78 research outputs found

    Simurgh: a fully decentralized and secure NVMM user space file system

    Get PDF
    The availability of non-volatile main memory (NVMM) has started a new era for storage systems and NVMM specific file systems can support extremely high data and metadata rates, which are required by many HPC and data-intensive applications. Scaling metadata performance within NVMM file systems is nevertheless often restricted by the Linux kernel storage stack, while simply moving metadata management to the user space can compromise security or flexibility. This paper introduces Simurgh, a hardware-assisted user space file system with decentralized metadata management that allows secure metadata updates from within user space. Simurgh guarantees consistency, durability, and ordering of updates without sacrificing scalability. Security is enforced by only allowing NVMM access from protected user space functions, which can be implemented through two proposed instructions. Comparisons with other NVMM file systems show that Simurgh improves metadata performance up to 18x and application performance up to 89% compared to the second-fastest file system.This work has been supported by the European Comission’s BigStorage project H2020-MSCA-ITN2014-642963. It is also supported by the Big Data in Atmospheric Physics (BINARY) project, funded by the Carl Zeiss Foundation under Grant No.: P2018-02-003.Peer ReviewedPostprint (author's final draft

    A Probabilistic Spatial Distribution Model for Wire Faults in Parallel Network-on-Chip Links

    Get PDF
    High-performance chip multiprocessors contain numerous parallel-processing cores where a fabric devised as a network-on-chip (NoC) efficiently handles their escalating intertile communication demands. Unfortunately, prolonged operational stresses cause accelerated physically induced wearout leading to permanent metal wire faults in links. Where only a subset of wires may malfunction, enduring healthy wires are leveraged to sustain connectivity when a partially faulty link recovery mechanism is utilized, where its data recovery latency overhead is proportional to the number of consecutive faulty wires. With NoC link failure models being ultimately important, albeit being absent from existing literature, the construction of a mathematical model towards the understanding of the distribution of wire faults in parallel on-chip links is very critical. This paper steps in such a direction, where the objective is to find the probability of having a “fault segment” consisting of a certain number of consecutive “faulty” wires in a parallel NoC link. First, it is shown how the given problem can be reduced to an equivalent combinatorial problem through partitions and necklaces. Then the proposed algorithm counts certain classes of necklaces by making a separation between periodic and aperiodic cases. Finally, the resulting analytical model is tested successfully against a far more costly brute-force algorithm

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Full text link
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Get PDF
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    Veröffentlichungen und Vorträge 2009 der Mitglieder der Fakultät für Informatik

    Get PDF

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Electronic Imaging & the Visual Arts. EVA 2019 Florence

    Get PDF
    The Publication is following the yearly Editions of EVA FLORENCE. The State of Art is presented regarding the Application of Technologies (in particular of digital type) to Cultural Heritage. The more recent results of the Researches in the considered Area are presented. Information Technologies of interest for Culture Heritage are presented: multimedia systems, data-bases, data protection, access to digital content, Virtual Galleries. Particular reference is reserved to digital images (Electronic Imaging & the Visual Arts), regarding Cultural Institutions (Museums, Libraries, Palace - Monuments, Archaeological Sites). The International Conference includes the following Sessions: Strategic Issues; New Science and Culture Developments & Applications; New Technical Developments & Applications; Cultural Activities – Real and Virtual Galleries and Related Initiatives, Access to the Culture Information. One Workshop regards Innovation and Enterprise. The more recent results of the Researches at national and international level are reported in the Area of Technologies and Culture Heritage, also with experimental demonstrations of developed Activities
    corecore