49 research outputs found

    FPGA-Based Processor Acceleration for Image Processing Applications

    Get PDF
    FPGA-based embedded image processing systems offer considerable computing resources but present programming challenges when compared to software systems. The paper describes an approach based on an FPGA-based soft processor called Image Processing Processor (IPPro) which can operate up to 337 MHz on a high-end Xilinx FPGA family and gives details of the dataflow-based programming environment. The approach is demonstrated for a k-means clustering operation and a traffic sign recognition application, both of which have been prototyped on an Avnet Zedboard that has Xilinx Zynq-7000 system-on-chip (SoC). A number of parallel dataflow mapping options were explored giving a speed-up of 8 times for the k-means clustering using 16 IPPro cores, and a speed-up of 9.6 times for the morphology filter operation of the traffic sign recognition using 16 IPPro cores compared to their equivalent ARM-based software implementations. We show that for k-means clustering, the 16 IPPro cores implementation is 57, 28 and 1.7 times more power efficient (fps/W) than ARM Cortex-A7 CPU, nVIDIA GeForce GTX980 GPU and ARM Mali-T628 embedded GPU respectively

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    A GPU based X-Engine for the MeerKAT Radio Telescope

    Get PDF
    The correlator is a key component of the digital backend of a modern radio telescope array. The 64 antenna MeerKAT telescope has an FX architecture correlator consisting of 64 F-Engines and 256 X-Engines. These F- and X-Engines are all hosted on 128 custom designed FPGA processing boards. This custom board is known as a SKARAB. One SKARAB X-Engine board hosts four logical X-Engines. This SKARAB ingests data at 27.2 Gbps over a 40 GbE connection. It correlates this data in real time. GPU technology has improved significantly since SKARAB was designed. GPUs are now becoming viable alternatives to FPGAs in high performance streaming applications. The objective of this dissertation is to investigate how to build a GPU drop-in replacement X-Engine for MeerKAT and to compare this implementation to a SKARAB X-Engine. This includes the construction and analysis of a prototype GPU X-Engine. The 40 GbE ingest, GPU correlation algorithm and the software pipeline framework that links these two together were identified as the three main sub-systems to focus on in this dissertation. A number of different tools implementing these sub-systems were examined with the most suitable ones being chosen for the prototype. A prototype dual socket system was built that could process the equivalent of two SKARABs worth of X-Engine data. This prototype has two 40 GbE Mellanox NICS running the SPEAD2 library and a single Nvidia GeForce 1080Ti GPU running the xGPU library. A custom pipeline framework built on top of the Intel Threaded Building Blocks (TBB) library was designed to facilitate the ow of data between these sub-systems. The prototype system was compared to two SKARABs. For an equivalent amount of processing, the GPU X-Engine cost R143 000 while the two SKARABs cost R490 000. The power consumption of the GPU X-Engine was more than twice that of the SKARABs (400W compared 180W), while only requiring half as much rack space. GPUs as X-Engines were found to be more suitable than FPGAs when cost and density are the main priorities. When power consumption is the priority, then FPGAs should be used. When running eight logical X-Engines, 85% of the prototype's CPU cores were used while only 75% of the GPU's compute capacity was utilised. The main bottleneck on the GPU X-Engine was on the CPU side of the server. This report suggests that the next iteration of the system should offload some CPU side processing to the GPU and double the number of 40 GbE ports. This could potentially double the system throughput. When considering methods to improve this system, an FPGA/GPU hybrid X-Engine concept was developed that would combine the power saving advantage of FPGAs and the low cost to compute ratio of GPUs

    Embedded Machine Learning: Emphasis on Hardware Accelerators and Approximate Computing for Tactile Data Processing

    Get PDF
    Machine Learning (ML) a subset of Artificial Intelligence (AI) is driving the industrial and technological revolution of the present and future. We envision a world with smart devices that are able to mimic human behavior (sense, process, and act) and perform tasks that at one time we thought could only be carried out by humans. The vision is to achieve such a level of intelligence with affordable, power-efficient, and fast hardware platforms. However, embedding machine learning algorithms in many application domains such as the internet of things (IoT), prostheses, robotics, and wearable devices is an ongoing challenge. A challenge that is controlled by the computational complexity of ML algorithms, the performance/availability of hardware platforms, and the application\u2019s budget (power constraint, real-time operation, etc.). In this dissertation, we focus on the design and implementation of efficient ML algorithms to handle the aforementioned challenges. First, we apply Approximate Computing Techniques (ACTs) to reduce the computational complexity of ML algorithms. Then, we design custom Hardware Accelerators to improve the performance of the implementation within a specified budget. Finally, a tactile data processing application is adopted for the validation of the proposed exact and approximate embedded machine learning accelerators. The dissertation starts with the introduction of the various ML algorithms used for tactile data processing. These algorithms are assessed in terms of their computational complexity and the available hardware platforms which could be used for implementation. Afterward, a survey on the existing approximate computing techniques and hardware accelerators design methodologies is presented. Based on the findings of the survey, an approach for applying algorithmic-level ACTs on machine learning algorithms is provided. Then three novel hardware accelerators are proposed: (1) k-Nearest Neighbor (kNN) based on a selection-based sorter, (2) Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks, and (3) Hybrid Precision Binary Convolution Neural Network (BCNN). The three accelerators offer a real-time classification with monumental reductions in the hardware resources and power consumption compared to existing implementations targeting the same tactile data processing application on FPGA. Moreover, the approximate accelerators maintain a high classification accuracy with a loss of at most 5%

    Compiler-centric across-stack deep learning acceleration

    Get PDF
    Optimizing the deployment of Deep Neural Networks (DNNs) is hard. Despite deep learning approaches increasingly providing state-of-the-art solutions to a variety of difficult problems, such as computer vision and natural language processing, DNNs can be prohibitively expensive, for example, in terms of inference time or memory usage. Effective exploration of the design space requires a holistic approach, including a range of topics from machine learning, systems, and hardware. The rapid proliferation of deep learning applications has raised demand for efficient exploration and acceleration of deep learning based solutions. However, managing the range of optimization techniques, as well as how they interact with each other across the stack is a non-trivial task. A family of emerging specialized compilers for deep learning, tensor compilers, appear to be a strong candidate to help manage the complexity of across-stack optimization choices, and enable new approaches. This thesis presents new techniques and explorations of the Deep Learning Acceleration Stack (DLAS), with the perspective that the tensor compiler will increasingly be the center of this stack. First, we motivate the challenges in exploring DLAS, by describing the experience of running a perturbation study varying parameters at every layer of the stack. The core of the study is implemented using a tensor compiler, which reduces the complexity of evaluating the wide range of variants, although still requires a significant engineering effort to realize. Next, we develop a new algorithm for grouped convolution, a model optimization technique for which existing solutions provided poor inference time scaling. We implement and optimize our algorithm using a tensor compiler, outperforming existing approaches by 5.1Ă— on average (arithmetic mean). Finally, we propose a technique, transfer-tuning, to reduce the search time required for automatic tensor compiler code optimization, reducing the search time required by 6.5Ă— on average. The techniques and contributions of this thesis across these interconnected domains demonstrate the exciting potential of tensor compilers to simplify and improve design space exploration for DNNs, and their deployment. The outcomes of this thesis enable new lines of research to enable machine learning developers to keep up with the rapidly evolving landscape of neural architectures and hardware

    Database System Acceleration on FPGAs

    Get PDF
    Relational database systems provide various services and applications with an efficient means for storing, processing, and retrieving their data. The performance of these systems has a direct impact on the quality of service of the applications that rely on them. Therefore, it is crucial that database systems are able to adapt and grow in tandem with the demands of these applications, ensuring that their performance scales accordingly. In the past, Moore's law and algorithmic advancements have been sufficient to meet these demands. However, with the slowdown of Moore's law, researchers have begun exploring alternative methods, such as application-specific technologies, to satisfy the more challenging performance requirements. One such technology is field-programmable gate arrays (FPGAs), which provide ideal platforms for developing and running custom architectures for accelerating database systems. The goal of this thesis is to develop a domain-specific architecture that can enhance the performance of in-memory database systems when executing analytical queries. Our research is guided by a combination of academic and industrial requirements that seek to strike a balance between generality and performance. The former ensures that our platform can be used to process a diverse range of workloads, while the latter makes it an attractive solution for high-performance use cases. Throughout this thesis, we present the development of a system-on-chip for database system acceleration that meets our requirements. The resulting architecture, called CbMSMK, is capable of processing the projection, sort, aggregation, and equi-join database operators and can also run some complex TPC-H queries. CbMSMK employs a shared sort-merge pipeline for executing all these operators, which results in an efficient use of FPGA resources. This approach enables the instantiation of multiple acceleration cores on the FPGA, allowing it to serve multiple clients simultaneously. CbMSMK can process both arbitrarily deep and wide tables efficiently. The former is achieved through the use of the sort-merge algorithm which utilizes the FPGA RAM for buffering intermediate sort results. The latter is achieved through the use of KeRRaS, a novel variant of the forward radix sort algorithm introduced in this thesis. KeRRaS allows CbMSMK to process a table a few columns at a time, incrementally generating the final result through multiple iterations. Given that acceleration is a key objective of our work, CbMSMK benefits from many performance optimizations. For instance, multi-way merging is employed to reduce the number of merge passes required for the execution of the sort-merge algorithm, thus improving the performance of all our pipeline-breaking operators. Another example is our in-depth analysis of early aggregation, which led to the development of a novel cache-based algorithm that significantly enhances aggregation performance. Our experiments demonstrate that CbMSMK performs on average 5 times faster than the state-of-the-art CPU-based database management system MonetDB.:I Database Systems & FPGAs 1 INTRODUCTION 1.1 Databases & the Importance of Performance 1.2 Accelerators & FPGAs 1.3 Requirements 1.4 Outline & Summary of Contributions 2 BACKGROUND ON DATABASE SYSTEMS 2.1 Databases 2.1.1 Storage Model 2.1.2 Storage Medium 2.2 Database Operators 2.2.1 Projection 2.2.2 Filter 2.2.3 Sort 2.2.4 Aggregation 2.2.5 Join 2.2.6 Operator Classification 2.3 Database Queries 2.4 Impact of Acceleration 3 BACKGROUND ON FPGAS 3.1 FPGA 3.1.1 Logic Element 3.1.2 Block RAM (BRAM) 3.1.3 Digital Signal Processor (DSP) 3.1.4 IO Element 3.1.5 Programmable Interconnect 3.2 FPGADesignFlow 3.2.1 Specifications 3.2.2 RTL Description 3.2.3 Verification 3.2.4 Synthesis, Mapping, Placement, and Routing 3.2.5 TimingAnalysis 3.2.6 Bitstream Generation and FPGA Programming 3.3 Implementation Quality Metrics 3.4 FPGA Cards 3.5 Benefits of Using FPGAs 3.6 Challenges of Using FPGAs 4 RELATED WORK 4.1 Summary of Related Work 4.2 Platform Type 4.2.1 Accelerator Card 4.2.2 Coprocessor 4.2.3 Smart Storage 4.2.4 Network Processor 4.3 Implementation 4.3.1 Loop-based implementation 4.3.2 Sort-based Implementation 4.3.3 Hash-based Implementation 4.3.4 Mixed Implementation 4.4 A Note on Quantitative Performance Comparisons II Cache-Based Morphing Sort-Merge with KeRRaS (CbMSMK) 5 OBJECTIVES AND ARCHITECTURE OVERVIEW 5.1 From Requirements to Objectives 5.2 Architecture Overview 5.3 Outlineof Part II 6 COMPARATIVE ANALYSIS OF OPENCL AND RTL FOR SORT-MERGE PRIMITIVES ON FPGAS 6.1 Programming FPGAs 6.2 RelatedWork 6.3 Architecture 6.3.1 Global Architecture 6.3.2 Sorter Architecture 6.3.3 Merger Architecture 6.3.4 Scalability and Resource Adaptability 6.4 Experiments 6.4.1 OpenCL Sort-Merge Implementation 6.4.2 RTLSorters 6.4.3 RTLMergers 6.4.4 Hybrid OpenCL-RTL Sort-Merge Implementation 6.5 Summary & Discussion 7 RESOURCE-EFFICIENT ACCELERATION OF PIPELINE-BREAKING DATABASE OPERATORS ON FPGAS 7.1 The Case for Resource Efficiency 7.2 Related Work 7.3 Architecture 7.3.1 Sorters 7.3.2 Sort-Network 7.3.3 X:Y Mergers 7.3.4 Merge-Network 7.3.5 Join Materialiser (JoinMat) 7.4 Experiments 7.4.1 Experimental Setup 7.4.2 Implementation Description & Tuning 7.4.3 Sort Benchmarks 7.4.4 Aggregation Benchmarks 7.4.5 Join Benchmarks 7. Summary 8 KERRAS: COLUMN-ORIENTED WIDE TABLE PROCESSING ON FPGAS 8.1 The Scope of Database System Accelerators 8.2 Related Work 8.3 Key-Reduce Radix Sort(KeRRaS) 8.3.1 Time Complexity 8.3.2 Space Complexity (Memory Utilization) 8.3.3 Discussion and Optimizations 8.4 Architecture 8.4.1 MSM 8.4.2 MSMK: Extending MSM with KeRRaS 8.4.3 Payload, Aggregation and Join Processing 8.4.4 Limitations 8.5 Experiments 8.5.1 Experimental Setup 8.5.2 Datasets 8.5.3 MSMK vs. MSM 8.5.4 Payload-Less Benchmarks 8.5.5 Payload-Based Benchmarks 8.5.6 Flexibility 8.6 Summary 9 A STUDY OF EARLY AGGREGATION IN DATABASE QUERY PROCESSING ON FPGAS 9.1 Early Aggregation 9.2 Background & Related Work 9.2.1 Sort-Based Early Aggregation 9.2.2 Cache-Based Early Aggregation 9.3 Simulations 9.3.1 Datasets 9.3.2 Metrics 9.3.3 Sort-Based Versus Cache-Based Early Aggregation 9.3.4 Comparison of Set-Associative Caches 9.3.5 Comparison of Cache Structures 9.3.6 Comparison of Replacement Policies 9.3.7 Cache Selection Methodology 9.4 Cache System Architecture 9.4.1 Window Aggregator 9.4.2 Compressor & Hasher 9.4.3 Collision Detector 9.4.4 Collision Resolver 9.4.5 Cache 9.5 Experiments 9.5.1 Experimental Setup 9.5.2 Resource Utilization and Parameter Tuning 9.5.3 Datasets 9.5.4 Benchmarks on Synthetic Data 9.5.5 Benchmarks on Real Data 9.6 Summary 10 THE FULL PICTURE 10.1 System Architecture 10.2 Benchmarks 10.3 Meeting the Objectives III Conclusion 11 SUMMARY AND OUTLOOK ON FUTURE RESEARCH 11.1 Summary 11.2 Future Work BIBLIOGRAPHY LIST OF FIGURES LIST OF TABLE
    corecore