
rit

y
cu

rv
at

ur
e

m
ax

_k
l_

sh
ift

tim
e_

kl
_s

hi
ft

va
r

m
ax

_l
ev

el
_s

hi
ft

tim
e_

le
ve

l_
sh

ift
m

ax
_v

ar
_s

hi
ft

tim
e_

va
r_

sh
ift

lumpiness
flat_spots

hurst
unitroot_kpss

unitroot_pp
diff1_acf1

diff2_acf1
beta

arch_r2
garch_r2
nonlinearity

firstmin_ac
firstzero_ac

trev_num
motiftwo_entro3
walker_propcross

spreadrandomlocal_meantaul
histogram_mode

outlierinclude_mdrmd
fluctanal_prop_r1

trend
spike
linearity
curvature

max_kl_shift
time_kl_shift

var
max_level_shift

time_level_shift
max_var_shift

time_var_shift

Figure 5.9.: A part of time series meta features after removing the features that are > 0.75% correlated.

As a result, the total number of meta features is reduced containing only the meta features

that are not strongly correlated as seen in Table 5.3.

Table 5.3.: Different groups of meta features after removing the highly correlated meta features.

Meta Features Groups Total Number of
Meta Features

Number of Not Highly
correlated Meta Features

Simple meta features 2 2

Statistical meta features 7 7

Information-theoretic meta features 2 2

Time series meta features 45 26

DSTMF meta features 72 44

Simple + Statistical + Information-theoretic + Time series meta features 56 35

All meta features 128 76

89

5. Characterizing Energy Time Series Datasets

After removing the highly correlated meta features, we need to select the most important

predictive features. To achieve that, Recursive Feature Elimination (RFE) is used. RFE

is an automatic feature selection method that can be used to build many models with

different subsets of a dataset and identify those attributes that are not required to build an

accurate model. This technique begins by building a model on the entire set of features

and computing an importance score for each one. The least important feature(s) are then

removed, the model is re-built, and importance scores are computed again. Table 5.4

illustrates the features selected by RFE for each meta-feature group.

Before feature engineering and in the case of using RF as meta learner, the best predictive

performance is achieved by time series meta features for the three testing scenarios as

depicted in Figure 5.6a. In the second testing scenario, the best predictive performance

is achieved by time series as well as all, the last category, as also depicted in Figure 5.6a.

ANN showed the best predictive performance with the categories DSTMF, time series and

all, as seen in the second testing scenario in Figure 5.6b. In this figure, DSTMF outperforms

time series meta features in the first and third testing scenarios. As depicted in Figure 5.6c,

EMLS is able to assign the correct forecasting model for 9 buildings in the second testing

scenario when using time series, DSTMF and all meta features.

Interesting is that the whole number of buildings are assigned the correct model by

using ANN with time series and DSTMF in the second testing scenario as seen in Figure

5.6d. Focusing on the third testing scenario, the most difficult one, the best predictive

performance of assigning 9 correct models to 10 buildings is achieved in the case of using

ANN for the categories time series, DSTMF and All as seen in Figure 5.6d.

Moreover and by comparing the last 2 categories of meta features, an improvement is

generally noticed for all testing scenarios in case of using DSTMF as a part of meta

feature space, namely category all, as depicted in Figures 5.6a, 5.6b, 5.6c and 5.6d. EMLS

achieves an improvement of 10% to 30% after applying the feature engineering procedure

as illustrated in Figure 5.6. Moreover, it is notable that a bad predictive performance is

introduced by both RF and ANN for simple and information-theoretic meta features in all

testing scenarios. This provides an evidence that these categories badly characterize time

series datasets. Moreover, the proposed DSTMF represents a new comparative art of meta

features against time series meta feature category as seen in Figures 5.6b, 5.6c and 5.6d.

Furthermore, it is found that using ANN as a meta learner introduces better predictive

performance in assigning the best forecasting model for energy time series datasets.

5.3.4. Predictive Performance of Meta Learner: Encoded Representation
of Meta Features Using Autoencoders

In this part of our evaluation, we investigate the effect of encoding meta features on the

predictive performance of meta learners in predicting the most appropriate forecasting

model. The experiments are also conducted on the dataset presented in Section 5.2.2.

We extracted 128 meta features categorized in seven different groups, namely simple,

statistical, information-theoretic, time series, DSTMF, all meta features without DSTMF

90

5.3. Evaluation

Table 5.4.: The meta features selected by Recursive Feature Elimination (RFE) procedure for each group of

meta features.

M
et
a
Fe

at
ur

e
Ca

te
go

ry

To
ta
lN

r.
of

M
et
a

Fe
at
ur

es
Se
le
ct
ed

M
et
a
Fe

at
ur

es
N
r.
of

Se
le
ct
ed

M
et
a
Fe

at
ur

es

Si
m
pl
e
M
et
a
Fe

at
ur

es
2

N
r
.
o
f
s
a
m
p
l
e
s
a
n
d
N
r
.
o
f
a
t
t
r
i
b
u
t
e
s

2

St
at
is
tic

al
M
et
a
Fe

at
ur

es
7

V
a
r
,
s
k
e
w
n
e
s
s
,
s
t
d
,
k
u
r
t
o
s
i
s
,
s
t
d
1
s
t
_
d
e
r
,
o
u
t
l
i
e
r
i
n
c
l
u
d
e
_
m
d
r
m
d
,
h
i
s
t
o
g
r
a
m
_
m
o
d
e

7

In
fo
rm

at
io
n-
th
eo

re
tic

M
et
a
Fe

at
ur

es
2

E
n
t
r
o
p
y
,
m
o
t
i
f
t
w
o
_
e
n
t
r
o
3

2

Ti
m
e
Se
ri
es

M
et
a
Fe

at
ur

es
2
6

s
t
a
b
i
l
i
t
y
,
x
_
a
c
f
1
0
,
u
n
i
t
r
o
o
t
_
p
p
,
x
_
a
c
f
1
,
a
c
_
9
,
e
_
a
c
f
1
,
a
l
p
h
a
,
d
i
ff
2
x
_
p
a
c
f
5
,

a
r
c
h
_
l
m
,
d
i
ff
1
_
a
c
f
1
,
s
p
r
e
a
d
r
a
n
d
o
m
l
o
c
a
l
_
m
e
a
n
t
a
u
l
,
d
i
ff
2
_
a
c
f
1
0
,

d
i
ff
2
_
a
c
f
1
,
t
i
m
e
_
l
e
v
e
l
_
s
h
i
f
t
,
l
i
n
e
a
r
i
t
y
,
w
a
l
k
e
r
_
p
r
o
p
c
r
o
s
s
,

fl
a
t
_
s
p
o
t
s
,
u
n
i
t
r
o
o
t
_
k
p
s
s
,
fi
r
s
t
z
e
r
o
_
a
c
,
t
r
e
n
d

2
0

D
ST

M
F
M
et
a
Fe

at
ur

es
4
4

a
u
t
u
m
n
_
m
a
x
,
w
e
e
k
l
y
_
w
o
r
k
d
a
y
s
_
m
a
x
,
w
e
e
k
l
y
_
m
a
x
,
d
a
i
l
y
_
m
a
x
,
w
i
n
t
e
r
_
m
a
x
,

w
o
r
k
d
a
y
s
_
m
a
x
,
w
e
e
k
e
n
d
s
_
m
a
x
,
w
i
n
t
e
r
_
t
h
i
r
d
Q
u
,
w
i
n
t
e
r
_
m
e
a
n
,
d
a
i
l
y
_
m
i
n
,
w
e
e
k
e
n
d
s
_
m
e
a
n
,

w
e
e
k
l
y
_
w
e
e
k
e
n
d
s
_
m
e
d
i
a
n
,
w
e
e
k
e
n
d
s
_
m
e
d
i
a
n
,
d
a
i
l
y
_
m
e
d
i
a
n
,
m
o
n
t
h
l
y
_
t
h
i
r
d
Q
u
,

w
i
n
t
e
r
_
fi
r
s
t
Q
u
,
s
u
m
m
e
r
_
m
a
x
,
a
u
t
u
m
n
_
t
h
i
r
d
Q
u
,
m
o
n
t
h
l
y
_
m
e
a
n
,

d
a
i
l
y
_
t
h
i
r
d
Q
u
,
w
o
r
k
d
a
y
s
_
m
e
d
i
a
n
,
w
o
r
k
d
a
y
s
_
m
e
a
n

2
2

A
ll
W

ith
ou

tD
ST

M
F

3
5

s
t
a
b
i
l
i
t
y
,
x
_
a
c
f
1
0
,
u
n
i
t
r
o
o
t
_
p
p
,
x
_
a
c
f
1
,
a
c
_
9
,
e
_
a
c
f
1
,
a
l
p
h
a
,
d
i
ff
2
x
_
p
a
c
f
5
,

a
r
c
h
_
l
m
,
d
i
ff
1
_
a
c
f
1
,
s
p
r
e
a
d
r
a
n
d
o
m
l
o
c
a
l
_
m
e
a
n
t
a
u
l
,
d
i
ff
2
_
a
c
f
1
0
,
d
i
ff
2
_
a
c
f
1
,
t
i
m
e
_
l
e
v
e
l
_
s
h
i
f
t
,

l
i
n
e
a
r
i
t
y
,
w
a
l
k
e
r
_
p
r
o
p
c
r
o
s
s
,
fl
a
t
_
s
p
o
t
s
,
u
n
i
t
r
o
o
t
_
k
p
s
s
,
fi
r
s
t
z
e
r
o
_
a
c
,
t
r
e
n
d
,

e
n
t
r
o
p
y
,
m
o
t
i
f
t
w
o
_
e
n
t
r
o
3
,
v
a
r
,
s
k
e
w
n
e
s
s
,
s
t
d
,
k
u
r
t
o
s
i
s
,
s
t
d
1
s
t
_
d
e
r
,

o
u
t
l
i
e
r
i
n
c
l
u
d
e
_
m
d
r
m
d
,
h
i
s
t
o
g
r
a
m
_
m
o
d
e
,
c
o
u
n
t

3
0

A
ll
M
et
a
Fe

at
ur

es
7
6

s
t
a
b
i
l
i
t
y
,
x
_
a
c
f
1
0
,
u
n
i
t
r
o
o
t
_
p
p
,
x
_
a
c
f
1
,
a
c
_
9
,
e
_
a
c
f
1
,
a
l
p
h
a
,
d
i
ff
2
x
_
p
a
c
f
5
,
a
r
c
h
_
l
m
,
d
i
ff
1
_
a
c
f
1
,

s
p
r
e
a
d
r
a
n
d
o
m
l
o
c
a
l
_
m
e
a
n
t
a
u
l
,
d
i
ff
2
_
a
c
f
1
0
,
d
i
ff
2
_
a
c
f
1
,
t
i
m
e
_
l
e
v
e
l
_
s
h
i
f
t
,
l
i
n
e
a
r
i
t
y
,
w
a
l
k
e
r
_
p
r
o
p
c
r
o
s
s
,

fl
a
t
_
s
p
o
t
s
,
u
n
i
t
r
o
o
t
_
k
p
s
s
,
fi
r
s
t
z
e
r
o
_
a
c
,
t
r
e
n
d
,
e
n
t
r
o
p
y
,
m
o
t
i
f
t
w
o
_
e
n
t
r
o
3
,
v
a
r
,
s
k
e
w
n
e
s
s
,
s
t
d
,
k
u
r
t
o
s
i
s
,

s
t
d
1
s
t
_
d
e
r
,
o
u
t
l
i
e
r
i
n
c
l
u
d
e
_
m
d
r
m
d
,
h
i
s
t
o
g
r
a
m
_
m
o
d
e
,
c
o
u
n
t
,a
u
t
u
m
n
_
m
a
x
,
w
e
e
k
l
y
_
w
o
r
k
d
a
y
s
_
m
a
x
,

w
e
e
k
l
y
_
m
a
x
,
,
d
a
i
l
y
_
m
a
x
,
w
i
n
t
e
r
_
m
a
x
,
w
o
r
k
d
a
y
s
_
m
a
x
,
w
e
e
k
e
n
d
s
_
m
a
x
,
w
i
n
t
e
r
_
t
h
i
r
d
Q
u
,

w
i
n
t
e
r
_
m
e
a
n
,
d
a
i
l
y
_
m
i
n
,
w
e
e
k
e
n
d
s
_
m
e
a
n
,
w
e
e
k
l
y
_
w
e
e
k
e
n
d
s
_
m
e
d
i
a
n
,
w
e
e
k
e
n
d
s
_
m
e
d
i
a
n
,

d
a
i
l
y
_
m
e
d
i
a
n
,
m
o
n
t
h
l
y
_
t
h
i
r
d
Q
u
,
w
i
n
t
e
r
_
fi
r
s
t
Q
u
,
s
u
m
m
e
r
_
m
a
x
,
a
u
t
u
m
n
_
t
h
i
r
d
Q
u
,

m
o
n
t
h
l
y
_
m
e
a
n
,
d
a
i
l
y
_
t
h
i
r
d
Q
u
,
w
o
r
k
d
a
y
s
_
m
e
d
i
a
n
,
w
o
r
k
d
a
y
s
_
m
e
a
n

5
2

91

5. Characterizing Energy Time Series Datasets

and all meta features including DSTMF. Only the most four comparative groups of meta

features are included in this group of experiments, namely time series, DSTMF, all meta

features without DSTMF and all meta features including DSTMF. This is due to their good

performance as seen in Section 5.3.3.

An autoencoder neural network is an unsupervised deep learning technique [20] that

employs backpropagation for setting the target values to be equal to the inputs [101].

Its architecture can vary between a simple FeedForward network, convolutional neural

network and LSTM network, to name a few. A simple architecture is utilized here as

the main goal of the current evaluation is to reconstruct the meta features in another

powerful representation form capturing the useful meta information already included in

meta features as depicted in Figure 5.10.

Ex
tr
ac
t
M
et
a
Fe
at
ur
es

……

Autoencoder Architecture

Meta Learning
Classification

Model

Encoded Meta
Features

Figure 5.10.:Autoencoder architecture utilized for reconstructing the meta features in another representation

form.

The parameter settings of autoencoders are as follows: the number of neurons in the last

layer is equal to them in the first layer that corresponds to the number of input meta

features we want to encode and the activation function is Rectified Linear Unit (ReLU).

The reason for using ReLU lies in the fact that unlike classical activation functions such as

“Tangens Hyperbolicus” [66] and “sigmoid logistic” functions [78], ReLU allows exact zero

values easily which makes it a good candidate for encouraging sparsity of representation

[51].

The autoencoder reconstructs its inputs by minimizing the difference between the input

meta features 𝜒 and the output 𝑌 instead of predicting the target value for given inputs.

To achieve that, two parts are required, namely encoder and decoder, which can be defined

as transitions Φ and Ψ in Equation (5.2):

Φ : 𝜒 → 𝐹,𝜓 : 𝐹 → 𝜒 (5.2)

92

5.3. Evaluation

The encoder stage of an autoencoder takes a row 𝑥 in the input meta feature matrix 𝜒 and

maps it to another representation form ℎ ∈ 𝐹 in Equation (5.3):

ℎ = 𝜎 (𝑊𝑥 + 𝑏) (5.3)

where:

• ℎ represents a latent variable, or latent representation of the input meta features.

• 𝜎 is the activation function.

• 𝑊 is a weight matrix and 𝑏 is the bias vector, whereby weights and biases are

initialized randomly and then updated iteratively by feedforward backpropagation.

After that, the decoder stage maps ℎ to another representation form 𝑥
′
of the same shape

of input meta feature 𝑥 as presented in Equation (5.4):

𝑥
′
= 𝜎

′ (𝑊 ′
ℎ + 𝑏 ′) (5.4)

The autoencoder is then trained to minimize the reconstruction error of meta features,

referred as loss according to Equation (5.5):

𝐿(𝑥, 𝑥 ′) =
𝑥 − 𝑥 ′

2 = 𝑥 − 𝜎 ′ (𝑊 ′ (𝜎 (𝑊𝑥 + 𝑏)) + 𝑏 ′)
2 (5.5)

After integrating the autoencoder into the system, the meta learning use case presented in

EMLS is modified according to the methodology of EEMLS and evaluated to discover the

effect of meta features encoding on the predictive performance of the meta learner.

As a meta learner, ANN is used. To get consistent results, the experiments are repeated five

times. Each time a random set of building load datasets are selected for training ANN meta

learner and the mean values of the evaluation results are depicted in Table 5.5. Despite no

information compression is achieved by autoencoder in Setup Configurations (SCs) 1, 5, 9,

13 and 17, as the number of neurons in the middle layer is equal to them in the first input

layer, an acceptable performance is obtained. An improvement is achieved in SCs 2, 6, 10,

14 and 18, whereby a compression ratio of 50% is performed by the autoencoders. For

further compression, no improvement is noticed as a part of meta information is lost.

Generally, the best performance is introduced by the T.F. and DSTMF meta features. As

seen in Table 1, this performance is changing according to the used setup configurations,

where we reduce the total number of buildings used for training to accurately measure

the strength of meta features in capturing the deep characteristics of time series datasets.

While in some cases, time series meta features outperforms DSTMF, DSTMF introduces

better performance especially for a small size of training set. Precisely, it can be clearly

seen that for a number of buildings >= 64, T.F. meta features outperforms DSTMF as seen

in SC from 1 to 8. As the number of buildings in the training set is decreased, the task is

more difficult for meta learners to learn and assign the correct models. In these situations,

DSTMF outperforms all other categories.

93

5. Characterizing Energy Time Series Datasets

Table 5.5.: Setup configurations and evaluation results of EEMLS.

Setup Configuration (SC) Meta Features Category

Nr. Training
Size

Testing
Size Nr. Neuron in Middle Layer T.F. DSTMF All without

DSTMF All

1 118 20 All meta features 19 19 19 19

2 118 20 50 % of meta features 20 20 20 20

3 118 20 25% of meta features 20 18 17 20

4 118 20 2 meta features 19 18 17 18

5 64 20 All meta features 19 18 18 19

6 64 20 50 % of meta features 20 20 19 20

7 64 20 25% of meta features 19 18 18 19

8 64 20 2 meta features 18 17 13 15

9 32 20 All meta features 17 17 16 17

10 32 20 50 % of meta features 18 19 17 18

11 32 20 25% of meta features 16 17 15 17

12 32 20 2 meta features 16 17 13 15

13 16 20 All meta features 17 18 14 16

14 16 20 50 % of meta features 18 19 15 18

15 16 20 25% of meta features 15 16 14 16

16 16 20 2 meta features 15 16 14 15

17 8 20 All meta features 17 18 13 15

18 8 20 50 % of meta features 17 18 14 15

19 8 20 25% of meta features 16 17 13 14

20 8 20 2 meta features 15 16 10 11

Overall, an improvement is achieved between the last two categories, in which the DSTMF

meta features support meta learners with more useful meta information about time series

datasets. This has two main reasons. On the one hand, the large amount of useful meta

information contained in DSTMF meta features. On the other hand, the power of the

autoencoder to encode the useful meta knowledge contained in the extracted meta features

in a new efficient representation form.

By using autoencoders, the system is able to handle the multiclass classification problem

of meta learning by a few number of examples in the training set, namely 32, 16 and

even 8 examples introducing a good acceptable predictive performance in assigning the

correct short term load forecasting model for a testing set of 20 new buildings. To this end

and for a very few number of training examples, the proposed DSTMF outperforms T.F.

meta features leading the meta learning classification model to achieve a better predictive

performance, as seen in Table 5.5.

94

5.3. Evaluation

Consequently, the present thesis introduces a new meta learning approach, in which only

a few number of time series datasets is required to build an efficient meta learning system

for time series model selection without the need for simulating new time series in the case

of a few available examples in the training set. Another advantage of encoding is that the

proposed EEMLS introduces a good predictive performance not only with a small size of

training set but also with a few number of features required to train the meta learning

model, namely 25% of meta features and two meta features as seen in Table 5.5. This shows

that EEMLS definitely produces very simple but effective models for performing energy

time series model selection.

19 19 19 19 19
18 18

19

17 17
16

17 17
18

14

16
17

18

13

15

10 10
9

11

8
7 7 7

6 6

4

7

4
5

4

6

2
3

2
3

0

2

4

6

8

10

12

14

16

18

20

T
S

D
S

T
M

F

W
it

h
o

u
t

A
ll

T
S

D
S

T
M

F

W
it

h
o

u
t

A
ll

T
S

D
S

T
M

F

W
it

h
o

u
t

A
ll

T
S

D
S

T
M

F

W
it

h
o

u
t

A
ll

T
S

D
S

T
M

F

W
it

h
o

u
t

A
ll

118 Buildings 64 Buildings 32 Buildings 16 Buildings 8 BuildingsN
R

.
B

U
IL

D
IN

G
S

 A
S

S
IG

N
E

D
 T

H
E

 C
O

R
R

E
C

T

F
O

R
E

C
A

S
T

IN
G

 M
O

D
E

L

Encoded Representation Orginal Representation

Figure 5.11.:The predictive performance of ANN meta learner in case of encoded and original representation

of meta features.

To verify the positive effect of meta feature encoding, it is of great importance to compare

the predictive performance of the ANN meta learner with its performance in the case of

using the original representation form. Concerning the encoded meta features, only the

setup configurations containing the whole number of meta features are taken into account,

namely 1, 5, 9, 13 and 17. By the encoded representation of meta features, the ANN meta

learner is able to assign the correct forecasting model to the majority of buildings in the

testing set as seen in Figure 5.11. This number decreases as the size of the training set is

decreased. Moreover, the encoded meta features outperforms the original meta features as

a larger number of buildings have been assigned the correct models.

Experiments show the tendency that encoding meta features is a good solution to alleviate

the concern that solving a multiclass classification problem with a very few number of

examples will lead to very bad performance. Consequently, in the case of only a few number

of time series datasets available for training the meta learner, it is highly recommended to

encode meta features by autoencoder for better utilization of meta information contained

in them as seen in Figure 5.11.

95

5. Characterizing Energy Time Series Datasets

5.4. Summary

In this chapter, Descriptive Statistics Time-based Meta Features (DSTMF) as a new method-

ology for characterizing the behavior of time series datasets with meta features to achieve

a more accurate model selection for time series energy load forecasting was presented

and evaluated. We started in Section 5.1 by describing the problem statement we aim to

solve. In Section 5.2, the general solution methodology was presented. Our methodology

included proposing Descriptive Statistics Time-based Meta Features (DSTMF) to describe

energy time series datasets, and presenting Energy Meta Learning System (EMLS) as well

as Encoded Energy Meta Learning System (EEMLS) for instrumenting the extracted meta

features in building an efficient meta learning classification model. The main difference

between EMLS and EEMLS lies in the utilization of unsupervised deep learning to encode

the extracted meta features using autoencoder.

We evaluated the accuracy of DSTMF in characterizing energy time series datasets in

Section 5.3 in three different groups of experiments. In the first group of experiments, we

applied similarity-based clustering analysis to measure the efficiency of DSTMF against

state-of-the-art meta features existing in the literature. We found that DSTMF outper-

formed time series, information-theoretic, simple and statistical meta features in character-

izing energy time series datasets. In the second group of experiments in Section 5.3.3, we

compared the efficiency of DSTMF in terms of the predictive accuracy of meta learners in

assigning the best forecasting model to the input energy time series datasets. To achieve

that, random forest and artificial neural networks were used as meta learners. Different

groups of meta features were extracted. The accuracy of meta learners was then measured

in the case of using DSTMF as meta features and compared to the cases of using the other

groups of meta features. This group of experiments was carried out in two points of view,

namely with and without applying feature engineering procedure. Generally, DSTMF

introduced better performance in characterizing energy time series datasets than the other

groups of meta features. An improvement of 10% to 30% was acquired after applying the

feature selection procedure.

In the last group of experiments, we discovered the accuracy of DSTMF in characterizing

energy time series meta features in the case of using an autoencoder. We used an autoen-

coder to encode meta features in another representation form. Generally, we found that

the predictive performance of meta learner in assigning the best forecasting model for

buildings outperformed the case of using original representation of meta features.

96

6. Generating Efficient Meta Examples for
Energy Time Series Model Selection

Meta learning approaches have been proposed to address the issue of model selection

[81][151][70][122] by formulating it as a classification problem whereby each dataset

is assigned an adequate model. Considering meta learning as a multi-class data-driven

approach and in order to perform well, meta learning systems require a sufficiently large

training set to learn from. When the amount of originally acquired data is not enough to

train a well-performing meta learner, the meta learning model will overfit on the training

data and generalize badly [83][117].

By increasing the training set size, meta learning performance can be improved. The

reason for that lies in the fact that the predictive performance of a classification model

highly depends on the examples available for training not only in number but also in their

diversity. To this end, there has been a lot of recent work published in literature presenting

methodologies and approaches for generating new time series datasets which could be

used as training dataset [47][156][121].

In this chapter, we present a new approach for enhancing the predictive performance

of meta learners by adding newly generated meta examples to the training set with

some new but simple generation strategies. We start in Section 6.1 by presenting the

problem statement including the research question we aim to answer. After that, our

concept to enhance the predictive performance of the meta learning classification model

in recommending the best forecasting model is introduced and discussed in detail in

Section 6.2. Thereafter, we evaluate the effect of the inclusion of the newly generated

meta examples on the predictive performance of the meta learning classification model in

Section 6.3. In our evaluation study, two representations forms of meta features are taken

into account, namely, original and encoded representation of meta features. The research

contributions presented in this chapter were the main topics of our paper in [146].

Parts of this chapter are reproduced from:

• S. Shahoud, M. Winter, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2021). “An extended Meta

Learning Approach for Automating Model Selection in Big Data Environments using Microservice

and Container Virtualization Technologies”. In: Internet of Things, vol. 16, p. 100432. doi:

10.1016/j.iot.2021.100432.

97

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

6.1. Problem Statement

Meta learning for energy time series forecasting model selection is based on accumulating

the meta knowledge over several energy time series datasets and then using such acquired

knowledge to recommend the best model for a new energy time series dataset. Each

dataset is represented by a meta example consisting of a set of meta feature values and a

label that corresponds to the most suitable forecasting model for this time series dataset.

As mentioned before, the process of learning in this context is essentially considered as a

multi-class classification problem in which the meta learner tries to learn the mapping

between the meta knowledge and the corresponding forecasting models.

Like many other machine learning problems, a multi-class classification problem also has

the challenge that it needs an adequate domain data set in size and diversity for training.

The better (diverse) and more examples are available for the learning process, the better the

classification performance will be. To face this challenge, many approaches are proposed

in literature to generate synthetic time series dataset or simulate new ones[65][188][64].

In this chapter, We first develop a meta learning system which predicts the best one-day-

ahead forecasting algorithm for a given solar power generation time series. We further

answer the research question RQ3 ‘ How to enhance the performance of automated model

selection in the context of energy by creating appropriate learning datasets?” by generating

additional meta examples which we can be added to the original training set in order to

create extended training sets. This is achieved by creating new time series, which can be

transformed into said meta examples. The additional meta examples will reduce variance

and overfitting and ultimately result in better classification performance by the meta

learner. Our concept incorporates many different methodologies to generate new time

series datasets, namely time-based, weather-based and a combination between them to

increase the number of meta examples which in turns enhances the predictive performance

of the meta learning classification problem.

6.2. Proposed Solution

In order to enhance the predictive performance of our meta learning multi-class classi-

fication problem, if our training dataset is too small, more meta examples are required.

To augment the training dataset, we propose a new simple approach for generating new

time series datasets using the existing datasets without the need of instrumenting complex

simulation models or synthetically generating new time series. Newly generated time

series data sets are automatically added to the existing training set and transformed into

meta examples by extracting the relevant meta features and determining the label of

the best forecasting model. The new resulting meta examples will then be used to train

the meta learner again on the bigger training data set and enhance its performance in

recommending the best forecasting model for a new time series dataset.

98

6.2. Proposed Solution

C
a

lc
u

la
te

 M
e

ta
 F

e
a

tu
re

s

…

..

Training
Meta

Learner

Best Forecasting
Model for New

Time Series Dataset

New
Energy

Time Series
Dataset

?

Testing Meta
Learner

Calculate Meta
Features

+

Algo.1

Algo.2

Algo.j

…

𝑀𝐹11, 𝑀𝐹12, . . , 𝑀𝐹1𝑛

…

Input Energy Time Series Datasets

Time Series Dataset 1 Time Series Dataset m

….

Generating New Time Series Datasets

Weather-based

Aggregation-based

Weather
Time Series

Datasets

𝑀𝐹21, 𝑀𝐹22, . . , 𝑀𝐹2𝑛

𝑀𝐹𝑚1, 𝑀𝐹𝑚2, . . , 𝑀𝐹𝑚𝑛

Figure 6.1.: Methodology of enhanced meta learning approach, adapted from Chapter 5 with an additional

component for generating new time series datasets.

To incorporate the new generated features into our solution, we extend the main meta

learning methodology presented in Section 5.1 as shown in Figure 6.1. Our approach for

generating new time series datasets uses two methodologies, namely aggregation-based

and weather-based. Both of them will later be compared to the model-based approaches,

in which new time series are simulated. As shown in Figure 6.1, the aggregation-based

approach uses the input energy time series datasets to generate new ones by aggregating

values into different aggregation levels as detailed in 6.2.3. The weather based approach

groups (parts of) datasets according to their behavior under certain weather conditions

and constructs new ones by varying the weather situations as detailed in 6.2.2. All

resulting energy time series datasets are passed to extract the relevant meta features such

as information-theoretic, statistical, time series and DSTMF meta features. We use these

meta features as features in the knowledge matrix. Then, we build a benchmark of power

generation forecasting models and set the best one as a label for each time series dataset

in the knowledge matrix.

To find the mapping between the extracted meta features and the best forecasting model,

another ML algorithm is trained on the resulting knowledge matrix. As explained before,

for a new energy time series dataset, the newly trained meta learner will then recommend

the best forecasting model. The main goal of our concept is to increase the number of meta

examples used for training the meta learner without the need for simulating new ones. To

evaluate the effect of our new generated meta examples on the predictive performance of

the meta learner, an in-depth analysis study is provided in Section 6.3. In this evaluation,

we compare our proposed approaches with the model-based approach existing in literature

for generating new time series datasets. Before presenting the three different approaches

99

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

for generating new time series dataset, an overview of the used solar power generation

dataset is provided.

6.2.1. Dataset

Ausgrid solar home electricity data presented in Section 2.4.2 is used in this chapter to

realize the new concepts for generating new meta examples. Even though the state-

owned Australian energy provider Ausgrid applied the main data quality criteria on the

gathered ausgrid solar home electricity data, some preprocessing steps are necessary

before performing forecasting and afterwards meta learning. We start by performing a

visual analysis on ausgrid solar home electricity data to recognize the time series datasets

that contain big gaps in order to ignore them in our evaluation. While performing this

procedure, We recognized that the gaps ranging from a couple of observations up to

multiple months as seen in Figure 6.2. Such datasets with large gaps are discarded and not

taken into consideration in our work as will be seen later in this section.

2010-09 2011-01 2011-05 2011-09 2012-01 2012-05 2012-09 2013-01 2013-05
time

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

Figure 6.2.: Methodology of enhanced meta learning approach.

The next step is to detect the range of time series values that is taken into consideration in

each day. To select the best range of time series values during the day to be considered

in our forecasting, we divide every day into 3 sections as seen in Figure 6.3. Let S be the

period ranging roughly from the daytime of the latest sunrise to the earliest sunset in a

year in Australia. This interval ranges from 8 am to 4:30 pm and the solar systems are

expected to always generate positive amounts of power during this time all year round,

even if it is raining. Let D denote the period where it depends on the season, whether the

solar systems generate power. Let N be the period where the sun (almost) never shines.

The different periods are illustrated for a winter and a summer day in Figure 6.3. The blue

values correspond to a day that was recorded in the summer. The black curve corresponds

to a day that was recorded in winter, where the sun goes down earlier. Period N is

highlighted in red. Period D is orange and period S is highlighted in green. Note that

100

6.2. Proposed Solution

Summer day Winter day

Figure 6.3.: Segmentation of daytime into different periods.

each data point represents an interval, e.g. the data point at 4:30pm represents the power

generated from 4:30pm to 5pm.

Period S contains 17 observations and ranges from 8am to 4:30pm. Period D contains

9 observations and ranges from 6:30am to 8am and from 4:30pm to 7:30pm. Period N

contains 20 observations ranging from 7:30pm to 6:30am. In total, these 3 periods consist

of 48 observations. We remove all the data points in period N from our time series datasets.

The time series values should always be zero or very close to zero during this time. Not

removing those data points will slow down the forecast models computationally and also

exhaust their learning capacity unnecessarily. So after removing period N, we have periods

D and S, which encompass 26 observations in each day.

After segmentation, we now focus on period S to identify missing observations which

present themselves as zero values. This is due to different reasons. We avoid using period

D, because the fact that the zero values which can regularly occur based on seasonality

would complicate the process of differentiating a missing from a correct observation. For

period S, this is not the case and zero values are a clear sign of a missing observation.

Furthermore, period S is the most important time frame that we are most interested in

forecasting, because it is the period where most power is generated. Every time series

contains 18632 total observations inside period S. The missing observations are ranged

between 25 and 8943 points for every time series.

As a result from the visual analysis performed in the previous step, no negative values were

found in any time series. In contrast to that, many high values as outliers were noticed. A

Hampel filter is used to detect outliers in order to be removed from time series datasets. If

the number of bad observations in a day is too high, interpolating the remaining values

of the day will not yield good and realistic results. Thus, we label such days as unusable.

We use the results from the previous steps and a day is marked as unusable, if it has more

than three bad observations in succession. Having identified the unusable days, we now

101

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

determine whether or not to use a time series or to impute data on unusable days. If a time

series has too many unusable days, we remove it from the dataset instead of replacing

the missing data points, because we don’t want to distort the time series too much. In

this work, we decided to remove the time series from the dataset which had 40 or more

unusable days. Consequently, 62 time series were removed and the remaining 238 time

series are used in our work.

Considering the 238 time series dataset, we need no to fill the missing values. To achieve

that, two approaches have been applied depending on the number and the range of missing

values in each time series dataset. On one hand and for single missing values, we applied

linear interpolation [104] as seen in Figure 6.4.

0 5 10 15 20 25
time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

kW
h

0 5 10 15 20 25
time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

kW
h

Figure 6.4.: Day with a missing observation before and after linear interpolation.

For time series with a wide range of missing values, we insert the data points of a day with

a similar date from the preceding or following years. For example, an unusable day on

the 23.7.2011 might be replaced by the 23.7.2012 or the 23.7.2011. In this way, we preserve

seasonal weather characteristics that the day is exposed to. In general, we had to replace

15 unusable days on average for every time series.

6.2.2. Weather-based Approach

The generation of photovoltaic systems has a close relationship to weather conditions,

such as the temperature, humidity, solar irradiance, hourly solar angle, to name a few. E.g.,

a time series that is made up of power output sequences on only sunny days is going to be

different from a time series made up of the power output sequences generated in rainy days.

To the best of our knowledge, time series datasets containing weather information have

been widely used in forecasting, where the efficient forecasting features based on weather

conditions are extracted and used to increase the predictive accuracy of the forecasting

models. In our weather-based approach, we introduce new usage of weather data by using

information about weather situations and corresponding power production to generate

new time series datasets.

The basic idea of the weather-based method is as follows: based on the input time series

and daily weather data for the same period, we filter the input time series according to

102

6.2. Proposed Solution

certain weather conditions and use the filtered time series as a new one. For example,

we can characterize each day in the solar power time series as rainy or sunny as seen

in Figure 6.5. We can then create a new time series by only keeping the rainy days and

removing the sunny days or vice versa. With our weather-based approach, we intend to

generate new time series datasets, in which the days inside it share the similar weather

conditions but their day-to-day order is modified. This will in turn generate different time

series with different characteristics.

Institute for Automation and Applied Informatics (IAI)

IT4ES

15 Adrian Beer09.11.2020

High Radiation Time Series Low Radiation Time Series

Input Time Series

High Radiation High RadiationLow Radiation Low Radiation

Figure 6.5.: Filtering input time series datasets based on weather conditions.

The proposed weather-based approach can be applied independently to each input time

series dataset. We classify each day in the input time series based on the available weather

data, which describe the weather conditions of that day. E.g., a day may be labeled as

being sunny, or very hot, or both. After all the days have been classified, we chain all the

days in each class separately in chronological order to create a new time series. As a result

and for each input time series dataset, we can create a new time series for every weather

class.

The weather data used should correspond to the power production data as best as possible.

Because the production data reflect productions of households with PV in Australia, corre-

sponding weather data from the “Bureau of Meteorology of the Australian Government”

is used. Further description of this time series dataset is provided in Section 2.4.3.

It contains the daily weather information for the same location of our input time series

datasets presented in Section 6.2.1. Such information includes evapotranspiration, max-

imum and minimum relative humidity, maximum and minimum temperature, rain and

solar radiation, to name a few. From these weather observations, we derived 14 classes for

characterizing the weather situation of a day as listed in Table 6.1. In this table, each class

is briefly described by a short description of which weather conditions need to be present

in order for a day to be assigned to the respective class.

www.bom.gov.au

103

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

Table 6.1.: Weather classes defined in the weather-based approach.

Weather Class Description of Weather Class

High/low radiation Higher/lower radiation than the median

Fluctuating/steady temperature

Difference between maximum and minimum temperature

of a day is higher/lower than the median difference

High/low temperature Both maximum and minimum temperature are above/belowtheir respective median

High/low evapotranspiration Evapotranspiration is higher/lower than the median

Rainy Precipitation higher than 0

Not_rainy Precipitation equal to 0

Fluctuating/steady humidity

Difference between maximum and minimum humidity of a day is

higher/lower than the mean difference

High/low humidity Both maximum and minimum humidity are above/below their respective median

Given an input time series dataset, we filter it based on the aforementioned classes and

consequently generate new time series. As only 14 weather classes are taken into consid-

eration in filtering the input time series dataset, we can generate 14 new time series for

each input one. As mentioned in Section 6.2.1, 238 input time series datasets are resulting

at the end of the preprocessing procedure. Consequently, 14 ∗ 238 = 3332 new time series

datasets are generated in total by our weather-based approach.

Because certain days are removed from the input time series datasets to arrive at new

one based on weather conditions, the new generated time series datasets will contain less

observations than the input time series datasets, from which they are derived. E.g., the

number of observations in the new generated time series datasets range between 8736

and 16432 observations, compared to the 28496 observations present in each input time

series dataset. The shortest newly generated time series dataset consists of days with

high humidity, whereas the longest time series dataset was made up of days classified

as not_rainy. Although this approach for generating new time series datasets based on

weather information is quite simple, it is quite effective as the evaluation described later

in this chapter will show.

The approach is limited to that it can only be applied to generate new time series datasets

from power generation ones. If the input time series datasets contain load values, then

this approach cannot be applied to create new meaningful load time series, as the load

data are not affected by weather but instead by human behavior.

6.2.3. Aggregation-Based Approach

The main goal behind this approach is to aggregate the input time series datasets using

different aggregation levels in order to generate new time series datasets with different

characteristics. This makes sense because energy can be summed up over a larger time

interval to form a new energy time series data set with lower time resolution but having

the energy production summed up over the larger interval. These datasets will then be

104

6.2. Proposed Solution

transformed into meta examples and merged in the learning process of meta learner to

increase its accuracy as will be seen in Section 6.3.

For each input time series dataset resulting from the preprocessing process in Section

6.2.1 and during the aggregation process, multiple data points are added up in a given

interval to create new aggregated observations as seen in Figure 6.6. We will refer to

the number of data points that are aggregated to a single data point in the aggregation

process as an aggregation level. Only period S explained before in Section 6.2.1 is taken

into consideration in each input time series dataset. In this way, we ignore the large night

time gap between the last observation of the previous and the first observation of the next

day. The time interval between two data points defines the granularity of the time series

dataset. E.g., the granularity is half-hourly for half-hourly observations of our input time

series datasets. Moreover, when each day contains only one value, the time series has

daily granularity.

Institute for Automation and Applied Informatics (IAI)

IT4ES

19

Aggregation-based

Adrian Beer07.02.2021

X1 X2 X3 X4 X5 X6

X1 + X2 X3 + X4 X5 + X6

Original Time Series

Aggregated Time Series

(aggregation level 2)

Figure 6.6.: Methodology of the aggregation-based Approach for generating new time series datasets.

Given n observations per day, the aggregation levels can range between 2 and n. As

one-day-ahead forecasting is considered in this work as a forecasting scenario as will be

seen in Section 6.3.1, the aggregation levels larger than one day will not be taken into

consideration, since they would result in data points containing observations frommultiple

days. Furthermore, depending on the aggregation level, the forecasting horizon for a time

series has to change. If the algorithms were using the original forecasting horizon of n for

a time series which has daily granularity, the algorithm would end up forecasting n days

ahead, instead of doing a one-day-ahead forecast. Thus for an aggregation level of n, i.e.

daily granularity, the forecasting horizon will be 1, whereas for an aggregation level of

𝑛
2
the forecasting horizon is 2 and so on. More details about the forecasting scenario for

which our meta learning problem is formulated, are provided later in Section 6.3.1.

In contrast to the aforementioned weather-based approach which can only be applied

to generate new time series datasets if the input contains power generation values, the

advantage of this approach lies in its applicability in the context of load and generation

datasets. Driven by the aforementioned methodology of the aggregation-based approach,

we aggregate each input time series dataset with 8 aggregation levels, namely 2, 3, 4, 5, 6,

8, 13, 26. Consequently, with 8 aggregation levels and 238 original time series, we are able

to generate 8 ∗ 238 = 1904 new aggregated time series.

105

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

The lengths of the newly created time series range from 1096 for the largest aggregation

level up to 14248 data points for the smallest aggregation level. The impact of the different

aggregation levels on the periodicity and granularity of the generated time series can be

seen by looking at Figure 6.7. Each graph in the figure shows 50 data points of the new

time series which were generated with the aggregation-based method.

106

6.2. Proposed Solution

0.0

0.1

0.2

0.3

0.4

0.5

0.6
kW

h
agg_lvl 2

0.0

0.2

0.4

0.6

0.8

kW
h

agg_lvl 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

kW
h

agg_lvl 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

kW
h

agg_lvl 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

kW
h

agg_lvl 6

0.5

1.0

1.5

2.0

kW
h

agg_lvl 8

0 10 20 30 40 50
time

0.5

1.0

1.5

2.0

kW
h

agg_lvl 13

0 10 20 30 40 50
time

1

2

3

4

kW
h

agg_lvl 26

Figure 6.7.: Examples of the time series generated by the aggregation-based approach.

107

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

6.2.4. Model-Based Approach

To evaluate the efficiency of the aforementioned weather- and aggregation-based approach,

we need to compare them with model-based approaches existing in the literature [156]

and used to generate new time series datasets by simulating new ones as seen in Figure

6.8. 𝑋 and 𝑌 represent the input features and forecasted values respectively.

Institute for Automation and Applied Informatics (IAI)

IT4ES

4 Moritz Winter22.03.2021

Forecasting

Model

Input-Output-Pairs

build

Step 1

Original Time Series

create

Forecasting

Model

Step 2

New Time Series

forecast

Figure 6.8.: Methodology of the model-based approach.

The model-based approach incorporates two main steps. In the first one, the forecasting

model is trained on the original training time series datasets. However, more details

about the training performed in this forecasting scenario is presented in Section 6.3.1.

In the second step, the trained model is used to generate new data points based on the

model’s learned parameters where the new generating data points correspond to the

forecasted values. Precisely, the forecasting model is used to perform forecasts based

on the constructed input vectors. By appending these forecasts together, we can create

a new time series dataset. To achieve that, 4 ML algorithms are used, namely Neural

Network (NN), k-Nearest Neighbor (KNN), Decision Tree (DT) and Random Forest (RF).

8 different setups shown in Table 6.2 are employed to build the models. While 3 models

are developed for each of NN and KNN, 1 model is developed for each of DT and RF. We

used keras framework version 2.3.1 to implement neural network models. The classes

DecisionTreeRegressor and RandomForestRegressor in scikit-learn are used to build DT

and RF models respectively.

In this approach, we used 238 input time series datasets presented in Section 6.2.1 to

simulate new ones. Each input time series consists of half-hourly observations over the

period of 3 years. Given an input time series, one model is built for each algorithm. The

models are trained to forecast one-day-ahead based on an input vector. The input vectors

contain information about the day preceding the forecast. Further details about the feature

108

6.2. Proposed Solution

Table 6.2.: Hyperparameters used in building model in the model-based approach.

Model Name Hyperparameters

NN It contains 2 hidden layers and 20 node in each one of them

NN_MODIFIED1 It contains 1 hidden layers and 50 node in each one of them

NN_MODIFIED2 It contains 3 hidden layers and 50 node in each one of them

KNN K=3

KNN_MODIFIED1 K=5

KNN_MODIFIED2 K=10

Decision Tree A grid search is applied for the maximum tree depth parameter in the range from 5 to 15

Random Forest 200 regression trees

engineering process and the values of the input vectors are introduced in Section 6.3.1,

where the same input features are used here. Each day of the original input time series

consists of 26 observations, leading to forecast 26 values in our one-day ahead forecast.

After building the models, the same training input vectors were fed to the models generat-

ing one-day-ahead forecasts for each of the input vectors. For each model, the forecasts

were then appended to create a new time series. For each algorithm and each input time

series, a new time series was generated. Consequently, we were able to generate 1904

new time series with the same length and granularity of the original ones. The efficient

preprocessing procedure presented in Section 6.2.1 including upward outliers and filling

missing values is applied on the resulting new generated time series. Figures 6.9 and 6.10

show examples of the new generated time series datasets. While the whole three year

period of the generated time series is shown on the left, an excerpt of three days of that

time series is depicted in the right figures.

109

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

0.0

0.5

1.0

1.5

kW
h

NN_MODIFIED1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

kW
h

NN_MODIFIED1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

kW
h

NN_MODIFIED2

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

NN_MODIFIED2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

kW
h

KNN_MODIFIED1

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

KNN_MODIFIED1

0 5000 10000 15000 20000 25000
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

kW
h

KNN_MODIFIED2

100 120 140 160 180
0.0

0.2

0.4

0.6

0.8

1.0

kW
h

KNN_MODIFIED2

Figure 6.9.: Examples of the time series generated by the model-based approach.

110

6.2. Proposed Solution

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
kW

h
KNN

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

KNN

0.0

0.5

1.0

1.5

kW
h

NN

0.0

0.2

0.4

0.6

0.8

1.0

1.2

kW
h

NN

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

kW
h

RF

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

RF

0 5000 10000 15000 20000 25000
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

kW
h

DT

100 120 140 160 180
0.0

0.2

0.4

0.6

0.8

1.0

kW
h

DT

Figure 6.10.: Examples of time series generated by the model-based approach.

111

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

6.3. Evaluation

As mentioned before, our meta learning approach is formulated as a multi-class classi-

fication problem in which the number of available examples plays an essential role. To

generate new examples, we proposed two approaches, namely a weather-based and an

aggregation-based approach. Those examples are then used to generate the related meta

examples by extracting the meta features and assigning the label of the best forecasting

model for them.

The key focus of the evaluation is to investigate the effect of increasing the number of

meta examples on the predictive performance of meta learners. We compare the effects of

the new meta examples generated by our approaches with the effect of the meta examples

generated by a model-based approach existing in the literature. We start by presenting

the meta learning use case scenario including the extraction of the different groups of

meta features to characterize the input energy time series datasets. After that, an in-depth

analysis study of the effect of the new meta examples is performed in two points of view.

While the original representation of meta features is used in the first one, we utilize

unsupervised deep learning to encode the extracted meta features by autoencoder in the

second point of view (as shown in Chapter 5).

We apply a meta learning approach on the one-day ahead forecasting for solar power

generation scenario presented later in Section 6.3.1. We set the predictive performance

of the meta learner when it learned on the original input datasets as a baseline for our

evaluation. Then, we investigate how the predictive performance of the meta learner

changes, when it learns on extended training datasets. To this end, we start by transforming

the newly generated time series into meta examples, where each meta example consists

of the calculated meta features as predictors and the best forecasting model as a label.

The better the used meta features characterize the behavior of time series datasets, the

more accurate the selection of the best algorithm by a meta learner will be. Therefore,

Time series, Statistical, Information-theoretic and Descriptive Statistics Time-based Meta

Features (DSTMF) presented in Table 6.3 are extracted in our experiments.

As we see in this table, DSTMF for solar power generation time series datasets does not

include the same aggregation levels as it were in the case of consumption. E.g., it doesn’t

make sense to include weekends and workday aggregation levels. This is due to the fact

that the electricity power generation of photovoltage power systems is only related to

weather conditions and not affected by human behavior. In this group of experiments, we

used R packages to extract a total of 67 meta features presented in Table 6.3. 44 time series

meta features are extracted using tsfeatures in R. In Chapter 5, we found that the Time

Series and DSTMF meta features are the best meta features for characterizing energy time

series datasets. Therefore, we focus in our evaluation here on both of them and extract

only 1 meta feature for each of Statistical and Information-theoretic category.

112

6.3. Evaluation

Table 6.3.: Different groups of the extracted meta features.

Meta Feature Category Meta Features

Time Series

Lumpiness, stability,

flat_spots, unitroot_kpss, unitroot_pp,

x_acf1, x_acf10, diff1_acf1, diff1_acf10, diff2_acf1, diff2_acf10,

x_pacf5, diff1x_pacf5, diff2x_pacf5, alpha, beta, arch_acf,

garch_acf, arch_r2, garch_r2, nonlinearity, ARCH.LM, ac_9,

firstzero_ac, trev_num, motiftwo_entro3, walker_propcross,

std1st_der, spreadrandomlocal_ meantaul, histogram_mode,

outlierinclude_mdrmd,

fluctanal_prop_r1, trend, spike, linearity,

curvature, e_acf1, e_acf10, max_kl_shift, max_level_shift,

max_var_shift, mean_crossing_points

Statistical Var

Information-theoretic Entropy

DSTMF

orig_max, orig_mean, orig_upper_quartile,

orig_lower_quartile, orig_median, daily_max, daily_min,

daily_mean, daily_upper_quartile, daily_lower_quartile,

daily_median, weekly_max, weekly_min, weekly_mean,

weekly_upper_quartile, weekly_lower_quartile,

weekly_median, 4-weekly_max, 4-weekly_min, 4-weekly_mean,

4-weekly_upper_quartile, 4-weekly_lower_quartile,

4-weekly_median

6.3.1. Use Case Study: Power Generation Forecasting Scenario

In this section, we introduce the time series forecasting scenario which is used to evaluate

our meta learning approach presented in Section 6.2. The proposed forecasting scenario is

to forecast the solar power generation for the dataset presented in Section 6.2.1. To enable

meta learners to recommend the best forecasting model for energy time series datasets,

meta examples are required. In the corresponding meta examples, the label presents the

forecasting model that performs best on the corresponding time series. To calculate these

labels, many forecasts using different forecasting algorithms were performed in order to

arrive at a sensible label for each time series. This process is crucial for the meta learning

system, because wrongly classified meta-examples can negatively impact the classification

accuracy of the meta learner.

Depending on the use-case, the forecasting horizon can be categorized into different

categories, namely short-, very-short, mid- and long-term forecasting. While the long-term

forecasting is considered for maintenance related issues, the short-term and very-short-

term focuses are most important in the areas of storage control, automatic generation

control, unit commitment and the electricity market [169].

113

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

In our evaluation scenario presented in this chapter, we will focus on the task of one-day-

ahead forecasting of the solar power generation in the form of multi-step forecasts. For all

of the time series datasets resulting from preprocessing as explained in Section 6.2.1, a

forecasting horizon of 26 is used, because the number of observations in each day is 26 as

discussed before. However for the time series datasets generated by the aggregation-based

approach, the days can contain less than 26 observations. This means that the concrete

forecasting horizon changes depending on the granularity of the time series to always

match the one-day-ahead forecasting task.

In contrast to some forecasting approaches that use exogenous weather data like tempera-

ture and humidity as features to forecast energy power generation, we follow a univariate,

data-driven forecasting approach whereby the forecasting of the power generation is based

on historical data without using exogenous features to support forecasting. In general,

the question whether linear or non-linear algorithms are more appropriate for time series

forecasting, especially univariate time series, has no clear answer and depends on various

factors, including the available sample size [31]. Because of this, Cerqueira et al. recom-

mended that the experiments on forecasting should include both types of methods. To

this end, both linear and nonlinear forecasting algorithms are included in our forecasting

scenarios. On one hand, we chose Neural Network (NN) and K-Nearest Neighbor (KNN)

as nonlinear algorithms. On the other hand, we chose Auto regressive Integrated Moving

Average (ARIMA) and Error Trend Seasonal (ETS) as linear algorithms.

Forecasts can be divided into multi-step ahead and single-step ahead ones. While only a

single value is forecasted in single-step ahead forecasting, multi-step ahead forecasting

concerns itself with forecasting multiple future values at once. The number of forecasted

values in a multi-step-ahead forecast is called the length of the forecast or the length of the

forecasting interval. However, there are three basic forecasting strategies, when it comes

to multi-step forecasting [155], namely iterated, direct and Multiple-Input Multiple-Output

(MIMO) forecasting.

With the iterated forecasting strategy, a single model performs multiple consecutive single-

step forecasting. In each iteration, the value of the single-step forecast is fed back into the

model, as if it was the most recent value of the time series. Based on this new given value,

the model can then again perform a new single-step forecast. This is repeated until the

forecasting horizon is reached. After that, all one-step forecasts are combined to form a

multi-step forecast. This strategy has the disadvantage that it is very sensitive to early

errors, i.e. the errors which are made at an early stage will propagate to future predictions

and make them worse. In this way the errors accumulate more and more, the longer the

forecasting horizon becomes.

By using a direct forecasting strategy, also called independent forecasting, a number of

models are trained where each of them performs a point forecast with different forecasting

horizons. The multi-step forecast is then formed by combining the forecasts of these

different models. The errors of the forecasts of this method don’t accumulate. However

because the models are independent from each other, this strategy can fail to capture

dependencies between the predicted values.

114

6.3. Evaluation

For the MIMO forecasting strategy, the models can directly forecast more than one value

at once. Such models can be e.g. neural networks, where the number of neurons in the

output layer has the exact length of the forecasting interval. This strategy does not have

the same disadvantages as the other, but it is less flexible since the same model is used to

predict all future values.

For our evaluation instrumenting multi-step forecasting, the NN and KNN models follow

the MIMO strategy, whilst ARIMA and ETS follow the iterated forecasting strategy. The

KNN forecasting model is implemented with the python library scikit-learn version 0.21.3.

ETS and ARIMA models are implemented in R with the package forecast version 8.12.

NN models are implemented using keras version 2.3.1. All of these forecasting models

except the NN models are made deterministic with a seed for better reproducibility. In the

following, a brief explanation of hyperparameter settings of the aforementioned algorithms

is presented.

• Neural Network (NN): To implement the neural network, we used the python

library keras. The concrete network architecture consists of two hidden layers

consisting of 20 densely connected neurons. Each of which use the ReLU activation

function. The size of the output layer is equal to the length of the forecast horizon.

The neurons in the output layer use a linear activation function. MAE is used as the

loss function and rmsprop for optimizing the batch learning. We train the neural

network for 500 epochs and set the batch equal to the length of the training set. We

also use early stopping with patience 20.

• K-Nearest Neighbor (KNN): This algorithmwas implemented using the scikit-learn

class KNeighborsRegressor. The parameter k is set to 5, i.e. 5 neighbors are used

with a uniform weighting.

• Autoregressive Integrated Moving Average (ARIMA):We use the auto.arima

function from the R forecast package with the following settings: stepwise=TRUE,

approximation=TRUE, allowmean=FALSE, truncate=5000 and method=CSS.

• Error Trend Seasonal (ETS): To implement the ETS algorithm, the stlm function

from the R forecast package with the ets method was used. The seasonal component

is removed before the ets function is applied and afterwards added back to the predic-

tions of the ETS model. The ets function automatically tries differently parametrized

ETS models and selects the best one using the Akaike Information Criterion (AIC).

We need to seasonally adjust the time series, because the ets method can only handle

data with periodicity smaller than 25 and our original half-hourly time series have

daily periods of 26 data points.

When considering how to build the models and which input features to feed the forecasting

algorithms, we differentiated between the linear models, namely ARIMA and ETS and the

nonlinear ones, namely KNN and NN. For the linear models, the values in the training

set are standardized. Then, based on this normalized time series, the ARIMA and ETS

algorithms can build the forecasting model. After the model has made a forecast, the

predicted values are transformed back to the original scale using the variance and mean

115

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

from the training set. By using the mean and variance of the training set, we prevent data

leakage from the test set.

For nonlinear models, the model building and feature engineering process is more complex.

While we don’t need to explicitly construct input-output pairs for the linear models, we

have to do so for the nonlinear ones. The input vectors can contain information about

historical data points and timestamps, while the training output vector is the sequence of

actual values (𝑦𝑡 , ..., 𝑦𝑡+ℎ) of the day that is to be forecast. To construct the input vectors,

we extract various time series features to support this learning process. Let 𝑦𝑠𝑖 denote

the value 𝑦𝑖 that has been normalized based on the training set, then we extracted the

following features:

• The 26 lagged, normalized data points 𝑦𝑠𝑡−1, ..., 𝑦
𝑠
𝑡−26.

• The first-order differences 𝑑𝑡−1, ..., 𝑑𝑡−25 of the normalized data points 𝑦𝑠𝑡−1, ..., 𝑦
𝑠
𝑡−26

where 𝑑𝑖 = 𝑦
𝑠
𝑖 − 𝑦𝑠𝑖−1 making up 25 features.

• The encoded values of month and day of the month of the day that is to be predicted.

We first combine month and day to a value representing the ordinal day in the

year and we then encode this value with a combination of a sine and a cosine

function. The ordinal day 𝑜 with periodicity 𝑝 is encoded with 𝑓𝑠 (𝑣) = sin(2𝜋𝑜
𝑝
) and

𝑓𝑐 (𝑣) = cos(2𝜋𝑜
𝑝
). This results in 2 more features.

As a result, we extracted 53 features to formulate the input vector in the nonlinear forecast-

ing models. The observed values for the next day, which are to be predicted, make up the

output vector (𝑦𝑡 , ..., 𝑦𝑡+ℎ), where ℎ is the forecast horizon. In nonlinear forecasting models,

we don’t need to transform the output values like we did with the linear algorithms. After

creating the input-output vectors, the model can be trained to capture the relationship

between input and output vectors. For the forecast, an additional input vector which

corresponds to the test day is constructed and supplied to the model, which transforms it

into an output vector, i.e. the one-day ahead forecast.

When trying to estimate the out-of-sample forecasting performance of a model on a time

series, multiple out-of-sample forecasts should be performed to reduce estimation variance.

For classification tasks, cross-validation is often used to better approximate the out-of-

sample error as opposed to having a fixed test set. For time series forecasting, the ordinary

cross-validation can’t be used, because it doesn’t preserve the temporal structure of the

dataset and can cause data leakage, i.e. models could be able to make predictions based

on future values that aren’t available at the time of the forecast. To avoid this problem, a

variation of cross validation can be used known as time series cross validation or nested

cross validation [15].

The main idea behind nested cross validation is to split the time series at some time tp

into training and test sets. Then a rolling forecast is performed on the test set in which we

train the model anew at every step of the iteration, i.e. before each new forecast. It allows

the models to use all past observations prior to the forecasting time for training as seen

in Figure 6.11. However, it can be computationally expensive, if the model takes a long

time to train. As we can see in this figure, each row represents one iteration. The red dots

116

6.3. Evaluation

represent forecasts and the blue dots are used for training. The average forecast error of

all these forecasts can be used to better approximate the out-of-sample forecasting error

of the final model.

Figure 6.11.: Methodology of nested time series cross validation [15].

Generally, there is a trade-off when choosing howmany one-day-ahead forecasts should be

performed on a time series to measure algorithm performance on the time series. Increas-

ing the number of forecasts yields more reliable results in terms of assessing algorithm

performance. However, since for every forecast a new model is built, the computational

cost of doing so also increases with every forecast. Considering the constraints of the

available computational power and time, we chose to limit the extent of testing by re-

stricting the algorithm to 28 one-day-ahead forecasts per time series. 28 days lead to 728

forecasted values or 4 weeks worth of forecasts for the half-hourly granularity of the

original dataset.

To measure the error of a forecast, we can’t use percentage-based error measurements,

because the time series contains zero values. Thus, we decided to use the MASE with

periodicity 1 to measure the error of each multi-step one-day-ahead forecast. By using

the MASE, we don’t weigh larger errors more heavily than smaller errors, as it is done

e.g. by the MSE, which squares the errors. The average of these forecast errors, i.e. the

mean MASE, then represents the algorithm performance on the time series. Driven by the

aforementioned forecasting strategy, we perform our multi-step one-day-ahead forecasting

on the original and new generated time series datasets resulting in a total of 7475 time

series datasets to be forecasted. This part of the work was very computing-intensive and

couldn’t be carried out on a simple home computer. To face this challenge, we carried out

the computations using Kubernetes and Docker images on a computation cluster. We used

10 pods with each 3 cpu and 10 gigabyte memory to perform the calculations in parallel.

Figures 6.12 and 6.13 show the mean MASE forecasting error of the ARIMA and NN

forecasting models. The obtained error is used to determine the corresponding labels

in the final knowledge matrix, where the algorithm that performs best on a time series

dataset is set a label for it in the final knowledge matrix.

117

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

0 10 20 30 40 50
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

kW
h

ORIGINAL KNN NN ARIMA ETS

Figure 6.12.: One-day ahead forecasts, where ARIMA performed best.

0 10 20 30 40 50
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

kW
h

ORIGINAL KNN NN ARIMA ETS

Figure 6.13.: One-day ahead forecasts, where NN performed best.

6.3.2. Original Representation of Meta Features

Due to the large number of extracted meta features, the curse of dimensionality problem

negatively affected the predictive performance of the meta learning classification model

leading the model to overfill the training data. Moreover, a large number of meta features

are originally highly correlated with each other. To address these problems, we applied an

efficient feature selection procedure to reduce the number of meta features and remove the

highly correlated ones. E.g., if we have two highly correlated features, then one of them is

removed. Using the Pearson correlation coefficient as a correlation measure, we performed

a correlation analysis on the aforementioned set of meta features and remove the meta

features that are highly correlated. We successively removed the meta features that have a

correlation coefficient of 80% or higher to another meta feature. As a result of features

118

6.3. Evaluation

selection, only 25 meta features are used in this group of experiments for characterizing

energy time series datasets.

As mentioned before, the knowledge matrix on which the meta learner is trained consists

of a set of meta examples, whereby each example represents a time series. While somemeta

examples represent the original input time series, the other ones represent time series that

are generated by our new proposed generation approaches. To differentiate between these

meta examples, we refer to them as aggregation-based, weather-based, model-based and

original meta examples. Artificial Neural Network (ANN) with a single hidden layer of 40

neurons is used as a meta learner to serve the main goal of meta learning in recommending

the best power generation forecasting model. In the current meta learning use case, the

meta learning classification model will classify the energy time series datasets in testing

in one of four forecasting models, namely NN, KNN, ETS, ARIMA presented in Section

6.3.1.

In this group of experiments, we used the 238 original time series datasets resulting from

the preprocessing procedure in Section 6.2.1. For those datasets, we build the relevant

meta examples as explained before. To generalize the result, we repeated our experiments

100 times and the mean results were used as final result values. In each iteration, we split

the original meta examples into training and testing sets randomly. The size of the testing

set is 24 meta examples equaling 10% of the original meta examples.

The remaining 214 meta examples will build the original training datasets and are extended

later to contain other meta examples resulting from the other categories, namely weather-

based, aggregation-based and model-based. In each iteration, we extend the original

training dataset with the newly generated meta examples in such a way that the original

label distribution is preserved. This means that the extended datasets have the same label

distribution as the original training set. To this end, performance differences will not be

affected by the distribution of labels in the extended training datasets.

To precisely measure the effect of the new generated meta examples on the predictive

performance of meta learner, we extend the training dataset on which the meta learner is

trained according to 7 different sizes. While the original training dataset always contains

214 meta examples, the extending training dataset will contain 321, 428, 642, 856, 1070,

1284 and 1498 meta examples. These sizes correspond to 1.5, 2, 3, 4, 5, 6 and 7 times the

size of the original training set size. Table 6.4 shows the different extending scenarios

performed in our experiments.

We created 4 extension scenarios for each of the aforementioned sizes of the training

datasets meaning that we have 28 extended training sets in each iteration and a new meta

learning model is built for each of those. After that, we normalize the meta features in

the new extending training sets into a range between 0 and 1 to improve the learning

process of the ANN meta learner. This is due to the fact that the normalization will lead

the classification model to find the global minima more quickly. For stable evaluation, we

also normalize the meta features in the testing set.

119

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

Table 6.4.: Different extending scenarios of the training dataset.

Extending Scenario Description

Original + Aggregation-based

Extending the original training set with new meta examples

resulting from the aggregation-based approach

Original + Weather-based

Extending the original training set with new meta examples

resulting from the weather-based approach

Original + Model-based

Extending the original training set with new meta examples

resulting from the model-based approach

Original + Aggregation-based +

Weather-based

Extending the original training set with new meta examples

resulting from a

combination of aggregation-based and weather-based

In each iteration, the meta learner is trained on the original and 28 extended training

datasets. we measure the relative classification accuracy improvement on the test set for

each extended training according to Equation 6.1.

𝐴𝑐𝑐 =
𝐴𝑐𝑐𝑒𝑥𝑡 −𝐴𝑐𝑐𝑜𝑟𝑖𝑔

𝐴𝑐𝑐𝑜𝑟𝑖𝑔
(6.1)

Let 𝐴𝑐𝑐𝑥 be the number of correctly predicted labels in the test set divided by the number

of meta examples in the test set for dataset 𝑥 . Consequently 𝐴𝑐𝑐𝑜𝑟𝑖𝑔 is the classification

accuracy of the meta learner when it learns on the original training set, and 𝐴𝑐𝑐𝑒𝑥𝑡 the

classification accuracy of the meta learner when it learns on some extended training set.

We performed 100 iterations, where in each iteration the relative performance improvement

is recorded for the extended dataset, which differ by the amount and the category of

the meta examples that the original training set was enhanced with. Figures 6.14, 6.15,

6.16, and 6.17 show the mean relative accuracy improvements achieved by the different

extension scenarios. The mean relative accuracy improvement of the meta learner, when

the original training set is extended using meta examples resulting from the aggregation-

based approach, is shown in Figure 6.14 for different training set sizes. As we can see in this

figure, adding aggregation-based meta examples increases the meta learner’s performance

consistently up to a training set size of 856, where a relative performance improvement

of 15.60% is achieved. The best mean relative improvement of 16.77% is achieved by 1284

meta examples that correspond to extending the original training dataset with 6 times

more meta examples.

In Figure 6.15, the mean relative improvement achieved by extending the original training

set with the new weather-based meta examples is presented. As we can see, the relative

predictive performance of ANN meta learner increases continuously until a training set

size of 1070 meta examples to achieve an improvement of 12.91%. While the best relative

improvement of 15.37% is obtained for the largest number of available meta examples

in training, the meta learner is able to assign the best forecasting model for the energy

120

6.3. Evaluation

0

2.5

5

7.5

10

12.5

15

17.5

321 428 642 856 1070 1284 1498
training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

aggregation+originalFigure 6.14.: The mean relative accuracy improvement of the meta learner when extending original with

aggregation-based datasets.

0

2.5

5

7.5

10

12.5

15

17.5

321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

weather+originalFigure 6.15.: The mean relative accuracy improvement of the meta learner when extending original with

weather-based datasets.

time series datasets in testing with a relative improvement of 12.91%, 11.96% and 11.67% at

training set sizes of 1070, 856 and 642 respectively.

Figure 6.16 shows the results related to the model-based approach. As seen in this figure,

the mean relative improvement in the performance increases continuously until having

856 meta examples where the best relative performance improvement of 14.67% is achieved.

However, extending the training set with more meta examples resulting from the model-

121

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

based approach seems to have adverse effects on the predictive performance of the meta

learner. It is noticed in this figure that the performance improvement drops to 13.02% and

13.14% for training set sizes of 1070 and 1284 respectively. For the largest extension of

1498 meta examples, the performance improvement drops to 11.74%, which is the second

worst result for the model-based dataset.

0

2.5

5

7.5

10

12.5

15

17.5

321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

model+originalFigure 6.16.: The mean relative accuracy improvement of the meta learner when extending original with

model-based datasets.

To further discover the effect of new meta examples on the predictive performance of the

meta learning classification model, we extend the original training set with a combination

of both weather- and aggregation-based meta features. After that, the predictive accuracy

of the meta learner is measured and the relative improvement is calculated according

to Equation (6.1) and presented in Figure 6.17. As seen in this figure, the highest mean

relative improvement of 14.56% is obtained for a training set size of 1070 meta examples.

Extending the training set further did not yield better results where 14% and 14.02% mean

relative improvements are achieved for training set sizes of 1284 and 1498 respectively.

For fair evaluation, it is of great importance to compare our two proposed approaches for

generating new meta examples with the model-based approach existing in the literature

as seen in Table 6.5. As seen in this table, all of the proposed approaches to generate new

meta examples enhanced the predictive performance of the meta learning classification

model. Aggregation-based approach achieved a mean improvement of 8.75% up to 16.77%.

A mean improvement of 4.8% up to 15.37% is obtained when extending the original training

set with meta examples resulting from the weather-based approach. The reason for that

lies in the fact that the additional examples in the training set increases the diversity and

improves the generalization capabilities of the meta learner. Regarding the number of

meta examples, the best results are obtained for 1284, 1498, 856 and 1070 for aggregation-

based, weather-based, model-based and a combination of weather and aggregation-based

respectively.

122

6.3. Evaluation

0

2.5

5

7.5

10

12.5

15

17.5

321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

aggregation+weather+originalFigure 6.17.: The mean relative accuracy improvement of the meta learner when extending original with

combination of aggregation- and weather-based datasets.

Interesting is that the aggregation-based meta examples achieve the best improvement

in 5 out of the 7 training set sizes. For these 5 training set sizes, the aggregation-based

approach outperforms the next best approach by 2.64%, 0.21%, 0.75%, 0.93% and 2.77% for a

321, 428, 642, 856 and 1284 training set size respectively. For the other 2 training set sizes,

the aggregation-based approach is outperformed by the aggregation+weather and the

weather-based approaches by only 0.15 and 0.21 percentage points, respectively. However

and compared to the model-based approach existing in the literature, the aggregation-

based meta examples produced better results than the model-based ones for every training

set size as illustrated in Table 6.5.

The main reason for this phenomenon lies in the variance of features in each of the new

generated meta examples. In multi-class classification problems, the variance of a feature

determines how much it is impacting the response variable. If the variance is high, it

implies there is a large impact of this feature on response and vice-versa. To this end,

we used R packages to analyse the variance in each group of the new generated meta

examples. We found that the largest variance is found in the meta examples generated

based on the aggregation-based approach. For this reason, the aggregation-based approach

yields the best mean relative improvement as seen before.

6.3.3. Encoded Representation of Meta Features

Similar to the encoding process presented in Chapter 5, the meta features are encoded in

this group of experiments. In the hidden layers, the input values are encoded in such a way

that they can be decoded again in the output layer. When a hidden layer has fewer neurons

123

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

Table 6.5.: General comparison of the effect of different meta examples generation approaches in terms of

mean relative accuracy in the case of original representation of meta features.

Training
Set Size

Performance Improvement in (%)

Aggregation + Original Aggregation + Weather + Original Model + Original Weather + Original

321 8.75 5.03 6.11 4.8

428 12.32 11.03 12.11 8.46

642 14.13 10.12 13.38 11.67

856 15.60 12.88 14.67 11.96

1070 14.41 14.56 13.02 12.91

1284 16.77 14.00 13.14 11.59

1498 15.16 14.02 11.74 15.37

than the input layer, the information in the input layers will have to be compressed leading

to a more powerful representation form of features.

In this group of experiments, we investigate the effect of meta examples on the predictive

performance of meta learners when using an encoded representation of meta examples.

Encoding a meta example includes applying an autoencoder only on the meta features

in this meta example. The goal of using autoencoders is to increase the amount of infor-

mation included in the features, to remove the correlation between them and reduce the

dimensionality of the meta learning classification problem. No feature selection procedure

is applied in this group of experiments. As a result, we have 67 meta features in our

meta examples to be encoded. The autoencoder is implemented using the deeplearning

functions from h2o library in R with the following parameter settings: One hidden layer

of size 8 is used to compress the information. The number of neurons in the last layer

is equal to them in the first layer that corresponds to the number of input meta features

we want to encode, namely 67 meta features. The activation function is the hyperbolic

tangent (tanh).

The encoded meta-feature vectors are then the outputs of the neurons in the hidden layer

of the autoencoder. The resulting encoded meta feature vectors are of length 8 compared

to the original ones, which have length 67. The same meta learning use case used in the

first group of experiments is used here with the goal of finding the best power generation

forecasting model for energy time series datasets presented in Section 6.2.1. We repeat

our experiments 100 times and the mean results are presented in this section. Equation

(6.1) presented in the first group of experiments is used to calculate the mean relative

improvement in the accuracy of the meta learning classification model.

In Figure 6.18, the mean relative performance improvement depending on the aggregation-

based approach is shown. As seen in this figure, the predictive performance in assigning

the best forecasting model improves dramatically as the original training set is extended

with additional meta examples. A performance improvement of 23.56% is achieved by

extending the original training set to double its size. Extending the original training set

beyond this training set size resulted in results ranging from 22.25% to 27.07%. The best

performance improvement of 27.07% was achieved using a training set size of 856 which is

124

6.3. Evaluation

0

4

8

12

16

20

24

28

214 321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

aggregation+originalFigure 6.18.: The mean relative accuracy improvement of the meta learner when extending original with

encoded aggregation-based datasets.

better than the improvement obtained using the original representation of meta features

as seen before.

In Figure 6.19, the mean relative improvement achieved by extending the original training

set with the new weather-based meta examples is presented. As seen in this figure, the

performance improvement increases for larger training set sizes, with the exception of

the training set size 856 which is still better than the performance of the original meta

examples, namely 214 meta examples. However, the increases become very small for large

training set sizes. The performance improvements for the training set sizes 1070, 1284 and

1498 are 19.17%, 19.43% and 19.80% respectively. The best performance increase of 19.80%

is achieved at the maximum training set size of 1498. This is similar to the first experiment

where the best result was achieved with the largest training set size of 1498 as well (see

Figure 6.15).

The mean relative improvement in the predictive performance of the ANN meta learner

related to the model-based approach and a combination of aggregation as well as weather-

based approaches are presented in Figure 6.20 and 6.21, respectively. For the model-based

approach, themean performance improvement increases steadily up to 22.16% for a training

set size of 642. Increasing the training set size beyond this point resulted in improvement

values ranging from 19.73% to 21.57%. Regarding the combined approach, the improvement

increases steadily to 20.62% at 642 meta examples as depicted in Figure 6.21. However, the

best and second best performances of 23.03% and 21.86% for this approach are achieved

using the two largest training set sizes.

Table 6.6 presents a general comparison of the relative performance improvements of

extending original meta examples with encoded ones. A good mean relative performance

improvement is achieved for all of our approaches compared to the original case that

125

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

0

4

8

12

16

20

24

28

214 321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

weather+originalFigure 6.19.: The mean relative accuracy improvement of the meta learner when extending original with

encoded weather-based datasets.

0

4

8

12

16

20

24

28

214 321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

model+originalFigure 6.20.: The mean relative accuracy improvement of the meta learner when extending original with

encoded model-based datasets.

contains only 214 meta examples. Similar to the first experiment, the additional meta

examples in the training set seem to increase the variance in meta features and improve

the generalization capabilities of the meta learning classification model.

Interestingly, there is a limit after which no further improvement is obtained. Those limits

are different depending on the proposed approach as seen in Table 6.6. E.g., the best

results for the weather-based approach are achieved at the largest training set size in both

126

6.3. Evaluation

0

4

8

12

16

20

24

28

214 321 428 642 856 1070 1284 1498

training set size

Pe
rfo

rm
an

ce
 c

ha
ng

e
in

 %

aggregation+weather+originalFigure 6.21.: The mean relative accuracy improvement of the meta learner when extending original with

combination of encoded aggregation- and weather-based datasets.

experiments. In contrast, for the model-based approach the best results are reached at

training set sizes of 642 and 856 in the first group of experiments and at training set sizes

of 642 and 1498 in the current group of experiments. The best improvement of 27.07% is

achieved for the aggregation-based approach at extending the original dataset to include

856 meta examples. This can be explained by the high variance of the features in the

extended meta examples on which the meta learner is trained. For the other methods the

best achieved results are only 19.80%, 22.16% and 23.03% for the weather-based, model-

based and combination-based approaches respectively.

The usage of autoencoder for encoding the meta features generally introduces better results

than the one obtained based on the original representation of meta features. The best

achieved overall performance improvement is 27.07%. It is achieved by the aggregation-

based meta examples with an increase of 10.30% compared to the result of 16.77% in the

first group of experiments.

As seen in Table 6.6, the model-based approach existing in the literature is outperformed by

the aggregation-based one for every training set size. In contrast to the aggregation-based

method, using the weather-based method resulted in the worst performance improvement

out of all methods for 6 out of 7 training set sizes. This is similar to the first experiment,

where the weather-based approach produced the worst results out of all approaches for 5

out of 7 extended training set sizes as presented in Table 6.5. Despite that, extending the

original meta examples with meta examples resulting from the weather-based approach

still improves the performance of the meta learner in comparison the case that only original

meta examples are used.

Extending the original training set with a combination of meta examples from both

aggregation- and weather-based approaches resulted in a mean performance improvement

127

6. Generating Efficient Meta Examples for Energy Time Series Model Selection

Table 6.6.: General comparison of the effect of different encoded meta examples generation approaches.

Training
Set Size

Performance Improvement in (%)

Aggregation + Original Aggregation + Weather + Original Model + Original Weather + Original

321 15.48 11.89 8.11 9.86

428 23.56 15.14 16.20 12.74

642 22.25 20.62 22.16 16.41

858 27.07 19.54 19.92 14.37

1070 25.98 19.74 19.73 19.17

1284 23.35 23.03 19.92 19.43

1498 23.94 21.86 21.57 19.80

that lies between the results of the stand-alone approaches. This can be explained by

looking at the variance of the features. Based on the fact that the variance of features plays

an essential role in the accuracy of the classification model, we analysed the variance of

features in each of the new time series datasets generated from the aggregation-based,

weather-based, model-based and a combination of aggregation as well as weather-based

approaches. We found that the large variance is existing in the datasets generated by the

aggregation-based approach. The lowest variance is found in the datasets generated from

the model-based approach.

Moreover, combining the meta examples resulting from both aggregation-based and

weather-based introduced a variance which is lower than the variance of the aggregation-

based and higher than weather-based datasets. Therefore and for every training set size,

the aggregation-based approach performs better and the weather-based approach performs

worse than a combination of them. This confirms the results from the first experiment, that

combining the meta examples of both approaches didn’t improve performance, but rather

that the weather-based meta examples dragged down the excellent relative performance

improvement achieved by using only aggregation-based meta examples for extending the

original one.

6.4. Summary

Meta learning is a machine learning method, which can quickly perform automatic algo-

rithm selection. A so-called meta learner tries to learn the relationship between algorithm

performance and problem characteristics using a data-driven approach. Because meta

learning is a data-driven approach, the good classification performance of the meta learner

depends on the availability of training examples. In this chapter, we introduced new

concepts to generate new meta examples. We started in Section 6.1 by presenting the

problem we aim to solve. In Section 6.2, we introduced our solution for generating new

meta examples.

128

6.4. Summary

An extensive evaluation study for measuring the effect of the new generated meta examples

on the predictive accuracy of the meta learning classification model is provided in Section

6.3. We analyzed the effects taking two points of view. While the original representation

of meta features is used in the first one, an encoded representation of meta features using

autoencoder is utilized in the second one. The evaluation results show that the newly

generated meta examples are able to enhance the predictive performance of the ANN meta

learner up to 16.77% and 27.07% in the case of using the original and encoded representation

forms of meta features respectively.

129

7. Automated Time Series Model
Selection in Big Data Environments

With the introduction of more andmore renewable generation and volatile load an, efficient

management of energy at grid level requires more and more accurate load and generation

forecasting. Despite intensive research projects in this field, energy load and generation

forecasting still represent a challenging task especially for non-expert users where finding

the optimal candidate of a forecasting model can be a very time consuming and complex

task.

The well-known no-free-lunch theorem states that no single forecasting model can provide

the optimal solution for each forecasting problem [173]. Therefore, depending on the

forecasting situation and a given time series to forecast, an appropriate model needs to be

found for the given situation. The straightforward method to use a trial-and-error process,

in which a lot of learning algorithms with different hyperparameters are tried out till a

model with acceptable predictive performance is found, is a tedious and boring process.

But even in this process, expert knowledge is highly required to understand, recognize

and build the most suitable forecasting model. Moreover, this task is more difficult in

the context of Big Data where a large amount of energy time series datasets need to be

processed and afterwards forecasted. In order to minimize these difficulties, machine

learning algorithms in a so-called meta learning approach can be used to automatically

select the best forecasting model for a particular energy time series dataset.

In this chapter, a new microservice-based solution for instrumenting the concept of meta

learning presented in Chapters 5 and 6 is introduced. The main advantage of the developed

framework is the ability of solving the problem of energy time series model selection

in Big Data environments and supporting non-expert users, category 2B, in performing

energy time series forecasting for Big Data without the need of having deep knowledge in

the field of machine learning and Big Data.

Firstly, Section 7.1 describes the problem statement in more detail. In this section, the

problems to be solved, the challenges to be tackled, the group of non-expert users to

Parts of this chapter are reproduced from:

• S. Shahoud, H. Khalloof, M. Winter, C. Duepmeier, and V. Hagenmeyer (2020). “A Meta Learning

Approach forAutomating Model Selection in Big Data Environments using Microservice and

Container Virtualization Technologies”. In: Proceedings of the 12th International Conference on

Management of Digital EcoSystems, pp. 84–91. doi: 10.1145/3415958.3433072

131

7. Automated Time Series Model Selection in Big Data Environments

be assisted, goals to be achieved, the scientific question to be answered and the major

advantages of using microservices techniques for approaching the problem solution are

described. Secondly, the conceptual microservice-based architecture for the proposed meta

learning solution as an extension of the architecture introduced in Chapter 4 is presented

in details in Section 7.2.1. An in-depth experimental study is performed in Section 7.3 to

evaluate the performance of the meta learning framework in two points of view. In the

first one, the predictive accuracy of the meta learning classification model in assigning the

best forecasting model to the input energy time series datasets is evaluated. In the second

one, the framework overhead and execution time required for performing meta learning

tasks is investigated and discussed. Before starting the discussion of results obtained from

the evaluation, the setup of experimental environment and therefore the deployment of the

proposed meta learning framework in Big Data Environments is described. The research

contributions presented in this chapter were the main topics of our paper in [145].

7.1. Problem Statement

As mentioned before in Chapter 4, a microservice-based framework is developed for

supporting non-expert users category 2A presented in Table 1.1 to perform ML tasks in

Big Data environments. This framework hides the low level configurations from the user

and interfacing to the ML software on the cluster in a way that will allow plugging in

different ML runtime environments, e.g. Apache Spark.

While users of category 2A have good know-how in data analytic, another category of

non-expert users is existing, when performing ML tasks, namely category 2B, as seen in

Table 1.1. Such users are inexperienced in the field of ML and statistics. Moreover, it is

difficult or even impossible for them to build a required time series forecasting model, due

to the lack of required experience in the field of ML. They only have the energy time series

datasets and need to have some accurate forecasting results.

Choosing an adequate ML model for energy time series forecasting is not an easy task

for those users. The reason for that lies in the fact that a great number of ML algorithms

are existing and further can be applied to solve the same problem, but it’s difficult to find

the right one. Such algorithms originate from different fields, for example, statistics, time

series, neural networks, to name a few. Tuning the hyperparameters of such algorithms

to correctly build an accurate forecasting model requires deep expert knowledge in the

field of ML. Moreover, this task will become more complex when dealing with a large

amount of energy time series datasets. To address this issue, the instrumenting of meta

learning is proposed in this thesis to efficiently support non-expert users in selecting the

best forecasting model without the need for building and testing a large number of models

manually.

The main concept of meta learning presented in Chapter 5 can be instrumented by con-

ceptualizing and implementing a microservice-based meta learning framework running

in the Big Data environments which can be used for combining the different building

132

7.2. Proposed Solution

blocks of our solution into one easy-to-use integrated software platform. The proposed

meta learning framework therefore takes advantage of modern runtime techniques such

as container and microservices technologies. Microservices represent one of the state-of-

the-art software architecture approach, where each service is designed to be a separate

deployable software component running in its own execution environment making it

horizontally scalable as mentioned in Chapter 2. In contrast to a monolithic architecture

where the application is designated as one single unit, the microservice architecture splits

up the entire dedicated functionality into a collection of smaller units communicating

with each other via lightweight APIs, e.g. REST-APIs. This ensures better scalability, a

very modular design and clearly visible explicit inter-dependencies between the different

components solely defined by their service API. Thus, new functionality can be easily

added to the system by introducing new services. Since each service has its own runtime

environment and can be scaled independently from each other, container technologies are

used to encapsulate each one in a standardized container image for runtime automation

purposes.

In this chapter, we answer the research question RQ4 “How should non-expert users

with neither ML knowledge, nor programming skills be supported in performing energy

time series forecasting in Big Data environments?” by extending the solution presented

in Chapter 4 to include three additional microservices for meta learning, namely Data

Preprocessing Service (D.P.-Service), Meta Knowledge Extraction Service (M.K.E.-Service)

and Meta Learning Service (M.L.-Service). More details about the general microservice-

based architecture are provided in Section 7.2.

The developed framework is designed to be generic and flexible as much as possible for

providing automatic model selection to a wide range of application areas. In the present

work, energy time series model selection is considered as a meta learning use case as

already introduced before. To this aim, a variety of meta features groups are extracted,

namely simple, statistical, Information Theoretic (IT), Time Series (TS) and Descriptive

Statistics Time-based Meta Features (DSTMF) meta features [143]. Both Random Forecast

(RF) and Artificial Neural Network (ANN) algorithms are involved in the proposed meta

learning framework as meta learners. To ensure better applicability of the classification

rules by the meta learner, an efficient feature selection procedure is also integrated into

our solution. The current framework utilizes Apache Spark as a runtime environment for

ML on a Big Data cluster and spark.ml as a ML library. The storage layer of the framework

utilizes the Hadoop Distributed File System (HDFS) and PostgreSQL database for storing

the required input and the resulting output data as will be seen in the following sections.

7.2. Proposed Solution

In order to build a scalable and highly flexible meta learning framework for recommending

the most appropriate forecasting model, the framework architecture presented in Chapter

4 is extended. In this section, we present our conceptual meta learning microservice-based

architecture proposed to answer the aforementioned research question RQ4. To this end,

133

7. Automated Time Series Model Selection in Big Data Environments

we clarify in detail the layers, the microservices and the communication between them to

achieve the main goal of our framework.

7.2.1. Conceptual Meta Learning Microservice-based Architecture

Figure 7.1 describes the conceptual microservice-based architecture of our meta learning

solution in Big Data environments. The major extension here compared to the architecture

presented in Chapter 4 are the automated model selection UI besides the additional services

required to realize the main concept of meta learning.

Jobs
Execution UI

Service Data Management
Service

UI Layer

Service Layer

Model
Management UI

Data
Management UI

Cluster
Configuration

UI

DB

Persistence
and

Processing
Layer

Big Data Environment

Machine Learning Engine Deep Learning Engine

Spark/MLlib Tensorflow

Service Job Management
Service

Service Data Preprocessing
Service

Service Meta knowledge
Extraction Service

Service Meta
Learning Service

Automated
Model

Selection UI

Figure 7.1.: Conceptual framework architecture for meta learning, adapted from Chapter 4.

In the architecture presented in Chapter 4, two microservices are developed to perform ML

jobs in Big Data environments. While one service focused on data and model management,

the other service is responsible for running and monitoring ML jobs. As mentioned before,

the main functionalities of the microservice-based framework presented in Chapter 4

are extended by adding three additional microservices to the service layer, namely data

preprocessing, meta knowledge extraction and meta learning services to support non-

expert users in selecting an adequate ML model for a given ML task as seen in Figure 7.1.

The services provide RESTful APIs which are used by the applications in the UI layers to

interact with the runtime environment to perform the main tasks.

Figure 7.2 illustrated the mapping between the meta learning concept and the proposed

microservice-based framework. In this mapping, the different steps for building a meta

learning classification model are mapped into their corresponding microservices. In the

following sections, the layers including the microservices are described in more detail.

134

7.2. Proposed Solution

Preprocessing

Service

J.M.-

Service

D.M.-

Service

J
.M

.-S
e
rv

ic
e

D
.M

.-S
e
rv

ic
e

Meta Learning

Service

Meta Knowledge

Service

Preprocessing Service

J.M.-

Service

D.M.-

Service
Meta Knowledge Service

Meta Learning Service

Figure 7.2.: Mapping the different steps of the meta learning approach to the corresponding microservices.

135

7. Automated Time Series Model Selection in Big Data Environments

7.2.1.1. User Interface (UI) Layer

This layer handles the user interaction and provides the necessary functionality and infor-

mation to aid non-expert users in accomplishing their ML tasks in Big Data environments

effectively. It consists of separate web applications which interact with the service layer

via RESTful APIs to provide the dedicated functionalities. In the present meta learning

framework, the UI presented in Chapter 4 is extended to include the automated model

selection UI to support non-expert users in performing efficiently selecting the most ap-

propriate energy time series forecasting model. In the following, the sub-parts of the UI

are explained in more detail.

Data Management UI: As mentioned in Chapter 4.

Model Management UI: As mentioned in Chapter 4.

Job Execution UI: As mentioned in Chapter 4.

Cluster Configuration UI: As mentioned in Chapter 4.

Automated Model Selection UI: This UI is new and responsible for the tasks of meta

learning. It allows the user to upload or select a new dataset, for which themost appropriate

ML model needs to be automatically recommended, e.g. in our setting a “time series

forecast”. After that, a new meta learning task is established. In this task, a meta learning

classification model based on a wide range of datasets stored in the persistence and storage

layer of the proposed framework is built and used to assign the adequate, e.g. forecasting

model, for the new uploaded energy time series dataset.

7.2.1.2. Service Layer

As mentioned before, the main advantage of using microservices, apart from their modu-

larity, is that each component of the framework can be developed separately using, e.g.

different technologies and programming languages. In this layer and in the context of

meta learning, the main domain functionalities have been divided into five microservices

on the service layer, namely the Job Management Service (J.M.-Service), the Data Manage-

ment Service (D.M.-Service), Data Preprocessing Service (D.P.-Service), Meta Knowledge

Extraction Service (M.K.E.-Service) and Meta Learning Service (M.L.-Service) as shown in

Figure 7.1. Because both J.M.-Service and D.M.-Service were already explained in Chapter

4, we will only present the other services in more detail in the following sections.

D.P.-Service: As its name implies, this service is responsible for preprocessing and

preparing energy time series datasets for the tasks of forecasting and meta learning. The

preprocessing steps involved in this service include outlier detection or the handling of

gaps in the input energy time series datasets. Forecasting features which are required

to perform an accurate forecasting are extracted by this service. This step is followed

by an efficient feature selection procedure in which the most important uncorrelated

features are selected. Moreover, the aggregation task in DSTMF [143] is considered as

a preprocessing step and performed by this service. Synthetic Minority Over-sampling

136

7.2. Proposed Solution

Technique (SMOTE) and Principal Component Analysis (PCA) techniques as major steps to

enhance the predictive performance of the meta learning classification model are applied

by this service. Generally, the D.P.-Service communicates with D.M.-Service to get the

time series datasets that need to be preprocessed. Then, it creates a preprocessing job

and sends it to the J.M.-Service which in turn accesses the persistence and processing

layer to execute the job on the Big Data cluster. The main functionalities of D.P.-Service

REST-APIs are summarized by the URL patterns presented in Table 7.1.

Table 7.1.: List of the URL patterns of the D.P.-Service.

URL Pattern Description

/extractFeatures/dataset_id

A post request on this URL is used to Start feature extraction (forecasting features) for dataset and

adds features to dataset file

/aggregate/dataset_id A post request on this URL is used to create new aggregated dataset

/aggregate/dataset_id/all A post request on this URL is used to create new datasets with all available aggregation levels

/process/dataset_id

A post request on this URL is used to perform preprocessing such as outlier detection

or the handling of gap

/selectFeatures/dataset_id

A post request on this URL is used to Start feature selection procedure on the

features extracted for this dataset

/pca/dataset_id A post request on this URL is used to perform principal component analysis

/smote/dataset_id A post request on this URL is used apply synthetic minority over sampling technique

M.K.E.-Service: As mentioned before, the main goal of meta learning is to support non-

expert users in finding the most adequate forecasting model. To this end, meta learning

tries to find the mapping between the meta features that describe the energy time series

datasets and the algorithm space, from which the best model is recommended. To achieve

that, the Knowledge Matrix (KM), as defined in Chapter 5, needs to be built to be later

used by the M.L.-Service to perform the time series automated model selection. The

M.K.E.-Service is responsible for preparing information for the building of the Knowledge

Matrix.

In the KM, each row corresponds to one energy time series dataset containing meta features

of it as predictors and the best model e.g. forecasting model as a label. Five different

types of meta features are taken into account as already described before, namely Simple,

Statistical, Information-theoretic, Time Series and DSTMF meta features. A comprehensive

description about them was already is presented in Chapter 5. The main functionalities

of M.K.E.-Service REST-APIs are summarized by the URL patterns presented in Table 7.2.

Building and maintaining the KM is performed as follows:

1. The M.K.E.-Service communicates with the D.M.-Service to get the required energy

time series datasets, from which the meta knowledge will be extracted.

2. The M.K.E.-Service triggers both D.M.-Service and J.M.-Service for trying all possible

models on the cluster to determine the best and most adequate one to be set as a

label for each time series dataset.

3. The M.K.E.-Service triggers both D.M.-Service and J.M.-Service for extracting the

required meta features for each time series dataset.

137

7. Automated Time Series Model Selection in Big Data Environments

Table 7.2.: List of the URL patterns of the M.K.E.-Service.

URL Pattern Description

/metaFeatures A GET request on this URL is used to retrieve all available meta features

/metaFeaturese/dataset_id

A GET request on this URL is used to retrieve meta features for

a specific dataset

/metaFeaturese/dataset_id

A POST request on this URL is used to extract meta features for

a specific dataset

/testingPerformance

A GET request on this URL is used to retrieve all available

testing performance

/testingPerformance/dataset_id/algo_id

A GET request on this URL is used to retrieve testing performance for

a specific dataset and algorithm

/testingPerformance/dataset_id/algo_id

A POST request on this URL is used to execute training for

specific dataset with a specific algorithm

/testingPerformance/dataset_id/all

A GET request on this URL is used to retrieve testing performance for

all available algorithms for a specific dataset

/testingPerformance/dataset_id/all

A POST request on this URL is used to execute training for specific

dataset with all available algorithms in parallel

M.L.-Service: After extracting the meta knowledge by the M.K.E.-Service, the M.L.-

Service gather this information to build KM. After that, the M.L.-Service trains and tests

an algorithm, referred to as a meta learner, responsible for learning the mapping between

meta features and the best models. As meta learners, RF and ANN are used. Based on

this mapping learned during the training phases, the resulting meta learning classification

model is used later to recommend the best forecasting model for a new energy time series

dataset.

To achieve that, the M.L.-Service first sets up the meta learning job, in which a meta

learning model is trained and tested. Then, it sends this job to the J.M.-Service which

in turns accesses the persistence and processing layer to perform the job on the cluster.

The main functionalities of M.L.-Service REST-APIs are described by the following URL

patterns described in Table 7.3:

7.2.1.3. Persistence and Processing Layer

This layer is responsible for storing all data and processing tasks. It communicates with

the service layer to perform ML tasks in Big Data environments hiding the details of the

runtime environments from the implementation of the services. A detailed explanation of

this layer was already given in Chapter 4.

7.3. Evaluation

To evaluate the efficiency of the microservice-based meta learning framework, a set of

experiments were designed to explore several aspects related to the accuracy of the meta

138

7.3. Evaluation

Table 7.3.: List of the URL patterns of the M.L.-Service.

URL Pattern Description

/project A GET request on this URL is used to retrieve all meta learning projects

/project

A POST request on this URL is used to create a new meta

learning project

/project/project_id

A GET request on this URL is used to retrieve a specific meta

learning project

/project/project_id/dataset_id

A POST request on this URL is used to add a specific dataset

to the project

/project/project_id/datasets

A GET request on this URL is used to retrieve all datasets in

a specific project

/knowledge/project_id/metaFeatures

A GET request on this URL is used to retrieve all meta features for

a specific project

/knowledge/project_id/labels

A GET request on this URL is used to retrieve all class labels for

a specific project

/knowledge/project_id/update

A POST request on this URL is used to gather knowledge matrix

and upload it to a distributed file system

/knowledge/project_id/metaFeatureCorr

A POST request on this URL is used to calculate meta features

correlations

/knowledge/project_id/featureImportance

A POST request on this URL is used to calculate meta features

importance scores

/learner/project_id/train

A POST request on this URL is used to train meta learner on

knowledge matrix

/learner/project_id/evaluate A POST request on this URL is used to evaluate meta learner

/learner/project_id/rfe

A POST request on this URL is used to execute recursive

feature elimination

/learner/project_id/classify/dataset_id

A POST request on this URL uses a trained meta learner to predict a

model for a specific dataset

learner, the execution time and the overhead of the framework. The use case used for

performing these experiments is the same one presented in Section 5.2.2, in which a meta

learning scenario for selecting the best short-term load forecasting model is presented.

In this use case, seven groups of meta features, namely Simple, Statistical, Information-

theoretic, Time Series, DSTMF, All without DSTMF and All were instrumented. Random

forest and artificial neural networks, as meta learners, are used to discover the mapping

between the extracted meta features and the best forecasting model from a group of 4

models, namely decision tree, random forest, gradient boosted tree and linear regression.

For better utilization and exploitation of the available abilities of the underlying Big Data

cluster, the custom configurations shown in Table 4.3 are used. 200 time series datasets

corresponding to 200 buildings are selected from Energo+ in these experiments.

In contrast to the evaluation presented in Section 5.3, in which the accuracy of meta

features in characterizing energy time series datasets is measured, the focus here is

on the enhancement achieved in the predictive performance of the meta learner. The

enhancements are analyzed from three points of view as shown in Figure 7.4. In the

first one, the curse of dimensionality that negatively affects the predictive performance

139

7. Automated Time Series Model Selection in Big Data Environments

of the meta learning classification model is solved by applying Principal Component

Analysis (PCA). In the second one, the high correlation between meta features is removed

by applying an efficient feature selection procedure. In the third one, the imbalancing in

the resulting knowledge matrix is fixed by applying Synthetic Minority Over-sampling

Technique (SMOTE) to increase the number of examples that correspond to minority

class.

Moreover, the computational complexity of the different groups of meta features extracted

in this work is discussed, highlighting DSTMF as a new convincing form of meta features

for characterizing energy time series datasets. The evaluation is started by presenting

the deployment of the microservice-based meta learning framework on cluster for set-

ting up the evaluation environment. After that, the obtained results are introduced and

discussed.

7.3.1. Deployment of Microservice-based Meta Learning Architecture in
Big Data Environments

In this section, a brief overview of the deployment of our proposed microservice-based

meta learning framework in Big Data Environments is introduced. For a long time, the

term virtualization referred to as a hypervisor-based virtualization. A hypervisor is a

software which allows an abstraction from the underlying hardware. It can be used to

emulate the hardware as a "virtual machine". This virtual machine runs isolated from

the host system and other virtual machines managed by the hypervisor software. Inside

the virtual machine, an operating system and software can be installed. In contrast

to hypervisor-based virtualization, container-based virtualization does not emulate the

necessary hardware but uses operating system features to isolate processes and create so

called containers as isolated runtime environments for applications.. All containers of a

system use the same operating system kernel which significantly lowers the overhead.

Docker is the most well-known container runtime environment, where each docker

software installation consists of multiple components:

• Docker Daemon: It can be seen as a background daemon process running on the

host operating system which is accessible from other computers by exposing a REST

API, and otherwise. It is also responsible for creating and managing the running

containers on the host.

• Docker Container: It can be seen as a standardized isolated runtime environment

on a host which runs applications.

• Docker Image: It can be seen as a template for setting up an internal file system

within a container to run a dedicated set of applications. Therefore, images can be

used to store and deploy applications with all their third party dependencies needed

for running the applications (e.g. frameworks, configuration files, needed content,

etc.). The file system representing the image contain all software which is needed to

run one or more applications within the container.

140

7.3. Evaluation

• Registries: It can be seen as a repository for Docker images. Images can be pushed

to or pulled from registries by the docker daemon to execute them in a container on

a host. Registries can either be public or private, and make images available for easy

deployment.

Institute for Automation and Applied Informatics (IAI)

IT4ES

13

Experimental Setup (1/2)

Moritz Winter23.03.2021

Figure 7.3.: Deployment of Microservices.

Figure 7.3 illustrates the deployment of our meta learning framework on cluster. As seen

in this figure, docker was utilized to build container environments for the microservice

presented in Section 6.2.2. For each microservice, we create a docker image that can be

accessed by a private docker registry. This procedure allows us to exploit the advantages

our microservice architecture entails, namely easy re-deployment and scalability. The

persistent database was installed as a PostgreSQL server that also resides in a docker

container.

To automatically deploy docker containers on different nodes in a cloud environment, a

container orchestration software, called Kubernetes, is used. Kubernetes allows managing

multiple machines (nodes) as a cluster. Each cluster contains at minimum one master

node and one worker node. The master node is responsible for global decisions about the

cluster and monitors the state of worker nodes. It also provides an interface for access by

clients.

Each worker node contains multiple components:

141

7. Automated Time Series Model Selection in Big Data Environments

• Kubelet: It is an agent that makes sure all pods are healthy. A pod is the simplest

kubernetes object and represents a set of running containers. The Kubelet takes pod

specifications and tries to fill them.

• Kube-proxy: It manages network rules on nodes.

• Container Runtime: It is the software that is responsible for running the containers,
for example Docker.

Using kubernetes as container orchestration software, it is possible to deploy multiple

containers and specify the network environment, persistent storage or replications and

can pull docker images directly from a docker registry. Therefore, it is well-suited for the

deployment of multiple microservices which have to communicate with each other.

7.3.2. Results and Discussion

In this section, the predictive performance of the proposed microservice-based meta

learning framework in recommending the best forecasting model for energy time series

datasets is evaluated. As mentioned before, the same meta learning use case presented

in Chapter 5 is considered in this group of experiments. The goal is to enhance the

predictive performance of the meta learner by applying state-of-the-art techniques in

feature engineering. Firstly, the obtained results in terms of the accuracy of the meta

learning classification model are presented and discussed. After that, the framework

overhead and execution time are introduced.

7.3.2.1. Accuracy of Meta Learning Classification Model

Figure 7.4 illustrates the overall methodology applied in the evaluation for achieving the

best predictive performance of the meta learner using the aforementioned groups of meta

features. As seen in this figure, an efficient feature selection process including the removal

of highly correlated features followed by Recursive Feature Elimination (RFE) is performed

to achieve better classification results.

To address the problem of imbalanced classes, SyntheticMinority Over-sampling Technique

(SMOTE) [34] is applied to create a more balanced dataset. The curse of dimensionality

that is considered as one of the major problems affecting the accuracy of the classification

models is mainly addressed by applying a Principal Component Analysis (PCA), whereby

PCA is one of the state-of-the-art unsupervised linear transformation technique that learns

the relationships between predictors to find a list of principal components [129]. To this

end, the number of features is reduced leading to more accurate classification results as

will be seen in this section. All of these techniques are performed by the aforementioned

M.K.E.-Service and the D.P.-Service.

In this section, only the results of applying Principal Component Analysis (PCA) and

Synthetic Minority Over-sampling Technique (SMOTE) are introduced, as the other results

142

7.3. Evaluation

PCA
Remove highly correlated meta

features
SMOTE

Bad Predictive Accuracy

High Correlation between Meta
Features

Imbalanced Dataset

Reduce Nr. Meta Features Reduce Nr. Meta Features
Increase or reduce Nr. Meta

Examples

Curse of Dimensionality

Better Predictive Accuracy

Figure 7.4.: Methodology applied to improve the predictive performance of meta learning classification

model.

related to removing the highly correlated meta features were already presented and

discussed in Section 5.3 for our use case.

N
um

be
r o

f L
ab

el
s

N
um

be
r o

f L
ab

el
s

LR DT RF GBT LR DT RF GBT

Model Model

Figure 7.5.: Model Distribution before applying SMOTE.

After extracting meta features and building the required short-term forecasting models

for each input time series dataset to set up the knowledge matrix, the distribution of

models is shown in Figure 7.5. As seen in this figure, the Gradient Boosted Tree (GBT)

models introduced the best forecasting predictive performance for the greatest number of

time series datasets, closely followed by the Linear Regression models. Random Forest

and Decision Tree Models rank not quite as good as the other models. Such distribution

143

7. Automated Time Series Model Selection in Big Data Environments

of labels finally leads to an imbalanced knowledge matrix which will badly affect the

predictive performance of our meta learning classification model.

To address this issue, oversampling techniques are applied. SMOTE is one of the state-of-

the-art techniques existing in the literature to perform oversampling, in which the number

of minority classes is increased to achieve the balance in the overall class distribution. The

main idea is to artificially generate new examples of the minority class using the nearest

neighbors of these cases. Furthermore, the majority class examples are also under-sampled,

leading to a more balanced class distribution. The class distribution of DT, RF, DT and

GBT after applying SMOTE is shown in Figure 7.6. As seen in this figure, the number

of minority classes in the original unbalanced dataset is increased to become 62 and 48

for DT and RF respectively, where GBT still represents the majority class with 65 values

against 53 values for the class of LR.

N
um

be
r

of
 L

ab
el

s

N
um

be
r

of
 L

ab
el

s

LR DT RF GBT LR DT RF GBT

Model Model

Figure 7.6.: Model Distribution after applying SMOTE.

The predictive performance of both RF and ANN as meta learners are presented in Tables

7.4 and 7.5 respectively. As seen in these tables, both meta learners achieved a classification

accuracy of 80% in the third testing scenario in which the testing dataset is not covered by

the training one.

Table 7.4.: The predictive performance of random forest meta learner after applying SMOTE technique.

Predictive Accuracy

Simple Statistical Information-theoretic TS DSTMF All Without All

Partly 10 40 20 90 90 80 70

Complete 10 40 20 80 90 80 80

Not Covered 10 40 20 70 80 70 70

144

7.3. Evaluation

Table 7.5.: The predictive performance of neural network meta learner after applying SMOTE technique.

Predictive Accuracy

Simple Statistical Information-theoretic TS DSTMF All Without All

Partly 20 40 20 70 90 70 70

Complete 10 40 20 90 90 90 90

Not Covered 10 30 10 60 80 60 70

Table 7.6.: The predictive performance of random forest meta learner after applying PCA technique.

Predictive Accuracy

Simple Statistical Information-theoretic TS DSTMF All Without All

Partly 10 40 20 80 80 80 60

Complete 10 40 20 90 90 90 90

Not Covered 10 40 20 60 70 60 80

Another technique proposed in literature to solve the curse of dimensionality and multi-

collinearity between features is PCA. The goal of these experiments is to select the most

efficient meta features and reduce the total number by producing new efficient compo-

nents of meta features. Generally, PCA is a statistical procedure that uses an orthogonal

transformation to convert a set of possibly correlated features into a set of features of

linearly uncorrelated variables called principal components. The disadvantage in such

approaches lies in the fact that new components are introduced to represent the input

meta features hiding as well as encapsulating the original meta features in a new group of

features. Therefore, we will not be able to recognize the final meta features used in our

meta learning classification model.

Before applying PCA, it is highly recommended to normalize the dataset. The reason

behind this is that performing PCA on un-normalized variables will lead to insanely

large loadings for variables with high variance. In turn, this will lead to dependence of

a principal component on the variable with high variance. Concerning the number of

principal components, we decided to produce the same number of meta features resulted

from the feature selection process presented in Table 5.4. That means, 2, 7, 2, 20, 22, 30

and 52 principal components for the 7 meta-feature groups, namely Simple, Statistical,

Information-theoretic, TS, DSTMF, All without" and All, respectively as seen in Tables 7.6

and 7.7.

The resulting principal components represent the original meta features and are used

to train and test the performance of random forest and neural network meta learners

in the aforementioned three different testing scenarios. Tables 7.6 and 7.7 clearly show

the obtained results. As seen in these tables, in the third testing scenario, a classification

accuracy of 80% for both random forest and neural network is achieved when using all

available meta features. In the last meta feature category, the positive effect of DSTMF can

145

7. Automated Time Series Model Selection in Big Data Environments

Table 7.7.: The predictive performance of neural network meta learner after applying PCA technique.

Predictive Accuracy

Simple Statistical Information-theoretic TS DSTMF All Without All

Partly 10 40 20 80 80 80 70

Complete 10 40 20 90 90 90 90

Not Covered 10 50 20 70 70 60 80

be clearly seen achieving an improvement of 20% compared to the category “All without

DSTMF” for both meta learners.

Typically, the third testing scenario is the most difficult and reliable one compared to

the other testing scenarios considered in these experiments. Driven by that, only the

predictive accuracy of RF and ANN meta learners in the case of a testing dataset that is

not covered by the training one is summarized.

Table 7.8.: General Comparison in the case of using random forest meta learner.

Predictive Accuracy

Simple Statistical Information-theoretic TS DSTMF All Without All

Without Processing 10 40 30 60 50 40 50

Feature Selection 10 40 20 80 80 60 80

SMOTE 10 40 20 70 80 70 70

PCA 10 40 20 60 70 60 80

Table 7.9.: General Comparison in the case of using neural network meta learner.

Predictive Accuracy

Simple Statistical Information-theoretic TS DSTMF All Without All

Without Processing 10 40 30 50 60 40 60

Feature Selection 10 40 20 90 90 70 90

SMOTE 10 30 10 60 80 60 70

PCA 10 50 20 70 70 60 80

It is clearly seen in Tables 7.8 and 7.9 that handling Simple, Statistical and Information-

theoretic separately don’t lead to an acceptable classification accuracy for either of the

both meta learners. Even after using the feature selection, SMOTE and PCA, both meta

learners introduce a bad predictive performance in recommending the adequate short-term

forecasting model when using these groups of meta features as seen in Tables 7.8 and 7.9.

While RF and ANN achieved an accuracy of 70% for TS and DSTMF meta features, the best

predictive performance in terms of accuracy was achieved when using all meta features

to characterize energy time series datasets. Comparing the previous tables, it is highly

recommended to use neural networks as meta learners to find the association between

meta features and the best forecasting model.

146

7.3. Evaluation

7.3.2.2. Framework Execution Time and Overhead

So far, the accuracy of the meta learning classification model is evaluated on different

categories of meta features. In this section, the efficiency of our proposed microservice-

basedmeta learning framework in recommending the best forecastingmodel is investigated.

To achieve that, the total time required for different tasks is measured. The experiments

are repeated five times and the mean values of the results are computed.

Case 1: Meta Feature Extraction: The goal of this task is to extract the meta features

required to describe energy time series datasets. As already discussed, these meta features

are used as predictors in the meta learning classification model. This task is performed by

the M.K.E.-Service but there is also some inter-service communication needed in order to

get information from the D.M.-Service and submit the job via the J.M.-Service.

The total time needed for this task is calculated according to Equation (7.1) and it is subdi-

vided into an overhead and extraction time as shown in Figures 7.7 and 7.8 respectively.

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑚𝑠 +𝑇𝑐𝑜 +𝑇𝑠𝑝𝑎𝑟𝑘 +𝑇𝑒𝑥 +𝑇𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 (7.1)

Where:

𝑇𝑚𝑠 is the internal processing time of the microservices including database access, 𝑇𝑐𝑜 is

the time the microservices need for their internal communication,𝑇𝑠𝑝𝑎𝑟𝑘 is the time needed

to launch the spark application added to Spark overhead, 𝑇𝑒𝑥 is the total time required

within the cluster to perform the task, 𝑇𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 is the time required to load the dataset

from HDFS for processing, where each dataset is loaded only one time and all required

operations are performed on it.

As seen in Figure 7.7, the microservice processing time and inter-service communication

overhead is vanishingly small and we have a relative constant spark application launch

overhead. The time needed to load and prepare the dataset increases with greater dataset

sizes, which is also to be expected.

A look at the meta feature extraction time in Figure 7.8 reveals a great increase in the

processing time, as the size of the dataset increases. To investigate further how the

extraction time is distributed between the calculations of the different groups of meta

features, the extraction time is measured for the calculation of each group separately as

depicted in Figure 7.9.

Interesting is that DSTMF introduces a comparative predictive performance to TS as seen

in Section 7.3.2.1 with the advantage that DSTMF exhibits a much lower extraction time

than TS.

Case 2: Forecasting Feature Extraction: Calendar features such as hour, day, month

and weekend are extracted. To this aim, the D.P.-Service prepares a Spark application

with the respective needed information and communicates with both D.M.-Service and

147

7. Automated Time Series Model Selection in Big Data Environments

353310 88328 44164 29443 22082 14722 11042
Time Series data points

0

10

20

30

40

50

60

Tim
e (

s)

Preparation time
Spark overhead
Microservice communication
Microservice processing

Figure 7.7.: Meta feature extraction: overhead.

353310 88328 44164 29443 22082 14722 11042
Time Series data points

0

200

400

600

800

1000

1200

Tim
e (

s)

Metafeature extraction

Figure 7.8.: Meta feature extraction: execution time.

J.M.-Service to launch the Spark application and send it to the cluster. The total time is

calculated according to Equation (7.2).

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑚𝑠 +𝑇𝑐𝑜 +𝑇𝑠𝑝𝑎𝑟𝑘 +𝑇𝑒𝑥 (7.2)

148

7.3. Evaluation

1000

1050

1100

1150

1200

1250

1300
Metafeature extraction

all timeseries statistical infotheoretical simple dstmf
Metafeature Group

0

10

20

30

40

50

Tim
e (

s)

Figure 7.9.: Meta feature extraction: extraction time by meta feature groups.

To evaluate the effect of dataset size, the measurements are performed for different aggre-

gation levels of the same dataset. The original time series has an aggregation level of 15

minutes and 353310 data points which is a load time series of over 10 years. The other

compared datasets are created by the following aggregation levels: 1H (1 Hour), 2H, 3H,

4H, 6H and 8H. It can be observed that compared to the execution time and the Spark

overhead, the microservice processing and communication time are quite small and do

not really impact the 𝑇𝑡𝑜𝑡𝑎𝑙 much as seen in Figure 7.10.

Case 3: Building the Meta Learning Classification Model: After constructing the KM

by the M.K.E.-Service, the M.L.-Service trains RF and ANN classifiers as meta learners to

build the meta learning classification model. This model is responsible for assigning the

best forecasting model for a new energy time series dataset without the need for trying a

lot of forecasting algorithms to discover the best one. The total time is calculated according

to the previous Equation (7.2).

The building of the meta learning model can be done either in evaluation mode or produc-

tion mode. While the M.L.-Service performs a 10-fold cross validation in the evaluation

mode, it builds the meta learning model by splitting the KM into training and testing

without cross validation in the production mode. The mean 𝑇𝑡𝑜𝑡𝑎𝑙 in both evaluation and

production mode is presented in Figure 7.11 for the RF meta learner, where the large bars

correspond to the evaluation mode reflecting the additional time required for training

the meta learning model compared to a smaller time needed in case of production mode.

This experiment is carried out using different sizes of KM as seen in Figure 7.11, where no

difference in the training time of RF is noticed in the production mode. This is due to the

power of Apache Spark, for which a KM of 1000 examples is considered as a small dataset

149

7. Automated Time Series Model Selection in Big Data Environments

Figure 7.10.: Forecasting feature extraction time.

100 200 300 400 500 600 700 800 900 1000
Number of datasets in knowledge matrix

0

20

40

60

80

100

120

Tim
e (

s)

Execution
Spark overhead
Microservice communication
Microservice processing

Figure 7.11.:The mean𝑇𝑡𝑜𝑡𝑎𝑙 in both evaluation and production modes required for building RF meta learning

classification model.

and does not affect the execution time. For the evaluation mode, the higher execution time

can be attributed to the cross validation process which trains not only one but multiple

models to get an average classification accuracy over all models.

150

7.4. Summary

7.4. Summary

In this chapter, a microservice-based meta learning solution for automating energy time

series model selection in Big Data environments is presented. It is designated as a modular,

scalable and generic tool based on container and microservice technologies. In Section 7.1,

problem statements are introduced focusing on problems to be solved, techniques to be

used and non-expert users to be supported. In Section 7.2.1, the conceptual meta learning

microservice-based architecture is introduced highlighting the extension that is performed

upon the architecture presented in Chapter 4 to realize the concept of meta learning.

An extensive evaluation study was carried out to measure the predictive accuracy of meta

learning classification model and framework execution time as well as the framework

overhead as presented in Section 7.3. The obtained results are discussed in Section 7.3.2.1

including the effect of different groups of meta features on the predictive performance

of meta learners. In this context, the predictive performance of the meta learning clas-

sification model is improved by applying an efficient feature engineering procedure. To

further improve the predictive performance, SMOTE and PCA techniques are applied. The

evaluation results showed that an accuracy of 80% is achieved for both RF and ANN meta

learners.

In terms of execution time and overhead, the proposed framework introduced an accept-

able execution time with small overhead as seen in Section 7.3.2.2. It should be mentioned

that the new type of meta features introduced, namely DSTMF, have, besides good charac-

terization behaviour of energy time series datasets, also a very small execution time and

overhead compared to the other categories of meta features.

151

8. Summary and Outlook

In this chapter, we present a short summary of the solutions, concepts and methodologies

proposed in this work for supporting non-expert users in performing ML tasks and arrive

at some main conclusions. Afterwards, we will give some suggestions regarding potential

future work.

8.1. Summary

Applying Machine Learning (ML) manually to a given problem setting is a tedious and

time-consuming process which brings many challenges with it, especially in the context of

Big Data. With the growing interest in ML the last few years, particularly people without

extensive ML expertise have a high demand for frameworks assisting people in applying

the right ML algorithm to their problem setting. This is especially true in the field of smart

energy system applications where more and more ML algorithms are used e.g. for time

series data forecasting or state estimation.

The aim of this thesis was to evaluate how meta learning technology can be efficiently

applied to the problem space of data analytics for smart energy systems to assist energy

system experts which are not data analytics experts in applying the right ML algorithms

to their data analytics problems. The work was performed in context of the research

work for conceptualizing and implementing a digital research platform for German energy

researchers within the Helmholtz research program ESD. Thus, there was a high demand

that results of this work could be seamlessly integrated as an expandable solution into this

bigger digital research platform. Therefore, main building blocks of such an integrable

solution were conceptualized, and then implemented as parts of an evaluation platform: (1)

e.g. an easy-to-use modular extendable microservice-architecture based ML framework for

instrumenting and evaluatingML algorithms performed by using Open Source Big DataML

software stacks running on computing clusters with a modular web based user interface

(2a) a generic meta learner framework extending this environment (2b) a generic concept

of how meta features could be represented by meta feature sets which are unfortunately

dependent on the given data analytics problem type, e.g. forecasting load or generation

time series, in a generic fashion. Therefore, a generic solution was introduced where meta

feature sets could be “parameters” of the problem to be solved. Especially for evaluation,

the dedicated set of meta feature DSTMF was instrumented as new art of meta features for

the ML task of time series forecasting (3) how the concept of a knowledge matrix together

with the concept of a meta feature set can be used to train the generic meta learner which

153

8. Summary and Outlook

then finds the most adequate ML algorithm for a given data analytics job, e.g. time series

forecasting (4) how data have to be pre-processed so that they can be used by the meta

learning building blocks (5) how the learning environment can be widen and enhanced by

automatically generating additional data sets for training (6) How a software environment

with these software components can be setup with user interfaces that allows the user to

perform complex data analytics tasks on computing clusters without expert knowledge in

either data analytics or cluster computing environments.

To evaluate the building blocks by performing experiments and gathering evaluation

data, concrete use cases were instrumented on the evaluation platform with a focus

on performing time series analysis and forecasting on load and generation times series

data sets. Using the instrumented use cases, the evaluation platform was then used to

perform many data analytics experiments for gathering evaluation data capturing key

characteristics of the building blocks of the meta learning platform. These evaluation

data were then analyzed to verify main statements of the proposed research questions

introduced in the introduction of this thesis. In following, the stated research questions

and the main evaluation results are summarized.

The first research question stated in the introduction “How should non-expert users with

ML knowledge, but without programming skills be supported in performing ML tasks

on computing clusters using Big Data ML frameworks?” is answered in Chapter 4 by

proposing a microservice- based framework built on top of big data software stack to

ensure the ability of performing ML tasks for large amounts of data on computing clusters.

Our conceptual solution facilitates the well-known trial-and-error approach in which a

combination of different algorithms with their hyperparameters are tried by an ML user

(non-expert users, category 2A introduced in the introduction) until an adequate model is

found. This is done by supporting this trial-and-error approach by an easy-to-use software

tool environment which can be used via a web browser and where several approaches can

run in parallel on the cluster computing environment. The proposed ML framework can

even cache tuned models, and their results for easier replication or tuning. It connects

a modular highly configurable Web UI in the front-end with a grid of microservices

in the back-end which in turn communicates with distributed Big Data ML processing

environments via their service interfaces. The framework decouples the user from the

Big Data runtime environment, and sets up the runtime environment automatically to

execute ML jobs based on user input. It thereby hides the complexities of the Big Data

runtime environment from the user. The whole environment is highly scalable, modular,

expandable and needlessly integrable with other microservice-based environments, such

as the digital energy research platform of the ESD program.

The framework was evaluated using different sizes of energy time series datasets and four

state-of-the-art regression algorithms for time series regression forecasting implemented

in spark.ml, namely linear regression, decision trees, gradient-boosted trees, and random

forests as examples of forecasting algorithms. The framework is designed in such a way

that further algorithms can be easily added to the framework as needed. As seen in

Chapter 4, the major advantage of the proposed framework lies in the microservice-based

architecture that ensures better scalability and maintainability. Moreover, the framework

154

8.1. Summary

has the ability to manage, store and retrieve ML models to be used later for another task

without the need to build a new model. The results of the evaluation showed only a small

framework overhead and an obvious benefit of utilizing a cluster environment for larger

data sets. Caching of input data is another advantage of our framework that has a positive

effect of speeding up the execution of the ML tasks while introducing only a low overhead.

Also, the thresholds as well as the conditions to which the input data must adhere, so that

performing the ML tasks on clusters is feasible, were introduced and discussed.

To support even non-expert users category 2B, a meta learning solution was conceptualized

and integrated into the ML environment (see steps 2-5 further above). This solution was

evaluated in context of several further research questions stated in the introduction. The

second research question “How to efficiently characterize energy time series datasets

to enhance the performance of automated model selection?” introduced in Chapter 5

proposed the Descriptive Statistics Time based Meta Features (DSTMF), a new form of

meta feature for better capturing the deep characteristics of energy time series datasets

regarding their forecasting. DSTMF is based on the idea of aggregating energy time series

datasets into different aggregation levels as “forecasting horizons with different time

resolution”. After that and for each level, the five number summary in addition to the

mean are extracted and formulated together as a group of meta features to capture the

energy time series “time sequential” behavior.

As seen in Chapter 5, a short-term load forecasting scenario was used for evaluation.

In our evaluation study, DSTMF outperformed the other state- of-the-art meta features

introduced in the literature to characterize energy time series datasets, namely simple,

statistical, information-theoretic and time series meta features. We used random forest and

artificial neural networks as meta learners to learn the mapping between meta features

and the forecasting models. As a result of our evaluation, the artificial neural network

solution introduced better predictive performance in recommending the best forecasting

model than random forest. The predictive performance was analyzed in two different

cases. In the first one, the original representation form of meta features is used in which

only an efficient feature selection procedure on meta features is applied. In the second

one, unsupervised deep learning using an autoencoder is applied to encode the meta

feature into another more compact representation form. One result is that the encoded

representation form outperformed the original one. Additionally, the meta learner was

able to assign the best forecasting model even when it is trained on a few number of

training examples.

The third research question “How to enhance the performance of automated model selec-

tion in the context of energy by creating appropriate learning datasets?” was investigated

in Chapter 6. Two new approaches to generate new energy time series datasets to be

used as training meta examples by the meta learner depending on the type of time series

dataset (i.e. generation or energy consumption time series) were developed. The first

approach for generation datasets makes use of weather time series datasets to split, filter,

sort and group the input energy time series datasets into different “snippets” according

to their similarity based on the same weather conditions. The snippets can then be used

to generate new generation time series by alternating the series of weather conditions in

155

8. Summary and Outlook

reasonable ways. The second approach used for energy consumption time series follows

the same methodology of DSTMF proposed in Chapter 5.

It aggregates the input energy time series datasets creating new ones with different aggre-

gation levels which is feasible for consumption data because energy is an integral property.

We compared the achieved learning performance introduced by the new energy time series

datasets with the one achieved by a model-based generation of new datasets as existing in

the literature whereby a one-day-ahead power generation forecasting scenario is used as

a use case study to evaluate the efficiency of our proposed dataset generation approaches.

For such scenarios K-Nearest-Neighbor (KNN), Neural Network (NN), Autoregressive

Integrated Moving Average Model (ARMIA) and Exponential Smoothing (ETS) are possible

ML forecasting models which were instrumented for the evaluation. The evaluation study

was carried out using the original and encoded representation of meta features. Tables

8.1 and 8.2 summarize the final results in terms of enhancing the predictive performance

of the meta learner when the training set is scaled up with additional meta examples

generated according to our proposed approaches.

Table 8.1.: Relative performance improvement in terms of accuracy achieved by using extended datasets in

the case of using original representation of meta features.

Training Set
Size Aggregation + Original Weather + Original

Aggregation+
Weather+
Original

Model+Original

321 8.88 4.34 5.03 6.11

428 12.32 8.46 11.03 12.11

642 14.13 11.67 10.12 13.38

856 15.60 11.96 12.88 14.67

1070 14.41 12.91 14.56 13.02

1284 16.77 11.59 14.00 13.14

1498 15.16 15.37 14.02 11.74

As seen in this table, extending the original training sets with newmeta examples generated

by the aggregation and weather-based approaches outperformed the case in which the

original is extended by new simulated energy time series datasets. One likely explanation

could be that the simulation model based generation approach adheres to a certain mode

logic which hinders the creation of too diverse new datasets which makes it more difficult

for the meta learner to learn the mappings of all possible forecasting possibilities (even

those which are not addressed by the simulation model). The max enhancement is achieved

in the case of encoding meta features by autoencoder as seen in Table 8.2 whereby the

aggregation-based approach introduces the best case.

The fourth research question “How should non-expert users with neither ML knowledge,

nor programming skills be supported in performing energy time series forecasting in

Big Data environments?” is answered in Chapter 7. We extended the microservice-based

solution presented in Chapter 4 to support the automated selection of the best forecasting

156

8.2. Outlook

Table 8.2.: Relative performance improvement in terms of accuracy achieved by using extended datasets in

the case of using encoded representation of meta features.

Training Set
Size Aggregation + Original Weather + Original

Aggregation+
Weather+
Original

Model+Original

321 15.48 9.86 11.89 8.11

428 23.56 12.74 15.14 16.20

642 22.25 16.41 20.62 22.16

856 27.07 14.37 19.54 19.92

1070 25.98 19.17 19.74 19.73

1284 23.35 19.43 23.03 19.92

1498 23.94 19.80 21.36 21.57

model. To this end, we combined the new approaches for extracting DSTMF meta features

and generating new meta examples into the solution developed in Chapter 4. Additionally,

a wizard-like modular web based user interface was created which assists non-expert

users, category 2B, in performing ML tasks by automatically selecting the best algorithm

using the meta learning environment. A detailed in-depth evaluation study was performed

in which the predictive accuracy of the meta learner was investigated. As meta learners,

Random Forests and Artificial Neural Networks are used whereby the neural network

solution features better performance. We have seen that an efficient feature selection

procedure including the resolving of the problem of curse of dimensionality, removing the

highly correlated meta features and balancing the training datasets plays an essential role

in enhancing the predictive performance of the meta learning classification model. We find

that an accuracy of 80% is achieved for both RF and ANN meta learners. We also evaluated

the developed framework in terms of execution time and overhead while performing the

major tasks in model selection. We have seen that an acceptable execution time with small

overhead is introduced. Interesting is that our new form of meta features for solving the

ASP problem for forecasting, namely DSTMF, could be calculated in very small execution

time and overhead compared to the other categories of meta features. This shows that it is

very important to provide for each ML task that should be supported on the platform the

right set of meta features for having the best performance.

8.2. Outlook

This thesis introduced a solution to support non-expert users in performing energy power

generation and load forecasting in Big Data environments. The proposed solution is

an ongoing work for developing an even more interactive and intelligent concept for

fully automating, managing, deploying, monitoring, organizing and documenting ML

tasks. By answering the research questions presented in Chapter 1, a variety of related

research projects are existing in the literature as seen in Chapter 3. However, further

157

8. Summary and Outlook

investigation and even more deeper evaluation is still required to precisely capture the

possible potentials of our solution. In the following, we highlight some possible future

work and extension scenarios concerning each research question.

Research Question 1 [RQ1]:How should non-expert users with ML knowledge, but
without programming skills be supported in performing ML tasks on computing
clusters using Big Data ML frameworks?

In this context, an in-depth user feedback study with a larger number of users, in particular,

non-expert users, should be performed to gather feedback for tuning to make the web-

based user interface as easy and comfortable as possible for this user group. Toward

better management of ML tasks, user authentication and authorization issues have to

be taken into account too. Driven by the large advantage of deep learning in a lot of

application fields, such as object recognition and anomaly detection, a Big Data deep

learning framework as plugable engine should be integrated in the persistence and storage

layer to support performing deep learning tasks.

Research Question 2 [RQ2]:How to efficiently characterize energy time series
datasets to enhance the performance of automated model selection?

The outlook here includes opening our scope to use our methodological approaches

for other forecasting models and scenarios. Not only short-term load forecasting for

buildings but also mid- as well as long-term forecasting horizons for different use cases in

energy should be handled and included in a benchmark evaluation study. To ensure better

applicability of meta feature encoding, the evaluation needs to be carried out and extended

to cover PCA and the other arts of autoencoders proposed for the purpose of learning

representation. In general, the research on finding adequate meta feature sets should also

be extended to other ML tasks beside forecasting, e.g. outlier or anomaly detection.

Research Question 3 [RQ3]: How to enhance the performance of automatedmodel
selection in the context of energy by creating appropriate learning datasets?

Further evaluation including other energy use cases is needed to underpin the general

usability of the weather and aggregation-based approaches for generating new energy

time series datasets. Not only the enhancement of the predictive performance achieved by

extending the training set with the new generated meta examples should be measured, but

also the properties, similarity and the diversity of the new datasets needs to be investigated

to precisely capture their characteristics and differentiate them from the original ones.

As the main concept proposed to answer this research question is based on generating

new energy time series datasets from the original one, the initial number of the available

datasets needs to be precisely defined.

Research Question 4 [RQ4]: How should non-expert users with neither ML knowl-
edge, nor programming skills be supported in performing energy time series
forecasting in Big Data environments?

Toward more support of this group of non-expert users, the automation of further steps in

the machine learning pipeline, namely preprocessing and hyperparameter tuning needs

to be provided. The added deep learning framework should be augmented by already

158

8.2. Outlook

available deep learning algorithms for performing common ML tasks by non-expert users

of category 2B. In general, more ML solutions for common specific ML tasks (e.g. anomaly

detection in energy time series data) should be added to the platform as plug & play

solutions for non-experts users. Moreover, extending the evaluation study to cover other

use cases not only in energy, but also in a wide range of application fields is required to

ensure better support of non-expert users from different domains in selecting the best ML

model.

159

Bibliography

[1] O. Adeoye and C. Spataru (2019). “Modelling and forecasting hourly electricity

demand in West African countries”. In: Applied Energy, vol. 242, pp. 311–333. doi:
10.1016/j.apenergy.2019.03.057 (cit. on pp. 1, 14).

[2] C. Aderaldo, N. Mendonça, C. Pahl, and P. Jamshidi (2017). “Benchmark require-

ments for microservices architecture research”. In: 2017 IEEE/ACM 1st International
Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering (ECASE), pp. 8–13. doi: 10.1109/ECASE.2017.4 (cit. on p. 21).

[3] A. Agrawal (2018). “Application of Machine Learning to Computer Graphics”. In:

IEEE Computer Graphics and Applications, vol. 38, no. 04, pp. 93–96. doi: 10.1109/
MCG.2018.042731662 (cit. on p. 1).

[4] M. Ahmed, R. Seraj, and S. Islam (2020). “The k-means algorithm: A comprehensive

survey and performance evaluation”. In: Electronics, vol. 9, no. 8, p. 1295. doi:
10.3390/electronics9081295 (cit. on p. 15).

[5] E. Akanksha, N. Sharma, and K. Gulati (2021). “Review on reinforcement learning,

research evolution and scope of application”. In: 2021 5th International Conference
on Computing Methodologies and Communication (ICCMC), pp. 1416–1423. doi:
10.1109/ICCMC51019.2021.9418283 (cit. on p. 16).

[6] A. Ali, B. Gabrys, and M. Budka (2018). “Cross-domain meta-learning for time-

series forecasting”. In: Procedia Computer Science, vol. 126, pp. 9–18. doi: 10.1016/j.
procs.2018.07.204 (cit. on p. 70).

[7] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. Aljaaf (2020). “A

systematic review on supervised and unsupervised machine learning algorithms

for data science”. In: Supervised and unsupervised learning for data science, pp. 3–21.
doi: 10.1007/978-3-030-22475-2_1 (cit. on p. 14).

[8] E. Almeshaiei and H. Soltan (2011). “A methodology for electric power load fore-

casting”. In: Alexandria Engineering Journal, vol. 50, no. 2, pp. 137–144. doi: 10.
1016/j.aej.2011.01.015 (cit. on p. 79).

[9] F. Almonacid, C. Rus, P. Pérez-Higueras, and L. Hontoria (2011). “Calculation of

the energy provided by a PV generator. Comparative study: Conventional methods

vs. artificial neural networks”. In: Energy, vol. 36, no. 1, pp. 375–384. doi: 10.1016/j.
energy.2010.10.028 (cit. on p. 79).

[10] E. Alpaydin (2020). Introduction to Machine Learning (cit. on p. 13).

161

https://doi.org/10.1016/j.apenergy.2019.03.057
https://doi.org/10.1109/ECASE.2017.4
https://doi.org/10.1109/MCG.2018.042731662
https://doi.org/10.1109/MCG.2018.042731662
https://doi.org/10.3390/electronics9081295
https://doi.org/10.1109/ICCMC51019.2021.9418283
https://doi.org/10.1016/j.procs.2018.07.204
https://doi.org/10.1016/j.procs.2018.07.204
https://doi.org/10.1007/978-3-030-22475-2_1
https://doi.org/10.1016/j.aej.2011.01.015
https://doi.org/10.1016/j.aej.2011.01.015
https://doi.org/10.1016/j.energy.2010.10.028
https://doi.org/10.1016/j.energy.2010.10.028

8. Bibliography

[11] F. Alvarez, A. Troncoso, J. Riquelme, and J. Ruiz (2010). “Energy time series fore-

casting based on pattern sequence similarity”. In: IEEE Transactions on Knowledge
and Data Engineering, vol. 23, no. 8, pp. 1230–1243. doi: 10.1109/TKDE.2010.227
(cit. on p. 70).

[12] S. Aman, Y. Simmhan, and V. Prasanna (2011). “Improving energy use forecast

for campus micro-grids using indirect indicators”. In: 2011 IEEE 11th International
Conference on Data Mining Workshops, pp. 389–397. doi: 10.1109/ICDMW.2011.95

(cit. on pp. 1, 14, 70).

[13] D. Angeline (2013). “Association rule generation for student performance analysis

using apriori algorithm”. In: The SIJ Transactions on Computer Science Engineering &
its Applications (CSEA), vol. 1, no. 1, pp. 12–16. doi: 10.9756/SIJCSEA/V1I1/01010252
(cit. on p. 15).

[14] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F.Martinez-de-Pison, and F. Antonanzas-

Torres (2016). “Review of photovoltaic power forecasting”. In: Solar energy, vol. 136,
pp. 78–111. doi: 10.1016/j.solener.2016.06.069 (cit. on p. 76).

[15] D. Arize and T. Rios (2019). “A comparison study on time series forecasting given

smart grid load uncertainties”. In: 2019 8th Brazilian Conference on Intelligent
Systems (BRACIS), pp. 257–262. doi: 10.1109/BRACIS.2019.00053 (cit. on pp. 116,

117).

[16] J. Armstrong (2001). “Should we redesign forecasting competitions?” In: Interna-
tional Journal of Forecasting, vol. 17, pp. 542–545 (cit. on pp. 5, 8, 69).

[17] N. Al-Azzam and I. Shatnawi (2021). “Comparing supervised and semi-supervised

machine learning models on diagnosing breast cancer”. In: Annals of Medicine and
Surgery, vol. 62, pp. 53–64. doi: 10.1016/j.amsu.2020.12.043 (cit. on p. 16).

[18] A. Balalaie, A. Heydarnoori, and P. Jamshidi (2016). “Microservices architecture

enables devops: Migration to a cloud-native architecture”. In: IEEE Software, vol.
33, no. 3, pp. 42–52. doi: 10.1109/MS.2016.64 (cit. on p. 21).

[19] A. Balalaie, A. Heydarnoori, and P. Jamshidi (2016). “Migrating to cloud-native

architectures using microservices: an experience report”. In: Advances in Service-
Oriented and Cloud Computing, vol. 567, pp. 201–215. doi: 10.1007/978-3-319-
33313-7_15 (cit. on p. 4).

[20] P. Baldi (2012). “Autoencoders, unsupervised learning, and deep architectures”.

In: Proceedings of ICML workshop on unsupervised and transfer learning. Vol. 27,
pp. 37–49 (cit. on p. 92).

[21] A. Banks and E. Porcello (2017). Learning React: functional web development with
React and Redux (cit. on p. 44).

[22] M. Belkin, D. Hsu, S. Ma, and S. Mandal (2019). “Reconciling modern machine-

learning practice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences, vol. 116, no. 32, pp. 15849–15854. doi: 10.1073/pnas.
1903070116 (cit. on p. 15).

162

https://doi.org/10.1109/TKDE.2010.227
https://doi.org/10.1109/ICDMW.2011.95
https://doi.org/10.9756/SIJCSEA/V1I1/01010252
https://doi.org/10.1016/j.solener.2016.06.069
https://doi.org/10.1109/BRACIS.2019.00053
https://doi.org/10.1016/j.amsu.2020.12.043
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116

8. Bibliography

[23] E. Bisong (2019). “Kubeflow and kubeflow pipelines”. In: Building Machine Learning
and Deep Learning Models on Google Cloud Platform, pp. 671–685. doi: 10.1007/978-

1-4842-4470-8_46 (cit. on pp. 6, 31, 36).

[24] D. Borthakur (2007). “The hadoop distributed file system: Architecture and design”.

In: Hadoop Project Website (cit. on p. 19).

[25] P. Brazdil, J. van Rijn, C. Soares, and J. Vanschoren (2022).Metalearning: Applications
to Automated Machine Learning and Data Mining. doi: 10.1007/978-3-030-67024-5
(cit. on pp. 5, 69, 70).

[26] R. Brewer and P. Johnson (2010). “WattDepot: An open source software ecosystem

for enterprise-scale energy data collection, storage, analysis, and visualization”. In:

2010 First IEEE International Conference on Smart Grid Communications, pp. 91–95.
doi: 10.1109/SMARTGRID.2010.5622023 (cit. on pp. 3, 6, 28, 36).

[27] A. Candel, V. Parmar, E. LeDell, and A. Arora (2016). “Deep learning with H2O”.

In: H2O. ai Inc, pp. 1–21 (cit. on pp. 3, 6, 31, 36).

[28] G. Casolla, S. Cuomo, V. Di Cola, and F. Piccialli (2019). “Exploring unsupervised

learning techniques for the Internet of Things”. In: IEEE Transactions on Industrial
Informatics, vol. 16, no. 4, pp. 2621–2628. doi: 10.1109/TII.2019.2941142 (cit. on
p. 15).

[29] C. Castiello, G. Castellano, and A. Fanelli (2005). “Meta-data: Characterization of

input features for meta-learning”. In: International Conference on Modeling Decisions
for Artificial Intelligence, pp. 457–468. doi: 10.1007/11526018_45 (cit. on pp. 8, 76).

[30] T. Cerny, M. Donahoo, and M. Trnka (2018). “Contextual understanding of mi-

croservice architecture: current and future directions”. In: ACM SIGAPP Applied
Computing Review, vol. 17, no. 4, pp. 29–45. doi: 10.1145/3183628.3183631 (cit. on
p. 4).

[31] V. Cerqueira, L. Torgo, and C. Soares (2019). “Machine learning vs statistical meth-

ods for time series forecasting: Size matters”. In: arXiv preprint arXiv:1909.13316.
doi: 10.48550/arXiv.1909.13316 (cit. on p. 114).

[32] T. Chai and R. Draxler (2014). “Root mean square error (RMSE) or mean absolute

error (MAE)?–Arguments against avoiding RMSE in the literature”. In: Geoscientific
model development, vol. 7, no. 3, pp. 1247–1250. doi: 10.5194/gmd-7-1247-2014

(cit. on pp. 17, 80).

[33] S. Chan, T. Stone, K. Szeto, and K. Chan (2013). “Predictionio: a distributed machine

learning server for practical software development”. In: Proceedings of the 22nd
ACM international conference on Information & Knowledge Management, pp. 2493–
2496. doi: 10.1145/2505515.2508198 (cit. on pp. 3, 6, 29, 36).

[34] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer (2002). “SMOTE: synthetic

minority over-sampling technique”. In: Journal of artificial intelligence research,
vol. 16, pp. 321–357. doi: 10.1613/jair.953 (cit. on p. 142).

163

https://doi.org/10.1007/978-1-4842-4470-8_46
https://doi.org/10.1007/978-1-4842-4470-8_46
https://doi.org/10.1007/978-3-030-67024-5
https://doi.org/10.1109/SMARTGRID.2010.5622023
https://doi.org/10.1109/TII.2019.2941142
https://doi.org/10.1007/11526018_45
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.48550/arXiv.1909.13316
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1145/2505515.2508198
https://doi.org/10.1613/jair.953

8. Bibliography

[35] C. Chen and C. Zhang (2014). “Data-intensive applications, challenges, techniques

and technologies: A survey on Big Data”. In: Information sciences, vol. 275, pp. 314–
347. doi: 10.1016/j.ins.2014.01.015 (cit. on p. 18).

[36] M. Copeland, J. Soh, A. Puca, M. Manning, and D. Gollob (2015). “Microsoft azure”.

In: New York, NY, USA:: Apress, pp. 3–26. doi: 10.1007/978-1-4842-1043-7 (cit. on
pp. 36, 37).

[37] J. Cruz and D. Wishart (2006). “Applications of machine learning in cancer pre-

diction and prognosis”. In: Cancer informatics, vol. 2, pp. 59–77. doi: 10 .1177/
117693510600200030 (cit. on p. 14).

[38] C. Cui, T. Wu, M. Hu, J. Weir, and X. Li (2016). “Short-term building energy model

recommendation system: A meta-learning approach”. In: Applied energy, vol. 172,
pp. 251–263. doi: 10.1016/j.apenergy.2016.03.112 (cit. on pp. 1, 8, 14, 32, 34, 37).

[39] L. De Lauretis (2019). “From monolithic architecture to microservices architecture”.

In: 2019 IEEE International Symposium on Software Reliability EngineeringWorkshops
(ISSREW), pp. 93–96. doi: 10.1109/ISSREW.2019.00050 (cit. on p. 21).

[40] J. Dean and S. Ghemawat (2008). “MapReduce: simplified data processing on large

clusters”. In: Communications of the ACM, vol. 51, no. 1, pp. 107–113. doi: 10.1145/
1327452.1327492 (cit. on p. 19).

[41] N. Dmitry and S. Manfred (2014). “On micro-services architecture”. In: International
Journal of Open Information Technologies, vol. 2, no. 9, pp. 24–27 (cit. on p. 22).

[42] O. ElTayeby, D. John, P. Patel, and S. Simmerman (2013). “Comparative case study

between D3 & Highcharts on Lustre metadata visualization”. In: 2013 IEEE Sym-
posium on Large-Scale Data Analysis and Visualization (LDAV), pp. 127–128. doi:
10.1109/LDAV.2013.6675172 (cit. on p. 45).

[43] H. Eskandari, M. Imani, and M. Moghaddam (2021). “Convolutional and recurrent

neural network based model for short-term load forecasting”. In: Electric Power
Systems Research, vol. 195, pp. 107–121. doi: 10.1016/j.epsr.2021.107173 (cit. on
pp. 1, 14, 70).

[44] M. Fard, T. Thonet, and E. Gaussier (2020). “Deep k-means: Jointly clustering with

k-means and learning representations”. In: Pattern Recognition Letters, vol. 138,
pp. 185–192. doi: 10.1016/j.patrec.2020.07.028 (cit. on p. 15).

[45] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter (2019).

“Auto-sklearn: Efficient and Robust Automated Machine Learning”. In: Automated
Machine Learning: Methods, Systems, Challenges, pp. 113–134. doi: 10.1007/978-3-
030-05318-5_6 (cit. on pp. 5, 10, 31, 33).

[46] R. Fielding (2000). Architectural styles and the design of network-based software
architectures (cit. on p. 23).

[47] G. Forestier, F. Petitjean, H. Dau, G. Webb, and E. Keogh (2017). “Generating syn-

thetic time series to augment sparse datasets”. In: 2017 IEEE international conference
on data mining (ICDM), pp. 865–870. doi: 10.1109/ICDM.2017.106 (cit. on pp. 9, 34,

97).

164

https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1007/978-1-4842-1043-7
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1016/j.apenergy.2016.03.112
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/LDAV.2013.6675172
https://doi.org/10.1016/j.epsr.2021.107173
https://doi.org/10.1016/j.patrec.2020.07.028
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1109/ICDM.2017.106

8. Bibliography

[48] B. Fulcher and N. Jones (2014). “Highly comparative feature-based time-series

classification”. In: IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 12, pp. 3026–3037. doi: 10.1109/TKDE.2014.2316504 (cit. on p. 76).

[49] K. Gai andM. Qiu (2018). “Optimal resource allocation using reinforcement learning

for IoT content-centric services”. In: Applied Soft Computing, vol. 70, pp. 12–21. doi:
10.1016/j.asoc.2018.03.056 (cit. on p. 16).

[50] A. Gandomi and M. Haider (2015). “Beyond the hype: Big data concepts, methods,

and analytics”. In: International journal of information management, vol. 35, no. 2,
pp. 137–144. doi: 10.1016/j.ijinfomgt.2014.10.007 (cit. on p. 3).

[51] X. Glorot, A. Bordes, and Y. Bengio (2011). “Deep sparse rectifier neural networks”.

In: Proceedings of the fourteenth international conference on artificial intelligence
and statistics, vol. 15, pp. 315–323 (cit. on p. 92).

[52] J. González Ordiano, S. Waczowicz, M. Reischl, R. Mikut, and V. Hagenmeyer (2017).

“Photovoltaic power forecasting using simple data-driven models without weather

data”. In: Computer Science-Research and Development, vol. 32, no. 1-2, pp. 237–246.
doi: 10.1007/s00450-016-0316-5 (cit. on pp. 75, 79).

[53] T. Hastie, R. Tibshirani, and J. Friedman (2009). “Random forests”. In: The elements
of statistical learning, pp. 587–604. doi: 10.1007/978-0-387-84858-7_15 (cit. on
p. 56).

[54] T. Hong and S. Fan (2016). “Probabilistic electric load forecasting: A tutorial review”.

In: International Journal of Forecasting, vol. 32, no. 3, pp. 914–938. doi: 10.1016/j.
ijforecast.2015.11.011 (cit. on p. 79).

[55] R. Hyndman (2001). “It’s time to move from what to why”. In: International Journal
of Forecasting, vol. 17, no. 1, pp. 567–570 (cit. on pp. 5, 69).

[56] H. Jabbar and R. Khan (2015). “Methods to avoid over-fitting and under-fitting in

supervised machine learning (comparative study)”. In: Computer Science, Commu-
nication and Instrumentation Devices, vol. 70, pp. 163–172 (cit. on p. 15).

[57] I. Jakob (1995). “10 usability heuristics for user interface design”. In: Nielsen Norman
Group, vol. 1 (cit. on p. 44).

[58] D. Jalligampala, R. Lalitha, T. Ramakrishnarao, K. Mylavarapu, and K Kavitha (2022).

“Efficient Classification of Heart Disease Forecasting by Using Hyperparameter

Tuning”. In: Applications of Artificial Intelligence and Machine Learning, pp. 115–125.
doi: 10.1007/978-981-19-4831-2_10 (cit. on p. 85).

[59] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. Ojea, E. Solowjow,

and S. Levine (2019). “Residual reinforcement learning for robot control”. In: 2019
International Conference on Robotics and Automation (ICRA), pp. 6023–6029. doi:
10.1109/ICRA.2019.8794127 (cit. on p. 16).

[60] A. Johanson, S. Flögel, C. Dullo, and W. Hasselbring (2016). “OceanTEA: exploring

ocean-derived climate data using microservices”. In: 6th International Workshop on
Climate Informatics, NCAR Technical Note NCAR/TN, pp. 25–28 (cit. on pp. 3, 28,

36).

165

https://doi.org/10.1109/TKDE.2014.2316504
https://doi.org/10.1016/j.asoc.2018.03.056
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1007/s00450-016-0316-5
https://doi.org/10.1007/978-0-387-84858-7_15
https://doi.org/10.1016/j.ijforecast.2015.11.011
https://doi.org/10.1016/j.ijforecast.2015.11.011
https://doi.org/10.1007/978-981-19-4831-2_10
https://doi.org/10.1109/ICRA.2019.8794127

8. Bibliography

[61] M. Jordan and T. Mitchell (2015). “Machine learning: Trends, perspectives, and

prospects”. In: Science, vol. 349, no. 6245, pp. 255–260. doi: 10.1126/science.aaa8415
(cit. on p. 13).

[62] A. Kadhim (2019). “Survey on supervisedmachine learning techniques for automatic

text classification”. In: Artificial Intelligence Review, vol. 52, no. 1, pp. 273–292. doi:
10.1007/s10462-018-09677-1 (cit. on p. 14).

[63] A. Kalousis and T. Theoharis (1999). “Noemon: Design, implementation and perfor-

mance results of an intelligent assistant for classifier selection”. In: Intelligent Data
Analysis, vol. 3, no. 5, pp. 319–337. doi: 10.3233/IDA-1999-3502 (cit. on p. 31).

[64] Y. Kang, R. Hyndman, and F. Li (2020). “GRATIS: GeneRAting TIme Series with

diverse and controllable characteristics”. In: Statistical Analysis and Data Mining:
The ASA Data Science Journal, vol. 13, no. 4, pp. 354–376. doi: 10.1002/sam.11461

(cit. on pp. 9, 35, 98).

[65] Y. Kang, R. Hyndman, and K. Smith-Miles (2017). “Visualising forecasting algo-

rithm performance using time series instance spaces”. In: International Journal of
Forecasting, vol. 33, no. 2, pp. 345–358. doi: 10.1016/j.ijforecast.2016.09.004 (cit. on
pp. 9, 34, 35, 98).

[66] B. Karlik and A. Olgac (2011). “Performance analysis of various activation functions

in generalized MLP architectures of neural networks”. In: International Journal of
Artificial Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122 (cit. on p. 92).

[67] K. Kentaro and T. Yoshimasa (2009). “Identification of the dual action antihyper-

tensive drugs using tfs-based support vector machines”. In: Chem-Bio Informatics
Journal, vol. 9, pp. 41–51. doi: 10.1273/cbij.9.41 (cit. on p. 14).

[68] A. Khan, A. Laghari, and S. Awan (2021). “Machine learning in computer vision: A

review”. In: EAI Endorsed Transactions on Scalable Information Systems, vol. 8, no.
32. doi: 10.4108/eai.21-4-2021.169418 (cit. on p. 1).

[69] I. Khan, A. Akber, and Y. Xu (2019). “Sliding window regression based short-term

load forecasting of a multi-area power system”. In: 2019 IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE), pp. 1–5. doi: 10.1109/CCECE.2019.
8861915 (cit. on p. 70).

[70] I. Khan, X. Zhang, M. Rehman, and R. Ali (2020). “A literature survey and empirical

study of meta-learning for classifier selection”. In: IEEE Access, vol. 8, pp. 10262–
10281. doi: 10.1109/ACCESS.2020.2964726 (cit. on pp. 5, 31, 97).

[71] M. Khanum, T. Mahboob, W. Imtiaz, H. Ghafoor, and R. Sehar (2015). “A survey

on unsupervised machine learning algorithms for automation, classification and

maintenance”. In: International Journal of Computer Applications, vol. 119, no. 13,
pp. 34–39. doi: 10.5120/21131-4058 (cit. on p. 15).

[72] S. Kim and H. Kim (2016). “A new metric of absolute percentage error for inter-

mittent demand forecasts”. In: International Journal of Forecasting, vol. 32, no. 3,
pp. 669–679. doi: 10.1016/j.ijforecast.2015.12.003 (cit. on p. 17).

166

https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.3233/IDA-1999-3502
https://doi.org/10.1002/sam.11461
https://doi.org/10.1016/j.ijforecast.2016.09.004
https://doi.org/10.1273/cbij.9.41
https://doi.org/10.4108/eai.21-4-2021.169418
https://doi.org/10.1109/CCECE.2019.8861915
https://doi.org/10.1109/CCECE.2019.8861915
https://doi.org/10.1109/ACCESS.2020.2964726
https://doi.org/10.5120/21131-4058
https://doi.org/10.1016/j.ijforecast.2015.12.003

8. Bibliography

[73] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K.

Kelley, J. Hamrick, J. Grout, and S. Corlay (2016). Jupyter Notebooks-a publishing
format for reproducible computational workflows. Pp. 87–90. doi: 10.3233/978-1-
61499-649-1-87 (cit. on pp. 28, 36).

[74] N. Koluguri, M. Kumar, S. Kim, C. Lord, and S. Narayanan (2020). “Meta-learning for

robust child-adult classification from speech”. In: ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8094–8098.
doi: 10.1109/ICASSP40776.2020.9053251 (cit. on p. 31).

[75] L. Kotthoff, C. Thornton, H. Hoos, F. Hutter, and K. Leyton-Brown (2019). “Auto-

WEKA: Automatic model selection and hyperparameter optimization in WEKA”.

In: Automated Machine Learning, pp. 81–95. doi: 10.1007/978-3-030-05318-5_4
(cit. on pp. 10, 32).

[76] M. Kück, S. Crone, and M. Freitag (2016). “Meta-learning with neural networks and

landmarking for forecasting model selection an empirical evaluation of different

feature sets applied to industry data”. In: 2016 International Joint Conference on
Neural Networks (IJCNN), pp. 1499–1506. doi: 10.1109/IJCNN.2016.7727376 (cit. on
pp. 9, 31).

[77] C. Kuster, Y. Rezgui, and M. Mourshed (2017). “Electrical load forecasting models:

A critical systematic review”. In: Sustainable cities and society, vol. 35, pp. 257–270.
doi: 10.1016/j.scs.2017.08.009 (cit. on p. 79).

[78] N. Kyurkchiev and S. Markov (2015). “Sigmoid functions: some approximation and

modelling aspects”. In: LAP LAMBERT Academic Publishing, Saarbrucken, vol. 4
(cit. on p. 92).

[79] R. Larsen (1985). “Box-and-whisker plots”. In: Journal of Chemical Education, vol.
62, no. 4, p. 302 (cit. on p. 69).

[80] D. Le (2020). “Machine learning-based approaches for disease gene prediction”. In:

Briefings in functional genomics, vol. 19, no. 5-6, pp. 350–363. doi: 10.1093/bfgp/
elaa013 (cit. on pp. 14, 20).

[81] C. Lemke, M. Budka, and B. Gabrys (2015). “Metalearning: a survey of trends

and technologies”. In: Artificial intelligence review, vol. 44, no. 1, pp. 117–130. doi:
10.1007/s10462-013-9406-y (cit. on pp. 5, 69, 97).

[82] C. Lemke and B. Gabrys (2010). “Meta-learning for time series forecasting and

forecast combination”. In: Neurocomputing, vol. 73, 10-12, pp. 2006–2016. doi:
10.1016/j.neucom.2009.09.020 (cit. on p. 34).

[83] C. Li, J. Wang, L. Wang, L. Hu, and P. Gong (2014). “Comparison of Classification

Algorithms and Training Sample Sizes in Urban Land Classification with Landsat

Thematic Mapper Imagery”. In: Remote. Sens., vol. 6, no. 2, pp. 964–983. doi: 10.
3390/rs6020964 (cit. on p. 97).

[84] Y. Liang, D. Niu, and W. Hong (2019). “Short term load forecasting based on feature

extraction and improved general regression neural network model”. In: Energy, vol.
166, pp. 653–663. doi: 10.1016/j.energy.2018.10.119 (cit. on p. 70).

167

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/ICASSP40776.2020.9053251
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1109/IJCNN.2016.7727376
https://doi.org/10.1016/j.scs.2017.08.009
https://doi.org/10.1093/bfgp/elaa013
https://doi.org/10.1093/bfgp/elaa013
https://doi.org/10.1007/s10462-013-9406-y
https://doi.org/10.1016/j.neucom.2009.09.020
https://doi.org/10.3390/rs6020964
https://doi.org/10.3390/rs6020964
https://doi.org/10.1016/j.energy.2018.10.119

8. Bibliography

[85] S. Lin, I. Yuan-chin, and W. Yang (2009). “Meta-learning for imbalanced data and

classification ensemble in binary classification”. In: Neurocomputing, vol. 73, no.
1-3, pp. 484–494. doi: 10.1016/j.neucom.2009.06.015 (cit. on p. 31).

[86] X. Lü, T. Lu, C. Kibert, and M. Viljanen (2015). “Modeling and forecasting energy

consumption for heterogeneous buildings using a physical–statistical approach”.

In: Applied Energy, vol. 144, pp. 261–275. doi: 10.1016/j.apenergy.2014.12.019
(cit. on p. 79).

[87] M. Maher and S. Sakr (2019). “Smartml: A meta learning-based framework for

automated selection and hyperparameter tuning for machine learning algorithms”.

In: EDBT: 22nd International Conference on Extending Database Technology. doi:
10.5441/002/edbt.2019.54 (cit. on pp. 10, 33).

[88] S. Maisto, B. Martino, and S. Nacchia (2019). “From monolith to cloud architecture

using semi-automated microservices modernization”. In: International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 638–647. doi: 10.1007/978-
3-030-33509-0_60 (cit. on p. 21).

[89] Y. Manichaikul and F. Schweppe (1979). “Physically based industrial electric load”.

In: IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, no. 4, pp. 1439–
1445. doi: 10.1109/TPAS.1979.319346 (cit. on p. 79).

[90] M. Al-Maolegi and B. Arkok (2014). “An improved Apriori algorithm for association

rules”. In: arXiv preprint arXiv:1403.3948. doi: 10.5121/IJNLC.2014.3103 (cit. on
p. 15).

[91] M. Matijaš, J. Suykens, and S. Krajcar (2013). “Load forecasting using a multivariate

meta-learning system”. In: Expert systems with applications, vol. 40, no. 11, pp. 4427–
4437. doi: 10.1016/j.eswa.2013.01.047 (cit. on pp. 8, 9, 32).

[92] M. Matijaš, J. Suykens, and S. Krajcar (2013). “Load forecasting using a multivariate

meta-learning system”. In: Expert systems with applications, vol. 40, no. 11, pp. 4427–
4437. doi: 10.1016/j.eswa.2013.01.047 (cit. on p. 70).

[93] N. Meade (2000). “Evidence for the selection of forecasting methods”. In: Journal of
forecasting, vol. 19, no. 6, pp. 515–535. doi: 10.1002/1099-131X(200011)19:6<515::
AID-FOR754>3.0.CO;2-7 (cit. on p. 32).

[94] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.

Tsai, M. Amde, S. Owen, and others (2016). “Mllib: Machine learning in apache

spark”. In: The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1235–1241
(cit. on p. 35).

[95] P. Merson and J. Yoder (2020). “Modeling microservices with DDD”. In: 2020 IEEE
International Conference on Software Architecture Companion (ICSA-C), pp. 7–8. doi:
10.1109/ICSA-C50368.2020.00010 (cit. on pp. 21, 22).

[96] M.Mikowski and J. Powell (2013). Single page web applications: JavaScript end-to-end
(cit. on p. 44).

168

https://doi.org/10.1016/j.neucom.2009.06.015
https://doi.org/10.1016/j.apenergy.2014.12.019
https://doi.org/10.5441/002/edbt.2019.54
https://doi.org/10.1007/978-3-030-33509-0_60
https://doi.org/10.1007/978-3-030-33509-0_60
https://doi.org/10.1109/TPAS.1979.319346
https://doi.org/10.5121/IJNLC.2014.3103
https://doi.org/10.1016/j.eswa.2013.01.047
https://doi.org/10.1016/j.eswa.2013.01.047
https://doi.org/10.1002/1099-131X(200011)19:6<515::AID-FOR754>3.0.CO;2-7
https://doi.org/10.1002/1099-131X(200011)19:6<515::AID-FOR754>3.0.CO;2-7
https://doi.org/10.1109/ICSA-C50368.2020.00010

8. Bibliography

[97] E. Mocanu, P. Nguyen, M. Gibescu, and W. Kling (2016). “Deep learning for esti-

mating building energy consumption”. In: Sustainable Energy, Grids and Networks,
vol. 6, pp. 91–99. doi: 10.1016/j.segan.2016.02.005 (cit. on pp. 70, 79).

[98] J. Narwariya, P. Malhotra, L. Vig, G. Shroff, and T. Vishnu (2020). “Meta-learning

for few-shot time series classification”. In: Proceedings of the 7th ACM IKDD CoDS
and 25th COMAD, pp. 28–36. doi: 10.1145/3371158.3371162 (cit. on pp. 31, 32).

[99] M. Nehrir, P. Dolan, V. Gerez, and W. Jameson (1995). “Development and validation

of a physically-based computer model for predicting winter electric heating loads”.

In: IEEE Transactions on Power Systems, vol. 10, no. 1. doi: 10.1109/59.373949 (cit. on
p. 79).

[100] K. Ng and N. Awang (2018). “Multiple linear regression and regression with time

series error models in forecasting PM10 concentrations in Peninsular Malaysia”.

In: Environmental monitoring and assessment, vol. 190, no. 2, pp. 1–11. doi: 10.1007/
s10661-017-6419-z (cit. on p. 55).

[101] A. Ng (2011). “Sparse autoencoder”. In: CS294A Lecture notes, vol. 72, no. 2011,
pp. 1–19 (cit. on p. 92).

[102] J. Nielsen and R. Molich (1990). “Heuristic evaluation of user interfaces”. In: Proceed-
ings of the SIGCHI conference on Human factors in computing systems, pp. 249–256.
doi: 10.1145/97243.97281 (cit. on p. 44).

[103] J. Nielsen (1994). “Enhancing the explanatory power of usability heuristics”. In:

Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
pp. 152–158. doi: 10.1145/191666.191729 (cit. on p. 44).

[104] N. Noor, M. Al Bakri Abdullah, A. Yahaya, and N. Ramli (2015). “Comparison of

linear interpolation method and mean method to replace the missing values in

environmental data set”. In: Materials Science Forum. Vol. 803, pp. 278–281. doi:

10.4028/www.scientific.net/MSF.803.278 (cit. on p. 102).

[105] R. Obe and L. Hsu (2017). PostgreSQL: Up and Running: a Practical Guide to the
Advanced Open Source Database (cit. on p. 52).

[106] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar, S. Ramesh,

and J. Soyke (2017). “Tensorflow-serving: Flexible, high-performance ml serving”.

In: arXiv preprint arXiv:1712.06139. doi: 10.48550/arXiv.1712.06139 (cit. on pp. 30,

36).

[107] F. Osisanwo, J. Akinsola, O. Awodele, J. Hinmikaiye, O. Olakanmi, and J. Akinjobi

(2017). “Supervised machine learning algorithms: classification and comparison”.

In: International Journal of Computer Trends and Technology (IJCTT), vol. 48, no. 3,
pp. 128–138. doi: 10.14445/22312803/IJCTT-V48P126 (cit. on p. 14).

[108] A. Oussous, F. Benjelloun, A. Lahcen, and S. Belfkih (2018). “Big Data technologies:

A survey”. In: Journal of King Saud University-Computer and Information Sciences,
vol. 30, no. 4, pp. 431–448. doi: 10.1016/j.jksuci.2017.06.001 (cit. on p. 18).

169

https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1145/3371158.3371162
https://doi.org/10.1109/59.373949
https://doi.org/10.1007/s10661-017-6419-z
https://doi.org/10.1007/s10661-017-6419-z
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/191666.191729
https://doi.org/10.4028/www.scientific.net/MSF.803.278
https://doi.org/10.48550/arXiv.1712.06139
https://doi.org/10.14445/22312803/IJCTT-V48P126
https://doi.org/10.1016/j.jksuci.2017.06.001

8. Bibliography

[109] J. Padmanabhan and M. Jose Johnson Premkumar (2015). “Machine Learning in

Automatic Speech Recognition: A Survey”. In: IETE Technical Review, vol. 32, no. 4,
pp. 240–251. doi: 10.1080/02564602.2015.1010611 (cit. on p. 1).

[110] B. Pang, E. Nijkamp, and Y. Wu (2020). “Deep learning with tensorflow: A review”.

In: Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248. doi:
10.3102/1076998619872761 (cit. on pp. 27, 36).

[111] N. Papahristou and I. Refanidis (2011). “Training neural networks to play backgam-

mon variants using reinforcement learning”. In: Applications of Evolutionary Com-
putation, pp. 113–122. doi: 10.1007/978-3-642-20525-5_12 (cit. on p. 16).

[112] R. Pearson, Y. Neuvo, J. Astola, and M. Gabbouj (2016). “Generalized hampel filters”.

In: EURASIP Journal on Advances in Signal Processing, vol. 2016, no. 1, pp. 1–18. doi:
10.1186/s13634-016-0383-6 (cit. on pp. 75, 86).

[113] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, and V. Dubourg (2011). “Scikit-learn: Machine learning

in Python”. In: the Journal of machine Learning research, vol. 12, pp. 2825–2830
(cit. on p. 35).

[114] K. Perera, Z. Aung, and W. Woon (2014). “Machine learning techniques for support-

ing renewable energy generation and integration: a survey”. In: International Work-
shop on Data Analytics for Renewable Energy Integration, pp. 81–96. doi: 10.1007/978-
3-319-13290-7_7 (cit. on p. 1).

[115] C. Persson, P. Bacher, T. Shiga, and H. Madsen (2017). “Multi-site solar power

forecasting using gradient boosted regression trees”. In: Solar Energy, vol. 150,
pp. 423–436. doi: 10.1016/j.solener.2017.04.066 (cit. on p. 55).

[116] J. Pimentel, L. Murta, V. Braganholo, and J. Freire (2019). “A large-scale study

about quality and reproducibility of jupyter notebooks”. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), pp. 507–517. doi:
10.1109/MSR.2019.00077 (cit. on p. 2).

[117] V. Popovici, W. Chen, B. Gallas, C. Hatzis, W. Shi, F. Samuelson, Y. Nikolsky, M.

Tsyganova, A. Ishkin, T. Nikolskaya, and others (2010). “Effect of training-sample

size and classification difficulty on the accuracy of genomic predictors”. In: Breast
Cancer Research, vol. 12, no. 1, pp. 1–13. doi: 10.1186/bcr2468 (cit. on p. 97).

[118] R. Prudêncio and T. Ludermir (2004). “Meta-learning approaches to selecting time

series models”. In: Neurocomputing, vol. 61, pp. 121–137. doi: 10.1016/j.neucom.

2004.03.008 (cit. on pp. 8, 31, 32).

[119] G. Qi, X. Hua, Y. Rui, J. Tang, T. Mei, and H. Zhang (2007). “Correlative multi-

label video annotation”. In: Proceedings of the 15th ACM international conference on
Multimedia, pp. 17–26. doi: 10.1145/1291233.1291245 (cit. on p. 14).

[120] F. Rademacher, J. Sorgalla, and S. Sachweh (2018). “Challenges of domain-driven

microservice design: A model-driven perspective”. In: IEEE Software, vol. 35, no. 3,
pp. 36–43. doi: 10.1109/MS.2018.2141028 (cit. on p. 21).

170

https://doi.org/10.1080/02564602.2015.1010611
https://doi.org/10.3102/1076998619872761
https://doi.org/10.1007/978-3-642-20525-5_12
https://doi.org/10.1186/s13634-016-0383-6
https://doi.org/10.1007/978-3-319-13290-7_7
https://doi.org/10.1007/978-3-319-13290-7_7
https://doi.org/10.1016/j.solener.2017.04.066
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1186/bcr2468
https://doi.org/10.1016/j.neucom.2004.03.008
https://doi.org/10.1016/j.neucom.2004.03.008
https://doi.org/10.1145/1291233.1291245
https://doi.org/10.1109/MS.2018.2141028

8. Bibliography

[121] M. Reif, F. Shafait, and A. Dengel (2012). “Dataset generation for meta-learning”.

In: KI-2012: Poster and Demo Track, pp. 69–73 (cit. on pp. 9, 34, 97).

[122] M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel (2014). “Automatic

classifier selection for non-experts”. In: Pattern Analysis and Applications, vol. 17,
no. 1, pp. 83–96. doi: 10.1007/s10044-012-0280-z (cit. on pp. 5, 31, 97).

[123] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. Tenenbaum, H. Larochelle,

and R. Zemel (2018). “Meta-learning for semi-supervised few-shot classification”.

In: arXiv preprint arXiv:1803.00676. doi: 10.48550/arXiv.1803.00676 (cit. on p. 31).

[124] M. Ribeiro, K. Grolinger, and M. Capretz (2015). “Mlaas: Machine learning as a

service”. In: 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pp. 896–902. doi: 10.1109/ICMLA.2015.152 (cit. on p. 29).

[125] J. Rice (1976). “The algorithm selection problem”. In: Advances in computers, vol. 15,
pp. 65–118. doi: 10.1016/S0065-2458(08)60520-3 (cit. on p. 5).

[126] J. Richens, C. Lee, and S. Johri (2020). “Improving the accuracy of medical diagnosis

with causal machine learning”. In: Nature communications, vol. 11, no. 1, pp. 1–9.
doi: 10.1038/s41467-020-17419-7 (cit. on pp. 1, 14).

[127] J. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren (2014). “Algorithm selec-

tion on data streams”. In: International Conference on Discovery Science. Vol. 8777,
pp. 325–336. doi: 10.1007/978-3-319-11812-3_28 (cit. on pp. 5, 31).

[128] J. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren (2015). “Having a blast: Meta-

learning and heterogeneous ensembles for data streams”. In: 2015 ieee international
conference on data mining, pp. 1003–1008. doi: 10.1109/ICDM.2015.55 (cit. on pp. 5,

31).

[129] M. Ringnér (2008). “What is principal component analysis?” In:Nature biotechnology,
vol. 26, no. 3, pp. 303–304. doi: 10.1038/nbt0308-303 (cit. on p. 142).

[130] R. Roelofs, V. Shankar, B. Recht, S. Fridovich-Keil, M. Hardt, J. Miller, and L. Schmidt

(2019). “A meta-analysis of overfitting in machine learning”. In: Proceedings of the
33rd International Conference on Neural Information Processing Systems, vol. 32, no.
823, pp. 9179–9189 (cit. on p. 15).

[131] A. Rossi, A. de Leon Ferreira, C. Soares, and B. De Souza (2014). “MetaStream: A

meta-learning based method for periodic algorithm selection in time-changing

data”. In: Neurocomputing, vol. 127, pp. 52–64. doi: 10.1016/j.neucom.2013.05.048

(cit. on p. 38).

[132] M. Rußwurm, S. Wang, M. Körner, and D. Lobell (2020). “Meta-Learning for Few-

Shot Land Cover Classification”. In: 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pp. 788–796. doi: 10 . 1109 /
CVPRW50498.2020.00108 (cit. on p. 31).

[133] S. Sagiroglu and D. Sinanc (2013). “Big data: A review”. In: 2013 International
Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. doi: 10.
1109/CTS.2013.6567202 (cit. on p. 18).

171

https://doi.org/10.1007/s10044-012-0280-z
https://doi.org/10.48550/arXiv.1803.00676
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1038/s41467-020-17419-7
https://doi.org/10.1007/978-3-319-11812-3_28
https://doi.org/10.1109/ICDM.2015.55
https://doi.org/10.1038/nbt0308-303
https://doi.org/10.1016/j.neucom.2013.05.048
https://doi.org/10.1109/CVPRW50498.2020.00108
https://doi.org/10.1109/CVPRW50498.2020.00108
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1109/CTS.2013.6567202

8. Bibliography

[134] S. Salloum, R. Dautov, X. Chen, P. Peng, and J. Huang (2016). “Big data analytics

on Apache Spark”. In: International Journal of Data Science and Analytics, vol. 1, no.
3, pp. 145–164. doi: 10.1007/s41060-016-0027-9 (cit. on p. 20).

[135] R. Saravanan and P. Sujatha (2018). “A state of art techniques on machine learning

algorithms: a perspective of supervised learning approaches in data classifica-

tion”. In: 2018 Second International Conference on Intelligent Computing and Control
Systems (ICICCS), pp. 945–949. doi: 10.1109/ICCONS.2018.8663155 (cit. on p. 15).

[136] J. Schaad, B. Ramsdell, and S. Turner (2019). “Secure/multipurpose internet mail

extensions (S/MIME) version 4.0 message specification”. In: RFC 8551. doi: 10.17487/
RFC8551 (cit. on p. 23).

[137] S. Schelter, J. Boese, J. Kirschnick, T. Klein, and S. Seufert (2017). “Automatically

tracking metadata and provenance of machine learning experiments”. In: Machine
Learning Systems Workshop at NIPS, pp. 27–29 (cit. on p. 30).

[138] B. Scholz-Reiter, M. Kück, and D. Lappe (2014). “Prediction of customer demands for

production planning–Automated selection and configuration of suitable prediction

methods”. In: CIRP Annals, vol. 63, no. 1, pp. 417–420. doi: 10.1016/j.cirp.2014.03.106
(cit. on p. 32).

[139] F. Sebastiani (2002). “Machine learning in automated text categorization”. In: ACM
computing surveys (CSUR), vol. 34, no. 1, pp. 1–47. doi: 10.1145/505282.505283
(cit. on p. 1).

[140] M. Segal (2004). “Machine learning benchmarks and random forest regression”. In:

eScholarship Repository. University of California (cit. on p. 55).

[141] S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2019).

“Facilitating and managing machine learning and data analysis tasks in Big Data

environments using web and microservice technologies”. In: Proceedings of the
11th International Conference on Management of Digital EcoSystems, pp. 80–87. doi:
10.1145/3297662.3365807 (cit. on pp. 42, 44).

[142] S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020).

“Facilitating and Managing Machine Learning and Data Analysis Tasks in Big Data

Environments Using Web and Microservice Technologies”. In: Transactions on
Large-Scale Data- and Knowledge-Centered Systems XLV: Special Issue on Data
Management and Knowledge Extraction in Digital Ecosystems, pp. 132–171. doi:
10.1007/978-3-662-62308-4_6 (cit. on pp. 42, 44).

[143] S. Shahoud, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Descriptive

Statistics Time-based Meta Features (DSTMF) Constructing a Better Set of Meta

Features for Model Selection in Energy Time Series Forecasting”. In: Proceedings of
the 3rd International Conference on Applications of Intelligent Systems, pp. 1–6. doi:
10.1145/3378184.3378221 (cit. on pp. 70, 71, 133, 136).

[144] S. Shahoud, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Incorporating

Unsupervised Deep Learning into Meta Learning for Energy Time Series Fore-

casting”. In: Proceedings of the Future Technologies Conference, pp. 326–345. doi:
10.1007/978-3-030-63128-4_25 (cit. on pp. 70, 78).

172

https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1109/ICCONS.2018.8663155
https://doi.org/10.17487/RFC8551
https://doi.org/10.17487/RFC8551
https://doi.org/10.1016/j.cirp.2014.03.106
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/3297662.3365807
https://doi.org/10.1007/978-3-662-62308-4_6
https://doi.org/10.1145/3378184.3378221
https://doi.org/10.1007/978-3-030-63128-4_25

8. Bibliography

[145] S. Shahoud, H. Khalloof, M. Winter, C. Duepmeier, and V. Hagenmeyer (2020). “A

Meta LearningApproach for AutomatingModel Selection in Big Data Environments

using Microservice and Container Virtualization Technologies”. In: Proceedings of
the 12th International Conference on Management of Digital EcoSystems, pp. 84–91.
doi: 10.1145/3415958.3433072 (cit. on p. 132).

[146] S. Shahoud, M. Winter, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2021). “An

extended Meta Learning Approach for Automating Model Selection in Big Data

Environments using Microservice and Container Virtualization Technologies”. In:

Internet of Things, vol. 16, p. 100432. doi: 10.1016/j.iot.2021.100432 (cit. on pp. 13,

97).

[147] K. Shastry andH. Sanjay (2020). “Machine learning for bioinformatics”. In: Statistical
modelling and machine learning principles for bioinformatics techniques, tools, and
applications, pp. 25–39. doi: 10.1007/978-981-15-2445-5_3 (cit. on p. 14).

[148] C. Shrestha (2016). “A Web Based User Interface for Machine Learning Analysis of

Health and Education Data”. In: doi: 10.34917/9112192 (cit. on p. 28).

[149] K. Shvachko, H. Kuang, S. Radia, and R. Chansler (2010). “The hadoop distributed

file system”. In: 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pp. 1–10. doi: 10.1109/MSST.2010.5496972 (cit. on pp. 18, 42).

[150] A. Singh, N. Thakur, and A. Sharma (2016). “A review of supervised machine learn-

ing algorithms”. In: 2016 3rd International Conference on Computing for Sustainable
Global Development (INDIACom), pp. 1310–1315 (cit. on p. 14).

[151] K. Smith-Miles (2009). “Cross-disciplinary perspectives on meta-learning for algo-

rithm selection”. In: ACM Computing Surveys (CSUR), vol. 41, no. 1, pp. 1–25. doi:
10.1145/1456650.1456656 (cit. on pp. 5, 8, 32, 69, 70, 97).

[152] C. Staff (2016). “React: Facebook’s functional turn on writing Javascript”. In: Com-
munications of the ACM, vol. 59, no. 12, pp. 56–62. doi: 10.1145/2980991 (cit. on
p. 44).

[153] A. Stief, J. Ottewill, and J. Baranowski (2018). “Relief F-based feature ranking and

feature selection for monitoring induction motors”. In: 2018 23rd international
conference on methods & models in automation & robotics (MMAR), pp. 171–176.
doi: 10.1109/MMAR.2018.8486097 (cit. on p. 32).

[154] V. Subramanian (2019). “React-Bootstrap”. In: Pro MERN Stack, pp. 315–376. doi:
10.1007/978-1-4842-4391-6_11 (cit. on p. 44).

[155] S. Taieb, G. Bontempi, A. Atiya, and A. Sorjamaa (2012). “A review and comparison

of strategies for multi-step ahead time series forecasting based on the NN5 forecast-

ing competition”. In: Expert systems with applications, vol. 39, no. 8, pp. 7067–7083.
doi: 10.1016/j.eswa.2012.01.039 (cit. on p. 114).

[156] T. Talagala, R. Hyndman, G. Athanasopoulos, and others (2018). “Meta-learning

how to forecast time series”. In:Monash Econometrics and Business StatisticsWorking
Papers (cit. on pp. 9, 34, 97, 108).

173

https://doi.org/10.1145/3415958.3433072
https://doi.org/10.1016/j.iot.2021.100432
https://doi.org/10.1007/978-981-15-2445-5_3
https://doi.org/10.34917/9112192
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/2980991
https://doi.org/10.1109/MMAR.2018.8486097
https://doi.org/10.1007/978-1-4842-4391-6_11
https://doi.org/10.1016/j.eswa.2012.01.039

8. Bibliography

[157] R Core Team (2014). “A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna”. In: Austria2014 (cit. on pp. 35, 77).

[158] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown (2013). “Auto-WEKA: Com-

bined selection and hyperparameter optimization of classification algorithms”.

In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 847–855. doi: 10.1145/2487575.2487629 (cit. on

pp. 10, 32).

[159] R. Tibshirani, G. Walther, and T. Hastie. “Estimating the number of clusters in a

data set via the gap statistic”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 63, no. 2, pp. 411–423. doi: 10.1111/1467-9868.00293
(cit. on p. 82).

[160] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas (2008). “Multi-label classifi-

cation of music into emotions.” In: ISMIR. Vol. 8, pp. 325–330 (cit. on p. 14).

[161] G. Tso and K. Yau (2007). “Predicting electricity energy consumption: A comparison

of regression analysis, decision tree and neural networks”. In: Energy, vol. 32, no. 9,
pp. 1761–1768. doi: 10.1016/j.energy.2006.11.010 (cit. on p. 55).

[162] J. Van Engelen and H. Hoos (2020). “A survey on semi-supervised learning”. In:

Machine Learning, vol. 109, no. 2, pp. 373–440. doi: 10.1007/s10994-019-05855-6
(cit. on p. 16).

[163] J. Vanschoren (2018). “Meta-learning: A survey”. In: arXiv preprint arXiv:1810.03548.
doi: 10.48550/arXiv.1810.03548 (cit. on p. 31).

[164] J. Vanschoren (2019). “Meta-learning”. In: Automated Machine Learning, pp. 35–61.
doi: 10.1007/978-3-030-05318-5_2 (cit. on p. 31).

[165] M. Vartak, J. F. da Trindade, S. Madden, and M. Zaharia (2018). “Mistique: A system

to store and query model intermediates for model diagnosis”. In: Proceedings of
the 2018 International Conference on Management of Data, pp. 1285–1300. doi:
10.1145/3183713.3196934 (cit. on pp. 30, 36).

[166] M. Vartak, H. Subramanyam, W. Lee, S. Viswanathan, S. Husnoo, S. Madden, and

M. Zaharia (2016). “ModelDB: a system for machine learning model management”.

In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pp. 1–3. doi:
10.1145/2939502.2939516 (cit. on pp. 3, 27, 29, 36).

[167] V. Vavilapalli, A. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,

J. Lowe, H. Shah, and S. Seth (2013). “Apache hadoop yarn: Yet another resource

negotiator”. In: Proceedings of the 4th annual Symposium on Cloud Computing,
pp. 1–16. doi: 10.1145/2523616.2523633 (cit. on pp. 20, 42).

[168] A. Venkatachalam and J. Sohl (1999). “An intelligent model selection and forecasting

system”. In: Journal of Forecasting, vol. 18, no. 3, pp. 167–180. doi: 10.1002/(SICI)
1099-131X(199905)18:3<167::AID-FOR715>3.0.CO;2-F (cit. on p. 32).

174

https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1016/j.energy.2006.11.010
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.48550/arXiv.1810.03548
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1145/3183713.3196934
https://doi.org/10.1145/2939502.2939516
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1002/(SICI)1099-131X(199905)18:3<167::AID-FOR715>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1099-131X(199905)18:3<167::AID-FOR715>3.0.CO;2-F

8. Bibliography

[169] C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, and Z. Hu (2015). “Photovoltaic and solar

power forecasting for smart grid energy management”. In: CSEE Journal of Power
and Energy Systems, vol. 1, no. 4, pp. 38–46. doi: 10.17775/CSEEJPES.2015.00046
(cit. on pp. 76, 113).

[170] B. Wang, Y. Li, W. Ming, and S. Wang (2020). “Deep reinforcement learning method

for demand response management of interruptible load”. In: IEEE Transactions on
Smart Grid, vol. 11, no. 4, pp. 3146–3155. doi: 10.1109/TSG.2020.2967430 (cit. on
pp. 1, 14, 70).

[171] J. Wang (2021). “Meta-learning in natural and artificial intelligence”. In: Current
Opinion in Behavioral Sciences, vol. 38, pp. 90–95. doi: 10.1016/j.cobeha.2021.01.002
(cit. on p. 31).

[172] A. Widodo and I. Budi (2013). “Model selection using dimensionality reduction

of time series characteristics”. In: International Symposium on Forecasting, Seoul,
South Korea, pp. 57–118 (cit. on p. 31).

[173] D. Wolpert (1996). “The lack of a priori distinctions between learning algorithms”.

In: Neural computation, vol. 8, no. 7, pp. 1341–1390. doi: 10.1162/neco.1996.8.7.1341
(cit. on pp. 4, 131).

[174] B. Wu, S. Lyu, B. Hu, and Q. Ji (2015). “Multi-label learning with missing labels for

image annotation and facial action unit recognition”. In: Pattern Recognition, vol.
48, no. 7, pp. 2279–2289. doi: 10.1016/j.patcog.2015.01.022 (cit. on p. 14).

[175] J. Wu, W. Xiong, and W. Wang (2019). “Learning to learn and predict: a meta-

learning approach for multi-label classification”. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4354–4364.
doi: 10.18653/v1/D19-1444 (cit. on p. 31).

[176] B. Xian, X. Zhang, H. Zhang, and X. Gu (2021). “Robust Adaptive Control for a

Small Unmanned Helicopter Using Reinforcement Learning”. In: IEEE Transactions
on Neural Networks and Learning Systems. doi: 10 .1109/TNNLS.2021.3085767
(cit. on p. 16).

[177] D. Xu and Y. Tian (2015). “A comprehensive survey of clustering algorithms”. In:

Annals of Data Science, vol. 2, no. 2, pp. 165–193. doi: 10.1007/s40745-015-0040-1
(cit. on p. 82).

[178] L. Xu, S. Wang, and R. Tang (2019). “Probabilistic load forecasting for buildings

considering weather forecasting uncertainty and uncertain peak load”. In: Applied
Energy, vol. 237, pp. 180–195. doi: 10.1016/j.apenergy.2019.01.022 (cit. on pp. 1, 14).

[179] A. Yang, W. Li, and X. Yang (2019). “Short-term electricity load forecasting based on

feature selection and Least Squares Support Vector Machines”. In: Knowledge-Based
Systems, vol. 163, pp. 159–173. doi: 10.1016/j.knosys.2018.08.027 (cit. on pp. 1, 14,

70).

175

https://doi.org/10.17775/CSEEJPES.2015.00046
https://doi.org/10.1109/TSG.2020.2967430
https://doi.org/10.1016/j.cobeha.2021.01.002
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1016/j.patcog.2015.01.022
https://doi.org/10.18653/v1/D19-1444
https://doi.org/10.1109/TNNLS.2021.3085767
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1016/j.apenergy.2019.01.022
https://doi.org/10.1016/j.knosys.2018.08.027

8. Bibliography

[180] X. Yang, Z. Song, I. King, and Z. Xu (2022). “A survey on deep semi-supervised

learning”. In: IEEE Transactions on Knowledge and Data Engineering, pp. 1–20. doi:
10.1109/TKDE.2022.3220219 (cit. on p. 16).

[181] Z. Yang, Y. Yu, C. You, J. Steinhardt, and Y. Ma (2020). “Rethinking bias-variance

trade-off for generalization of neural networks”. In: International Conference on
Machine Learning. Vol. 119, pp. 10767–10777 (cit. on p. 15).

[182] Y. Yao, Z. Xiao, B. Wang, B. Viswanath, H. Zheng, and B. Zhao (2017). “Complexity

vs. performance: empirical analysis of machine learning as a service”. In: Proceedings
of the 2017 Internet Measurement Conference, pp. 384–397. doi: 10.1145/3131365.
3131372 (cit. on p. 29).

[183] X. Ying (2019). “An overview of overfitting and its solutions”. In: Journal of physics:
Conference series. Vol. 1168. 2, p. 022022. doi: 10.1088/1742-6596/1168/2/022022
(cit. on p. 15).

[184] C. Yu, P. Mirowski, and T. Ho (2016). “A sparse coding approach to household

electricity demand forecasting in smart grids”. In: IEEE Transactions on Smart Grid,
vol. 8, no. 2, pp. 738–748. doi: 10.1109/TSG.2015.2513900 (cit. on p. 79).

[185] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski, S. Murching,

T. Nykodym, P. Ogilvie, and M. Parkhe (2018). “Accelerating the machine learning

lifecycle with MLflow”. In: IEEE Data Eng. Bull, vol. 41, no. 4, pp. 39–45 (cit. on
pp. 3, 30, 36).

[186] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. Franklin,

S. Shenker, and I. Stoica (2012). “Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing”. In: 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pp. 15–28 (cit. on p. 58).

[187] M. Zaharia, R. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. Franklin, and others (2016). “Apache spark: a unified engine

for big data processing”. In: Communications of the ACM, vol. 59, no. 11, pp. 56–65.
doi: 10.1145/2934664 (cit. on pp. 27, 36, 42).

[188] C. Zhang, S. Kuppannagari, R. Kannan, and V. Prasanna (2018). “Generative adver-

sarial network for synthetic time series data generation in smart grids”. In: 2018
IEEE International Conference on Communications, Control, and Computing Tech-
nologies for Smart Grids (SmartGridComm), pp. 1–6. doi: 10.1109/SmartGridComm.

2018.8587464 (cit. on pp. 9, 34, 98).

[189] H. Zhang, L. Zhang, and Y. Jiang (2019). “Overfitting and underfitting analysis for

deep learning based end-to-end communication systems”. In: 2019 11th International
Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. doi:
10.1109/WCSP.2019.8927876 (cit. on p. 15).

[190] J. Zhang, Y. Wei, D. Li, Z. Tan, and J. Zhou (2018). “Short term electricity load

forecasting using a hybrid model”. In: Energy, vol. 158, pp. 774–781. doi: 10.1016/j.
energy.2018.06.012 (cit. on p. 70).

176

https://doi.org/10.1109/TKDE.2022.3220219
https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1109/TSG.2015.2513900
https://doi.org/10.1145/2934664
https://doi.org/10.1109/SmartGridComm.2018.8587464
https://doi.org/10.1109/SmartGridComm.2018.8587464
https://doi.org/10.1109/WCSP.2019.8927876
https://doi.org/10.1016/j.energy.2018.06.012
https://doi.org/10.1016/j.energy.2018.06.012

8. Bibliography

[191] F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and J. Geng (2019). “Meta-gnn:

On few-shot node classification in graph meta-learning”. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
pp. 2357–2360. doi: 10.1145/3357384.3358106 (cit. on p. 31).

177

https://doi.org/10.1145/3357384.3358106

A. List of Publications

Journal Articles

1. S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020).

“Facilitating and Managing Machine Learning and Data Analysis Tasks in Big Data

Environments Using Web and Microservice Technologies”. In: Transactions on

Large-Scale Data- and Knowledge-Centered Systems XLV: Special Issue on Data

Management and Knowledge Extraction in Digital Ecosystems, pp. 132–171. doi:

10.1007/978-3-662-62308-4_6.

2. S. Shahoud, M. Winter, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2021). “An

extended Meta Learning Approach for Automating Model Selection in Big Data

Environments using Microservice and Container Virtualization Technologies”. In:

Internet of Things, vol. 16, p. 100432. doi: 10.1016/j.iot.2021.100432.

Conference Articles

1. S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2019).

“Facilitating and Managing Machine Learning and Data Analysis Tasks in Big Data

Environments Using Web and Microservice Technologies”. In: Proceedings of the

11th International Conference on Management of Digital EcoSystems, pp. 80–87.

doi: 10.1145/3297662.3365807.

2. S. Shahoud, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Descriptive

Statistics Time-based Meta Features (DSTMF) Constructing a Better Set of Meta

Features for Model Selection in Energy Time Series Forecasting”. In: Proceedings

of the 3rd International Conference on Applications of Intelligent Systems, pp. 1–6.

doi: 10.1145/3378184.3378221.

3. S. Shahoud, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Incorporating

Unsupervised Deep Learning into Meta Learning for Energy Time Series Forecasting”.

In: Proceedings of the Future Technologies Conference, pp. 326–345. doi: 10.1007/978-

3-030-63128-4_25.

4. S. Shahoud, H. Khalloof, M. Winter, C. Duepmeier, and V. Hagenmeyer (2020). “A

Meta Learning Approach forAutomating Model Selection in Big Data Environments

Using Microservice and Container Virtualization Technologies”. In: Proceedings of

the 12th International Conference on Management of Digital EcoSystems, pp. 84–91.

doi: 10.1145/3415958.3433072.

179

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions and Contributions
	Structure of the Thesis

	Theoretical Background
	Machine Learning
	Machine Learning Scenarios
	Performance Evaluation

	Big Data Software Environments
	Microservices
	Characteristics
	Bounded Contexts
	Communication Types
	REpresentational State Transfer (REST)

	Time Series Datasets
	ENerGO+
	Ausgrid Solar Home Electricity Data
	Weather Time Series Dataset

	Related Work
	Machine learning software and tools
	Data analytic framework
	ML workflow management and visualization frameworks

	Meta learning for energy time series model selection
	Generating new time series datasets
	Summary

	Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments
	Problem Statement
	Proposed Solution
	Conceptual Microservice-Based Architecture
	Execution Workflow

	Evaluation
	Experimental Setup and Configurations
	Results and Discussion

	Summary

	Characterizing Energy Time Series Datasets
	Problem Statement
	Proposed Solution
	Descriptive Statistics Time-Based Meta Features (DSTMF)
	Energy Meta Learning System (EMLS)
	Encoded Energy Meta Learning System (EEMLS)

	Evaluation
	Use Case Study: Short-Term Load Forecasting Scenario
	Similarity-based Clustering Analysis
	Predictive Performance of Meta Learner: Original Representation of Meta Features
	Predictive Performance of Meta Learner: Encoded Representation of Meta Features Using Autoencoders

	Summary

	Generating Efficient Meta Examples for Energy Time Series Model Selection
	Problem Statement
	Proposed Solution
	Dataset
	Weather-based Approach
	Aggregation-Based Approach
	Model-Based Approach

	Evaluation
	Use Case Study: Power Generation Forecasting Scenario
	Original Representation of Meta Features
	Encoded Representation of Meta Features

	Summary

	Automated Time Series Model Selection in Big Data Environments
	Problem Statement
	Proposed Solution
	Conceptual Meta Learning Microservice-based Architecture

	Evaluation
	Deployment of Microservice-based Meta Learning Architecture in Big Data Environments
	Results and Discussion

	Summary

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	List of Publications

