29 research outputs found

    The Design Technique for Power Management Unit of the Tag IC for Radio Frequency Identification of Critical Infrastructure Objects

    Get PDF
    The ultra-high frequency (UHF) tag IC’s main part of the power management unit (PMU) design technique is presented. The technique is a step-by-step algorithm for designing a PMU and consists of five interrelated stages. At the first stage, the requirements for the parameters of the PMU (output voltage, output DC power, efficiency, output capacitor capacity) and the Q-factor of the tag analog front-end are determinates. At the second stage, the design of an electrical circuit of a voltage multiplier (VM) is carried out. VM is required to convert the voltage of the input radio frequency (RF) signal into an DC voltage. During the third stage, the design of the electrical circuit of the DC voltage limiter is carried out, which is necessary to reduce the output voltage of VM to a safe level. The result of stage 4 is an electrical circuit of surge protection designed to provide the required level of immunity of the tag IC to the effects of electrostatic discharge and a high-power RF signal. As part of the final stage, the evaluation and alignment with the required Q-factor value of the tag IC analog front-end is carried out. The proposed technique can be used for the development of domestic UHF tag ICs (ISO 18000-6C, GJB 7377.1, etc.) based on CMOS technological processes, including ICs designed for radio frequency identification of critical infrastructure objects. Using the presented technique, the design of a PMU with an estimated efficiency value of 70%, an estimated Q-factor of the analog front-end of less than 15 at an RF input signal power of -12.7 dBm was performed

    Modelling and Analysis of Smart Grids for Critical Data Communication

    Get PDF
    Practical models for the subnetworks of smart grid are presented and analyzed. Critical packet-delay bounds for these subnetworks are determined, with the overall objective of identifying parameters that would help in the design of smart grid with least end-to-end delay. A single-server non-preemptive queueing model with prioritized critical packets is presented for Home Area Network (HAN). Closed-form expressions for critical packet delay are derived and illustrated as a function of: i) critical packet arrival rate, ii) service rate, iii) utilization factor, and iv) rate of arrival of non-critical packets. Next, wireless HANs using FDMA and TDMA are presented. Upper and lower bounds on critical packet delay are derived in closed-form as functions of: i) average of signal-to interference-plus-noise ratio, ii) random channel scale, iii) transmitted power strength, iv) received power strength, v) number of EDs, vi) critical packet size, vii) number of channels, viii) path loss component, ix) distances between electrical devices and mesh client, x) channel interference range, xi) channel capacity, xii) bandwidth of the channel, and xiii) number of time/frequency slots. Analytical and simulation results show that critical packet delay is smaller for TDMA compared to FDMA. Lastly, an Intelligent Distributed Channel-Aware Medium Access Control (IDCA-MAC) protocol for wireless HAN using Distributed Coordination Function (DCF) is presented. The protocol eliminates collision and employs Multiple Input Multiple Output (MIMO) system to enhance system performance. Simulation results show that critical packet delay can be reduced by nearly 20% using MA-Aware protocol compared to IDCA-MAC protocol. However, the latter is superior in terms throughput. A wireless mesh backbone network model for Neighbourhood Area Network (NAN) is presented for forwarding critical packets received from HAN to an identified gateway. The routing suggested is based on selected shortest path using Voronoi tessellation. CSMA/CA and CDMA protocols are considered and closed{form upper and lower bounds on critical packet delay are derived and examined as functions of i) signal-to-noise ratio, ii) signal interference, iii) critical packet size, iv) number of channels, v) channel interference range, vi) path loss components, vii) channel bandwidth, and viii) distance between MRs. The results show that critical packet delay to gateway using CDMA is lower compared to CSMA/CA protocol. A fiber optic Wide Area Network (WAN) is presented for transporting critical packets received from NAN to a control station. A Dynamic Fastest Routing Strategy (DFRS) algorithm is used for routing critical packets to control station. Closed-form expression for mean critical packet delay is derived and is examined as a function of: i) traffic intensity, ii) capacity of fiber links, iii) number of links, iv) variance of inter-arrival time, v) variance of service time, and vi) the latency of links. It is shown that delay of critical packets to control station meets acceptable standards set for smart grid

    Harvesting-aware energy management for environmental monitoring WSN

    Get PDF
    Wireless sensor networks can be used to collect data in remote locations, especially when energy harvesting is used to extend the lifetime of individual nodes. However, in order to use the collected energy most effectively, its consumption must be managed. In this work, forecasts of diurnal solar energies were made based on measurements of atmospheric pressure. These forecasts were used as part of an adaptive duty cycling scheme for node level energy management. This management was realized with a fuzzy logic controller that has been tuned using differential evolution. Controllers were created using one and two days of energy forecasts, then simulated in software. These controllers outperformed a human-created reference controller by taking more measurements while using less reserve energy during the simulated period. The energy forecasts were comparable to other available methods, while the method of tuning the fuzzy controller improved overall node performance. The combination of the two is a promising method of energy management.Web of Science105art. no. 60

    Confidence-Aware Paced-Curriculum Learning by Label Smoothing for Surgical Scene Understanding

    Get PDF
    Curriculum learning and self-paced learning are the training strategies that gradually feed the samples from easy to more complex. They have captivated increasing attention due to their excellent performance in robotic vision. Most recent works focus on designing curricula based on difficulty levels in input samples or smoothing the feature maps. However, smoothing labels to control the learning utility in a curriculum manner is still unexplored. In this work, we design a paced curriculum by label smoothing (P-CBLS) using paced learning with uniform label smoothing (ULS) for classification tasks and fuse uniform and spatially varying label smoothing (SVLS) for semantic segmentation tasks in a curriculum manner. In ULS and SVLS, a bigger smoothing factor value enforces a heavy smoothing penalty in the true label and limits learning less information. Therefore, we design the curriculum by label smoothing (CBLS). We set a bigger smoothing value at the beginning of training and gradually decreased it to zero to control the model learning utility from lower to higher. We also designed a confidence-aware pacing function and combined it with our CBLS to investigate the benefits of various curricula. The proposed techniques are validated on four robotic surgery datasets of multi-class, multi-label classification, captioning, and segmentation tasks. We also investigate the robustness of our method by corrupting validation data into different severity levels. Our extensive analysis shows that the proposed method improves prediction accuracy and robustness. The code is publicly available at https://github.com/XuMengyaAmy/P-CBLS. Note to Practitioners —The motivation of this article is to improve the performance and robustness of deep neural networks in safety-critical applications such as robotic surgery by controlling the learning ability of the model in a curriculum learning manner and allowing the model to imitate the cognitive process of humans and animals. The designed approaches do not add parameters that require additional computational resources

    Software Test Case Generation Tools and Techniques: A Review

    Get PDF
    Software Industry is evolving at a very fast pace since last two decades. Many software developments, testing and test case generation approaches have evolved in last two decades to deliver quality products and services. Testing plays a vital role to ensure the quality and reliability of software products. In this paper authors attempted to conduct a systematic study of testing tools and techniques. Six most popular e-resources called IEEE, Springer, Association for Computing Machinery (ACM), Elsevier, Wiley and Google Scholar to download 738 manuscripts out of which 125 were selected to conduct the study. Out of 125 manuscripts selected, a good number approx. 79% are from reputed journals and around 21% are from good conference of repute. Testing tools discussed in this paper have broadly been divided into five different categories: open source, academic and research, commercial, academic and open source, and commercial & open source. The paper also discusses several benchmarked datasets viz. Evosuite 10, SF100 Corpus, Defects4J repository, Neo4j, JSON, Mocha JS, and Node JS to name a few. Aim of this paper is to make the researchers aware of the various test case generation tools and techniques introduced in the last 11 years with their salient features

    Spectral and Energy Efficient Communication Systems and Networks

    Get PDF
    In this thesis, design and analysis of energy- and spectral-efficient communication and cellular systems in micro wave and millimeter wave bands are considered using the following system performance metrics: i) Energy efficiency; ii) Spectral efficiency; iii) Spatial spectral efficiency; iv) Spatial energy efficiency, and v) Bit error rate. Statistical channel distributions, Nakagami-m and Generalized-K, and path loss models, Line of Sight (LOS) and Non-Line of Sight (NLOS), are used to represent the propagation environment in these systems. Adaptive M-QAM and M-CPFSK communication systems are proposed to enhance their efficiency metrics as a function of Signal-to-Noise Ratio (SNR) over the channel. It is observed that in the adaptive M-QAM system energy efficiency can be improved by 0.214 bits/J whereas its spectral efficiency can be enhanced by 40%, for wide range of SNR compared to that of conventional M-QAM system. In case of adaptive M-CPFSK system, spectral and energy efficiencies can be increased by 33% and 76%, respectively. A framework for design and analysis of a cellular system, with omni and sectorized antenna systems at Base Station (BS), using its efficiency metrics and coverage probability is presented assuming wireless channel is Nakagami-m fading coupled with path loss and co-channel interference. It is noted that sectorized antenna system at BS enhances energy and spectral efficiencies by nearly 109% and 1.5 bits/s/Hz, respectively, compared to conventional omni antenna system. A Multi-User MIMO cellular system is then investigated and closed-form expressions for its uplink efficiency metrics are derived for fading and shadowing wireless channel environment. It is observed that increasing number of antennas in MIMO system at BS can significantly improve efficiency metrics of cellular system. Finally, a framework for design and analysis of dense mmWave cellular system, in 28 and 73 GHz bands, is presented for efficient utilization of spectrum and power of the system. The efficiency metrics of the system are evaluated for LOS and NLOS links. It is observed that while 28 GHz band is expedient for indoor cellular systems, the 73 GHz band is appropriate for outdoor systems

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and health management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time fault detection and identification (FDI) of a dynamical assembly, and for the estimation of remaining useful life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow – namely (1) signal acquisition, (2) fault detection and identification, and (3) remaining useful life estimation – and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and Health Management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time Fault Detection and Identification (FDI) of a dynamical assembly, and for the estimation of Remaining Useful Life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow - namely (1) signal acquisition, (2) Fault Detection and Identification, and (3) Remaining Useful Life estimation - and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time.Comment: 57 page

    Compressive Sensing with Low-Power Transfer and Accurate Reconstruction of EEG Signals

    Get PDF
    Tele-monitoring of EEG in WBAN is essential as EEG is the most powerful physiological parameters to diagnose any neurological disorder. Generally, EEG signal needs to record for longer periods which results in a large volume of data leading to huge storage and communication bandwidth requirements in WBAN. Moreover, WBAN sensor nodes are battery operated which consumes lots of energy. The aim of this research is, therefore, low power transmission of EEG signal over WBAN and its accurate reconstruction at the receiver to enable continuous online-monitoring of EEG and real time feedback to the patients from the medical experts. To reduce data rate and consequently reduce power consumption, compressive sensing (CS) may be employed prior to transmission. Nonetheless, for EEG signals, the accuracy of reconstruction of the signal with CS depends on a suitable dictionary in which the signal is sparse. As the EEG signal is not sparse in either time or frequency domain, identifying an appropriate dictionary is paramount. There are a plethora of choices for the dictionary to be used. Wavelet bases are of interest due to the availability of associated systems and methods. However, the attributes of wavelet bases that can lead to good quality of reconstruction are not well understood. For the first time in this study, it is demonstrated that in selecting wavelet dictionaries, the incoherence with the sensing matrix and the number of vanishing moments of the dictionary should be considered at the same time. In this research, a framework is proposed for the selection of an appropriate wavelet dictionary for EEG signal which is used in tandem with sparse binary matrix (SBM) as the sensing matrix and ST-SBL method as the reconstruction algorithm. Beylkin (highly incoherent with SBM and relatively high number of vanishing moments) is identified as the best dictionary to be used amongst the dictionaries are evaluated in this thesis. The power requirements for the proposed framework are also quantified using a power model. The outcomes will assist to realize the computational complexity and online implementation requirements of CS for transmitting EEG in WBAN. The proposed approach facilitates the energy savings budget well into the microwatts range, ensuring a significant savings of battery life and overall system’s power. The study is intended to create a strong base for the use of EEG in the high-accuracy and low-power based biomedical applications in WBAN

    PT-Net: A Multi-Model Machine Learning Approach for Smarter Next-Generation Wearable Tremor Suppression Devices for Parkinson\u27s Disease Tremor

    Get PDF
    According to the World Health Organization (WHO), Parkinson\u27s Disease (PD) is the second most common neurodegenerative condition that can cause tremors and other motor and non motor related symptoms. Medication and deep brain stimulation (DBS) are often used to treat tremor; however, medication is not always effective and has adverse effects, and DBS is invasive and carries a significant risk of complications. Wearable tremor suppression devices (WTSDs) have been proposed as a possible alternative, but their effectiveness is limited by the tremor models they use, which introduce a phase delay that decreases the performance of the devices. Additionally, the availability of tremor datasets is limited, which prevents the rapid advancement of these devices. To address the challenges facing the WTSDs, PD tremor data were collected at the Wearable Biomechatronics Laboratory (WearMe Lab) to develop methods and data-driven models to improve the performance of WTSDs in managing tremor, and potentially to be integrated with the wearable tremor suppression glove that is being developed at the WearMe Lab. A predictive model was introduced and showed improved motion estimation with an average estimation accuracy of 99.2%. The model was also able to predict motion with multiple steps ahead, negating the phase delay introduced by previous models and achieving prediction accuracies of 97%, 94%, 92%, and 90\% for predicting voluntary motion 10, 20, 50, and 100 steps ahead, respectively. Tremor and task classification models were also developed, with mean classification accuracies of 91.2% and 91.1%, respectively. These models can be used to fine-tune the parameters of existing estimators based on the type of tremor and task, increasing their suppression capabilities. To address the absence of a mathematical model for generating tremor data and limited access to existing PD tremor datasets, an open-source generative model was developed to produce data with similar characteristics, distribution, and patterns to real data. The reliability of the generated data was evaluated using four different methods, showing that the generative model can produce data with similar distribution, patterns, and characteristics to real data. The development of data-driven models and methods to improve the performance of wearable tremor suppression devices for Parkinson\u27s disease can potentially offer a noninvasive and effective alternative to medication and deep brain stimulation. The proposed predictive model, classification model, and the open-source generative model provide a promising framework for the advancement of wearable technology for tremor suppression, potentially leading to a significant improvement in the quality of life for individuals with Parkinson\u27s disease
    corecore