22 research outputs found

    Design and implementation of testbed using IoT and P2P technologies: improving reliability by a fuzzy-based approach

    Get PDF
    The internet of things (IoT) is a new type of internet application which enables the objects to be active participants with other members of the network. In P2P systems, each peer has to obtain information of other peers and propagate the information through neighbouring peers. However, in reality, each peer might be faulty or might send incorrect information. In our previous work, we implemented a P2P platform called JXTA-overlay, which provides a set of basic functionalities, primitives, intended to be as complete as possible to satisfy the needs of most JXTA-based applications. In this paper, we present the implementation of a testbed using IoT and P2P technologies. We also present two fuzzy-based systems (FPRS1 and FPRS2) to improve the reliability of the proposed approach. Comparing the complexity of FPRS1 and FPRS2, the FPRS2 is more complex than FPRS1. However, FPRS2 makes the platform more reliable.Peer ReviewedPostprint (author's final draft

    The survey on Near Field Communication

    Get PDF
    PubMed ID: 26057043Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.Publisher's Versio

    Incremental clustering of news reports

    Get PDF
    When an event occurs in the real world, numerous news reports describing this event start to appear on different news sites within a few minutes of the event occurrence. This may result in a huge amount of information for users, and automated processes may be required to help manage this information. In this paper, we describe a clustering system that can cluster news reports from disparate sources into event-centric clusters—i.e., clusters of news reports describing the same event. A user can identify any RSS feed as a source of news he/she would like to receive and our clustering system can cluster reports received from the separate RSS feeds as they arrive without knowing the number of clusters in advance. Our clustering system was designed to function well in an online incremental environment. In evaluating our system, we found that our system is very good in performing fine-grained clustering, but performs rather poorly when performing coarser-grained clustering.peer-reviewe

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds
    corecore