84 research outputs found

    A Cluster-Matching-Based Method for Video Face Recognition

    Full text link
    Face recognition systems are present in many modern solutions and thousands of applications in our daily lives. However, current solutions are not easily scalable, especially when it comes to the addition of new targeted people. We propose a cluster-matching-based approach for face recognition in video. In our approach, we use unsupervised learning to cluster the faces present in both the dataset and targeted videos selected for face recognition. Moreover, we design a cluster matching heuristic to associate clusters in both sets that is also capable of identifying when a face belongs to a non-registered person. Our method has achieved a recall of 99.435% and a precision of 99.131% in the task of video face recognition. Besides performing face recognition, it can also be used to determine the video segments where each person is present.Comment: 13 page

    Marcelo Ricardo Stemmer

    Get PDF

    Joceli Mayer

    Get PDF

    Automatic identification of charcoal origin based on deep learning

    Get PDF
    The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    Visual Computing and Machine Learning Techniques for Digital Forensics

    Get PDF
    It is impressive how fast science has improved day by day in so many different fields. In special, technology advances are shocking so many people bringing to their reality facts that previously were beyond their imagination. Inspired by methods earlier presented in scientific fiction shows, the computer science community has created a new research area named Digital Forensics, which aims at developing and deploying methods for fighting against digital crimes such as digital image forgery.This work presents some of the main concepts associated with Digital Forensics and, complementarily, presents some recent and powerful techniques relying on Computer Graphics, Image Processing, Computer Vision and Machine Learning concepts for detecting forgeries in photographs. Some topics addressed in this work include: sourceattribution, spoofing detection, pornography detection, multimedia phylogeny, and forgery detection. Finally, this work highlights the challenges and open problems in Digital Image Forensics to provide the readers with the myriad opportunities available for research
    corecore