
Database System Acceleration on FPGAs

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Mehdi Moghaddamfar, M.Sc.

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Professur für Datenbanken
01062 Dresden

Fachreferent: Prof. Dr. Akash Kumar
Technische Universität Dresden
Fakultät Informatik
Institut für Technische Informatik
Professur für Prozessordesign
01062 Dresden

Tag der Verteidigung: 26. April 2023

Dresden, im Februar 2023

2

Doctoral Committee:

• Prof. Dr. Christof Fetzer (Head of the Committee)

Technische Universität Dresden, Germany

• Prof. Dr.-Ing. Wolfgang Lehner (Co-Advisor, Reviewer)

Technische Universität Dresden, Germany

• Prof. Dr. Akash Kumar (Co-Advisor, Subject Expert)

Technische Universität Dresden, Germany

• Prof. Dr.-Ing. Jürgen Teich (External Reviewer)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

• Prof. Dr.-Ing. Diana Goehringer (Committee Member)

Technische Universität Dresden, Germany

Additional Members of the Thesis Advisory Board:

• Dr. Norman May

SAP SE, Germany

• Dr. Christian Färber

Intel Corporation, Germany

3

4

ABSTRACT

Relational database systems provide various services and applications with an efficient
means for storing, processing, and retrieving their data. The performance of these sys-
tems has a direct impact on the quality of service of the applications that rely on them.
Therefore, it is crucial that database systems are able to adapt and grow in tandem with
the demands of these applications, ensuring that their performance scales accordingly. In
the past, Moore’s law and algorithmic advancements have been sufficient to meet these
demands. However, with the slowdown of Moore’s law, researchers have begun explor-
ing alternative methods, such as application-specific technologies, to satisfy the more
challenging performance requirements. One such technology is field-programmable gate
arrays (FPGAs), which provide ideal platforms for developing and running custom ar-
chitectures for accelerating database systems.

The goal of this thesis is to develop a domain-specific architecture that can enhance the
performance of in-memory database systems when executing analytical queries. Our
research is guided by a combination of academic and industrial requirements that seek
to strike a balance between generality and performance. The former ensures that our
platform can be used to process a diverse range of workloads, while the latter makes it
an attractive solution for high-performance use cases.

Throughout this thesis, we present the development of a system-on-chip for database sys-
tem acceleration that meets our requirements. The resulting architecture, called CbMSMK,
is capable of processing the projection, sort, aggregation, and equi-join database opera-
tors and can also run some complex TPC-H queries. CbMSMK employs a shared sort-
merge pipeline for executing all these operators, which results in an efficient use of FPGA
resources. This approach enables the instantiation of multiple acceleration cores on the
FPGA, allowing it to serve multiple clients simultaneously. CbMSMK can process both
arbitrarily deep and wide tables efficiently. The former is achieved through the use of
the sort-merge algorithm which utilizes the FPGA RAM for buffering intermediate sort
results. The latter is achieved through the use of KeRRaS, a novel variant of the forward
radix sort algorithm introduced in this thesis. KeRRaS allows CbMSMK to process a
table a few columns at a time, incrementally generating the final result through multi-
ple iterations. Given that acceleration is a key objective of our work, CbMSMK benefits
from many performance optimizations. For instance, multi-way merging is employed
to reduce the number of merge passes required for the execution of the sort-merge algo-
rithm, thus improving the performance of all our pipeline-breaking operators. Another
example is our in-depth analysis of early aggregation, which led to the development
of a novel cache-based algorithm that significantly enhances aggregation performance.
Our experiments demonstrate that CbMSMK performs on average 5 times faster than the
state-of-the-art CPU-based database management system MonetDB.

5

6

CONTENTS

I Database Systems & FPGAs 13

1 INTRODUCTION 15

1.1 Databases & the Importance of Performance 16

1.2 Accelerators & FPGAs . 16

1.3 Requirements . 18

1.4 Outline & Summary of Contributions . 19

2 BACKGROUND ON DATABASE SYSTEMS 21

2.1 Databases . 22
2.1.1 Storage Model . 22

2.1.2 Storage Medium . 23

2.2 Database Operators . 23
2.2.1 Projection . 24

2.2.2 Filter . 24

2.2.3 Sort . 25

2.2.4 Aggregation . 25

2.2.5 Join . 25

2.2.6 Operator Classification . 26

2.3 Database Queries . 26

2.4 Impact of Acceleration . 27

3 BACKGROUND ON FPGAS 29

3.1 FPGA . 30
3.1.1 Logic Element . 30

3.1.2 Block RAM (BRAM) . 32

3.1.3 Digital Signal Processor (DSP) . 33

3.1.4 IO Element . 33

3.1.5 Programmable Interconnect . 33

3.2 FPGA Design Flow . 33
3.2.1 Specifications . 34

3.2.2 RTL Description . 34

3.2.3 Verification . 36

3.2.4 Synthesis, Mapping, Placement, and Routing 36

7

3.2.5 Timing Analysis . 36

3.2.6 Bitstream Generation and FPGA Programming 37

3.3 Implementation Quality Metrics . 37

3.4 FPGA Cards . 37

3.5 Benefits of Using FPGAs . 38

3.6 Challenges of Using FPGAs . 39

4 RELATED WORK 41

4.1 Summary of Related Work . 42

4.2 Platform Type . 43
4.2.1 Accelerator Card . 44

4.2.2 Coprocessor . 45

4.2.3 Smart Storage . 45

4.2.4 Network Processor . 46

4.3 Implementation . 46
4.3.1 Loop-based implementation . 47

4.3.2 Sort-based Implementation . 48

4.3.3 Hash-based Implementation . 49

4.3.4 Mixed Implementation . 50

4.4 A Note on Quantitative Performance Comparisons 51

II Cache-Based Morphing Sort-Merge with KeRRaS (CbMSMK) 53

5 OBJECTIVES AND ARCHITECTURE OVERVIEW 55

5.1 From Requirements to Objectives . 56

5.2 Architecture Overview . 57

5.3 Outline of Part II . 58

6 COMPARATIVE ANALYSIS OF OPENCL AND RTL FOR SORT-MERGE PRIMI-
TIVES ON FPGAS 61

6.1 Programming FPGAs . 62

6.2 Related Work . 63

6.3 Architecture . 63
6.3.1 Global Architecture . 64

6.3.2 Sorter Architecture . 64

6.3.3 Merger Architecture . 67

6.3.4 Scalability and Resource Adaptability 67

6.4 Experiments . 68
6.4.1 OpenCL Sort-Merge Implementation 68

8 CONTENTS

6.4.2 RTL Sorters . 69
6.4.3 RTL Mergers . 70
6.4.4 Hybrid OpenCL-RTL Sort-Merge Implementation 71

6.5 Summary & Discussion . 72

7 RESOURCE-EFFICIENT ACCELERATION OF PIPELINE-BREAKING DATABASE OP-
ERATORS ON FPGAS 73

7.1 The Case for Resource Efficiency . 74

7.2 Related Work . 75

7.3 Architecture . 76
7.3.1 Sorters . 77
7.3.2 Sort-Network . 79
7.3.3 X:Y Mergers . 80
7.3.4 Merge-Network . 81
7.3.5 Join Materialiser (JoinMat) . 81

7.4 Experiments . 81
7.4.1 Experimental Setup . 82
7.4.2 Implementation Description & Tuning 82
7.4.3 Sort Benchmarks . 84
7.4.4 Aggregation Benchmarks . 85
7.4.5 Join Benchmarks . 86

7.5 Summary . 87

8 KERRAS: COLUMN-ORIENTED WIDE TABLE PROCESSING ON FPGAS 89

8.1 The Scope of Database System Accelerators 90

8.2 Related Work . 91

8.3 Key-Reduce Radix Sort (KeRRaS) . 92
8.3.1 Time Complexity . 95
8.3.2 Space Complexity (Memory Utilization) 95
8.3.3 Discussion and Optimizations . 95

8.4 Architecture . 96
8.4.1 MSM . 97
8.4.2 MSMK: Extending MSM with KeRRaS 97
8.4.3 Payload, Aggregation and Join Processing 101
8.4.4 Limitations . 102

8.5 Experiments . 102
8.5.1 Experimental Setup . 102
8.5.2 Datasets . 103
8.5.3 MSMK vs. MSM . 104
8.5.4 Payload-Less Benchmarks . 104
8.5.5 Payload-Based Benchmarks . 106
8.5.6 Flexibility . 107

8.6 Summary . 108

CONTENTS 9

9 A STUDY OF EARLY AGGREGATION IN DATABASE QUERY PROCESSING ON
FPGAS 109

9.1 Early Aggregation . 110

9.2 Background & Related Work . 111
9.2.1 Sort-Based Early Aggregation . 112
9.2.2 Cache-Based Early Aggregation 112

9.3 Simulations . 114
9.3.1 Datasets . 114
9.3.2 Metrics . 115
9.3.3 Sort-Based Versus Cache-Based Early Aggregation 115
9.3.4 Comparison of Set-Associative Caches 116
9.3.5 Comparison of Cache Structures 117
9.3.6 Comparison of Replacement Policies 119
9.3.7 Cache Selection Methodology . 120

9.4 Cache System Architecture . 121
9.4.1 Window Aggregator . 122
9.4.2 Compressor & Hasher . 123
9.4.3 Collision Detector . 123
9.4.4 Collision Resolver . 124
9.4.5 Cache . 124

9.5 Experiments . 125
9.5.1 Experimental Setup . 126
9.5.2 Resource Utilization and Parameter Tuning 127
9.5.3 Datasets . 127
9.5.4 Benchmarks on Synthetic Data . 128
9.5.5 Benchmarks on Real Data . 129

9.6 Summary . 129

10THE FULL PICTURE 131

10.1 System Architecture . 132

10.2 Benchmarks . 133

10.3 Meeting the Objectives . 135

III Conclusion 137

11SUMMARY AND OUTLOOK ON FUTURE RESEARCH 139

11.1 Summary . 140

11.2 Future Work . 141

BIBLIOGRAPHY 145

LIST OF FIGURES 165

LIST OF TABLES 169

10 CONTENTS

AKNOWLEDGMENTS

I would like to express my gratitude to my academic supervisors, Wolfgang Lehner and
Akash Kumar, for their insightful guidance, critiques, and support throughout my the-
sis. I am also thankful to my industry supervisors, Norman May and Christian Färber,
whose technical counsel and recommendations have been instrumental in shaping my
research. My appreciation also extends to Jürgen Teich for his thorough examination of
my work. Additionally, I would like to recognize the support provided by all members of
my family during my doctoral studies. Lastly, I would like to acknowledge my use of the
AI tool ChatGPT for its paraphrasing abilities, which helped to enhance the conciseness
and readability of this manuscript.

Mehdi Moghaddamfar
April 28, 2023

11

12 CONTENTS

Part I

Database Systems & FPGAs

13

1
INTRODUCTION

1.1 Databases & the Importance of Perfor-
mance

1.2 Accelerators & FPGAs

1.3 Requirements

1.4 Outline & Summary of Contributions

1.1 DATABASES & THE IMPORTANCE OF PERFORMANCE

Databases are pillars of the modern society. Almost every online activity including
searching the web, accessing social media, checking the weather, and banking uses
databases to serve up information. Moreover, data gathered in most research and inves-
tigations such as genome sequencing, particle studies, and political polls are all stored
in databases [GUW09]. Nowadays, databases commonly hold terabytes if not petabytes
of data and are stored in a distributed manner [TSJ+10, CER18, MK19]. A (relational)
database is a collection of tables.

A database management system (DBMS) or more colloquially a "database system" is a tool
used to create, update, and analyze a database efficiently [GUW09]. In essence, it can
execute queries on a database. Database systems allow us to maintain and utilize large
volumes of data, far faster than a human ever could. In fact, performance is one of the
key reasons behind the invention of database systems [Dat03, RG03].

With large volumes of data acquired and processed every day and with fast data-driven
decision-making being a competitive advantage for most businesses, it is crucial to con-
sider and improve the performance of database systems as parts of business intelligence
solutions [CDN11]. Database system performance also plays an important role in the be-
haviour of the business’ customers. For instance, the users of a website expect a certain
latency between the click of a button and when they receive a response from the website.
An experiment run by Bing showed that inserting a delay of 2000 ms when responding
to a search query drops user satisfaction by 3.8% and revenue/user by 4.3% [SB09]. A
separate study by Google saw a decrease in the number of searches by users submitted
to longer search delays, weeks after the end of a similar experiment [Bru09]. The results
were so negative that Google ended the experiment prematurely [HP17]. Furthermore,
the large number of active users on many data-based applications (e.g., social media,
maps, etc. [Wik22f]) requires their database systems to process multiple queries at the
same time and quickly. In a nutshell, high and improving database system performance
is of critical importance for both businesses and their customers.

1.2 ACCELERATORS & FPGAS

In 1965, Gordon E. Moore posited that the number of components per integrated circuit
(IC) would roughly double every year for the next 10 years [Moo98]. A decade later,
the law was revised. The now called Moore’s Law observes that the maximum number
of transistors in a dense integrated circuit doubles every two years [HP17]. The increase
in the number of transistors is typically accompanied by a decrease in their (feature)
size, allowing higher clock frequencies to be achieved. The two factors allowed ICs to
accommodate more and faster circuits. The law can be observed across generations of
Intel CPUs, shown in Figure 1.1. A slowdown of Moore’s law, in the frequency domain,
can be observed around the years 2000 − 2005. Before the slowdown, a database system
could run faster by simply updating the server’s CPU once every few years. After the
slowdown, new performance-improving techniques needed to be employed.

Nowadays, most hardware-based acceleration strategies involve the following de-
vices [AAA+22]:

• Multicore CPUs: IC resources (transistors, SRAM, etc.) are used to implement many
cores, large caches, and single instruction multiple data (SIMD) execution units.

16 Chapter 1 Introduction

1970 1980 1990 2000 2010 2020
Year

10
1

10
0

10
1

10
2

10
3

C
lo

ck
 F

re
qu

en
cy

 [K
H

z]

Figure 1.1: The frequency of Intel CPUs as a function of their release year. The data in
this graph is sourced from the Stanford CPU DB platform [DKM+12, Gro16].

• Graphics Processing Units (GPUs): IC resources are used to implement as many
cores (with deep pipelines) as possible, with relatively small caches, and often high-
bandwidth memories.

• Field-Programmable Gate Arrays (FPGAs): IC resources are used to implement re-
configurable logic, memory, and interconnect modules that can be programmed to
"mimic a circuit", executing a specific functionality.

Starting from multicore CPUs down towards FPGAs, these devices gain in performance
(and power efficiency) by sacrificing generality and making design and programming
more difficult. We cite notable database system acceleration research for all 3 cate-
gories of devices in Chapter 4. Note that as the most repetitive and expensive task of
a database system is query execution [HAMS08], the terms "database system acceler-
ation", "database query acceleration", or simply "database acceleration" are often used
interchangeably.

In this thesis, we focus on FPGA-based database system acceleration. Indeed, now more
than ever, FPGA technology is providing us with efficient and practical platforms for
query processing:

• Large amount of resources: Thanks to advances in FPGA technology, modern FP-
GAs contain enough logic and memory resources to implement entire system-on-
chips (SoCs) [Tri15, GK19, Bro96]. Database query acceleration requires these re-
sources to process the various operators a query may contain, and to serve multiple
clients simultaneously.

• Advanced memory and communication systems: FPGA cards are providing in-
creasingly larger and faster memories [Cor21b, Cor19b, WZTD19, DSB19, KHD+20].
FPGA-CPU bandwidth has also been improving, allowing faster transfers of data
between CPU RAM and FPGA memory [FMH+20]. Memory-intensive database
system workloads can greatly benefit from these improvements and innovations.

• Improved programming methodologies: FPGA programming requires deep
knowledge of digital design and hardware description languages (HDLs) such as
Verilog [IEE18] and VHDL [IEE19]. This has been a major obstacle in their adoption
by software developers. High-level synthesis (HLS) tools designed by major FPGA
vendors (e.g., OpenCL by Intel) allow developers to implement their FPGA circuits

1.2 Accelerators & FPGAs 17

using more familiar languages such as C/C++ [Int18a, Xil21]. Modern HDLs such
as Chisel [BVR+12] provide advanced circuit generation capabilities enabling high
compile-time flexibility for customizing an accelerator to the needs of a workload
and for the FPGA platform it will run on.

• Availability in the cloud: FPGAs are now both present [AWS17, Azu22, Clo21,
SFJ+19] and being used [KS16, MA18, KMK+19] in the cloud. This combined with
the popularity of databases in the cloud [AG12, Sak14, Wik22b] presents a perfect
acceleration opportunity. For instance, Amazon Web Services (AWS) uses FPGAs to
boost the performance of some analytical queries [Bar21].

• Energy efficiency: FPGAs typically achieve higher energy efficiency compared to
general-purpose hardware [NMG+15, CSPJ03].

In summary, thanks to their architecture, widespread availability, and improved pro-
grammability FPGAs present great opportunities to get around the slowdown of Moore’s
law. FPGAs and their acceleration capabilities are discussed in length in Chapter 3.

1.3 REQUIREMENTS

Database queries are typically run by executing a set of operators in a specific order.
Database system acceleration often boils down to reducing the execution time of those
operators. There are a few dozen operators supported by most database systems. Un-
fortunately, given the application-specific nature of FPGA designs it is impractical, if not
impossible, to develop an FPGA-based database system for accelerating all those opera-
tors, efficiently and within a 3-year PhD thesis period.

To help narrow down our research, we turned to our "stakeholders". Indeed, our research
is the product of a collaboration between SAP and Intel. SAP’s high-performance analytic
appliance (SAP HANA) is a database system that loads its data into main memory for
processing, instead of keeping it on disk [FML+12, FCP+11, SE22]. The goal of the joint
SAP-Intel effort is to accelerate in-memory database systems such as SAP HANA. This
leads us to the following requirements, and eventual goals:

1. SAP HANA is a database solution, used by many SAP customers working in vari-
ous domains. To reach out to a majority of those customers, we want our platform
to support as many database operators as possible, and be extensible enough to
support more operators in the future.

2. The primary goal of our research is acceleration. We must focus on accelerating
the database operators that are both popular (i.e., frequently used in queries) and
computationally expensive to execute.

3. SAP customers might have different types of FPGAs, with various amounts of re-
sources. We must ensure our acceleration architecture is flexible enough that it can
be deployed on various FPGA hardware with minimum effort.

4. As our goal is to accelerate in-memory database systems, we must design an accel-
eration platform suitable for in-memory processing. Chapters 4 and 5 will expand
more on this point.

18 Chapter 1 Introduction

5. Modern database systems are multi-client, i.e., they can process multiple queries at
the same time. This may seem like a hard-to-satisfy requirement but is a blessing
in disguise. Indeed, we may accelerate a database system by making both single
queries run faster and multiple queries run in parallel.

While there is a large body of work on database system acceleration on FP-
GAs [FMH+20], most of it focuses on the acceleration of one or two operators, on a
limited range of datasets, and for single-client setups. Our unique set of requirements
leads us to contributions and innovations beyond those proposed in past research.

1.4 OUTLINE & SUMMARY OF CONTRIBUTIONS

This thesis is divided into 3 parts. Part I describes past work and motivates our research.
In Chapter 2, we describe databases, queries, and operators in detail. We then classify
popular core database operators into 2 categories: streaming and pipeline-breaking. The
more complex pipeline-breaking operators become the focus of our acceleration efforts.
A database systems expert may skip this chapter.

Chapter 3 is a primer on FPGAs. We start by describing the components of an FPGA, how
to design and program for FPGAs, and the structure of a typical FPGA card. We then
explain through an example the advantages of using FPGAs; before, finally outlining
some of the major challenges in doing so. An FPGA developer may skip this chapter.

Chapter 4 surveys related work on database system acceleration on FPGAs. Given the
large body of work in the domain, we concentrate on past work on processing com-
plex pipeline-breaking database operators. We identify and highlight the most impor-
tant characteristics differentiating current accelerators. They help orient us in our own
research described next.

Part II of the thesis contains our major contributions. In Chapter 5, we convert our ac-
celerator requirements defined in Section 1.3 into concrete goals and objectives. We then
present the outline of an acceleration platform conforming to those goals, leaving the fol-
lowing chapters to fill in the specifics. The content of these chapters was published at
major research venues.

A major decision when designing FPGA accelerators for database systems, traditionally
built by software developers, is the choice of the programming methodology. We present
a comparative study of HLS and HDLs for FPGA programming in Chapter 6. More
specifically, we compare the performance, resource utilization, and required develop-
ment effort of OpenCL and VHDL implementations of important algorithms in database
query processing. We come to the conclusion that in most cases OpenCL is less efficient
than VHDL in regard to both performance and resource utilization, while requiring the
same amount of development time. Although a hybrid HLS-HDL implementation could
offer the best of both words in some cases, a full HDL implementation is a better fit for
performance-critical applications. In the same chapter, we also present a novel heapsort
algorithm that eliminates data hazards (or dependencies) while traversing the heap, re-
sulting in excellent performance characteristics. The algorithm is ultimately used in our
architecture in Chapter 9.

In Chapter 7, we lay the foundation for our resource-efficient, high-performance sort-
based query acceleration platform called morphing sort-merge (MSM). MSM achieves
resource efficiency by reusing its dedicated FPGA resources to support 3 major database

1.4 Outline & Summary of Contributions 19

operators through runtime configurability. There, we experiment with treap-based sort-
ing instead of heapsort. Treaps are randomized data structures that can both sort and
partially aggregate database rows. We propose novel treap implementation techniques,
namely feedback, prefetching, and parallel IO to achieve high performance. MSM
achieves efficient RAM bandwidth utilization and throughput speedups of up to 28×
compared to MonetDB, a multi-client, multi-threaded, state-of-the-art database system.

In Chapter 8, we transform our row-oriented database accelerator, MSM, into a column-
oriented accelerator which we name MSMK. In a nutshell, column-oriented databases
store tables one column at a time, whereas row-oriented databases store entire rows one
after another. The column-oriented MSMK offers 3 key advantages. First, the accelerator
now also supports projections, a streaming operator used in most database queries. Sec-
ond, the platform can now process tables that are wider than its data path width. Indeed,
only the columns needed in the query will be fetched and processed by the acceleration
pipeline. Finally, queries involving more columns than the data path can accommodate
can be processed using KeRRaS, our novel algorithm capable of handling arbitrarily wide
tables in multiple iterations. Our experiments show that MSMK behaves similarly to
MSM on narrow tables, and scales well as the number of columns increases.

Chapter 9 focuses on early aggregation, a technique used to improve the performance
and memory utilization of the aggregation operator. We start by comparing existing
early aggregation algorithms using accurate simulations. Our findings lead us to set-
associative caches with a low inter-reference recency set (LIRS) replacement policy that
exhibit both great performance and modest implementation complexity. We then present
a novel scalable architecture for implementing set-associative caches. Integrating caches
into MSMK, we name the updated platform CbMSMK. Benchmarks of CbMSMK demon-
strate speedups of up to 3× for end-to-end aggregation compared to MSMK.

Chapter 10 contains a detailed summary of our entire database acceleration platform. We
also present benchmarks comparing the performance of our platform against MonetDB
for both single-operator and full TPC-H query execution. We observe that our accelerator
performs either as good as, or much better than the state-of-the-art in software. More im-
portantly, it is capable of handling complex queries, without the need for the CPU to step
in and finalize execution. Indeed, we manage to tackle one of the greatest problems with
accelerators: data movement. Thanks to the capabilities of our acceleration platform, the
FPGA can now own the data, keep it, and use it while only transferring the results of a
query to the CPU.

Part III concludes our work. Chapter 11 begins with a summary of the thesis and ends
with a set of possible directions for future research in our domain.

20 Chapter 1 Introduction

2
BACKGROUND ON DATABASE SYSTEMS

2.1 Databases

2.2 Database Operators

2.3 Database Queries

2.4 Impact of Acceleration

In this chapter, we briefly explore the world of relational databases. We start by defining
databases and present two common ways their data can be stored in memory or on disk.
We then explore core database operators, the building blocks of many database queries.
We further classify these operators into two major categories according to their complex-
ity. Next, queries and their transformation into query execution plans are defined. We
end the chapter with a discussion on Amdahl’s law and its implications on our research.

2.1 DATABASES

The father of (relational) databases, Edgar F. Codd, defines a relation as a set of n-tuples.
Each n-tuple has its first element drawn from a set S1, second element from a set S2, and
so on. The sets S1, ..., Sn are arbitrary and do not have to be distinct [Cod69].

Tables are perhaps a more modern interpretation of relations. A table is a finite (ordered)
stream of rows that follow the same schema, i.e., have the same number and type of
columns [GUW09]. A cell is the intersection of a row and a column. A simple database
table representing a few students enrolled in a test is shown in Figure 2.1. It consists of 4
columns and 5 rows. The names of the columns (also called attributes) are shown on the
top of the table. Each column has its own data type. For instance, the name column is of
type string whereas the score column holds decimal values. The table is sorted on the sid
(student ID) column, but this does not have to be the case.

sid name age score
0 John 21 12.4
1 Liam 32 19.2
2 Elena 25 8.0
3 Ray 28 12.4
4 Elisabeth 24 17

Table 2.1: An example of a table in a relational database.

It shall be noted that, by definition, a table may have duplicate rows whereas a relation
cannot have duplicate tuples. Most database systems allow duplicate rows if not explic-
itly restricted; thus, the table model seems more accurate. A (relational) database is simply
a collection of tables.

2.1.1 Storage Model

There are two prominent methods for storing the tables of a database:

• Row storage: Row-oriented database systems (a.k.a. row-stores) store the rows of a
table one after another in the memory or on disk.

• Column(ar) storage: Column-oriented database systems (a.k.a. column-stores) store
the columns of a table separately, each in their own contiguous buffer in the memory
or on disk.

22 Chapter 2 Background on Database Systems

In a comparison between the two storage models, column storage has 2 major advan-
tages. First, it allows a database system to access only the columns involved in a query,
effectively increasing its memory bandwidth efficiency. Given the memory-bound nature
of many analytical database workloads, this often results in much higher performance.
Second, since the data in a column are more likely to be "close together" in value, column
storage may result in higher compression factors further decreasing memory bandwidth
requirements. Row-stores, on the other hand, may perform better on update queries,
because inserting, updating, or deleting a row of a column-store database requires a sep-
arate memory access to each column (as they are stored separately). The row-store may
only require a single memory access to update a row [AMH08, SAB+05].

To conclude, column-stores are optimal for processing analytical queries used in busi-
ness intelligence, data warehouses, and decision support applications; which hap-
pen to be the target of a lot of modern database systems and accelerators. Indeed,
most high-performance database systems (e.g., MonetDB [IGN+12], HyPer [FfI22],
Hyrise [Ins22], and Amazon Redshift [Inc22]) are column-stores, with some others (e.g.,
SAP HANA [SE17], Oracle DB [Cor18b], Microsoft SQL Server [Mic22]) supporting both
row and column storage.

2.1.2 Storage Medium

Database systems can be further categorized based on the medium they use to store the
database. In-memory database systems store the database in physical (main) memory. In
disk-oriented database systems, the database resides on disk. In both cases, the database
system may have copies of the data in other mediums (e.g., backup on disk, cache in
main memory), but the main copy resides in the specified medium [GS92, Pet19]. More
specifically, in-memory database systems load the working set of tables/columns into
memory while disk-oriented database systems chunk rows or columns into pages and
use a page buffer to load the accessed pages into memory.

In-memory database systems are typically faster than disk-oriented database systems.
This is thanks to the higher performance of the main memory compared to the disk and
the fact that database query execution can be both simpler and more optimal (e.g., re-
quire fewer CPU instructions) on data already in the main memory [Wik22c]. Notable
in-memory database systems include SAP HANA [PRE21], HyPer [FfI22], Hyrise [Ins22],
and MonetDB [Tea22a]. The latter uses both the swap space and memory-mapped files to
deal with data exceeding the available physical memory [Tea19], making it a hybrid so-
lution. Prominent disk-oriented database systems include Amazon Redshift [GAT+15],
Impala [KBB+15], and PostgreSQL [Tea22b].

2.2 DATABASE OPERATORS

Database queries are composed using a collection of operators. We take a bottom-up
approach by first describing the latter, before moving onto the former in Section 2.3. In
simple terms, a database operator is a function of one or more tables, and produces a new
table itself [RG03]. The most popular database operators are projection, selection, sort,
aggregation, and equi-join. We describe these operators using tables R and S shown in
Figures 2.1(a) and 2.1(b) as input.

2.2 Database Operators 23

k1 k2 v1 v2

21 34 4 3
45 11 3 1
21 34 1 5
45 11 5 6

(a) Table R

k1 k2 v1 v2

88 95 7 1
47 71 2 3
21 34 9 5
88 12 5 1

(b) Table S

k1 k2

21 34
45 11
21 34
45 11

(c) Project
k1,k2

(R)

k1 k2 v1 v2

88 95 7 1
47 71 2 3
(d) Filterk2>40&v1<10(S)

k1 k2 v1 v2

21 34 9 5
47 71 2 3
88 12 5 1
88 95 7 1

(e) Sortk1,k2 (S)

k1 k2 v1 v2

21 34 4 3
21 34 1 5
45 11 3 1
45 11 5 6

(f) Grouping R based
on k1 and k2

k1 k2 sum(v1) max(v2)
21 34 5 5
45 11 8 6
(g) Aggr

k1,k2,sum(v1),max(v2)(R)

R.k1 R.k2 S.k1 S.k2 R.v1 R.v2 S.v1 S.v2

21 34 21 34 4 3 9 5
21 34 21 34 1 5 9 5

(h) Joink1,k2 (R, S)

Figure 2.1: Tables R and S and examples of database operators applied to them: (a) Table
R, (b) Table S, (c) Projection operator, (d) Filter/Selection operator, (e) Sort operator,
(f) Grouping step used in the aggregation operator, (g) Aggregation operator, (h) Join
operator.

2.2.1 Projection

The projection operator applied to a table T produces a new table with a select set of
columns from T [RG03]. We denote this operation ProjectC(T) where C is the sequence
of "surviving" columns. The result of Projectk1,k2

(R) is shown in Figure 2.1(c).

2.2.2 Filter

The filter operator applied to a table T produces a new table composed of the rows of
T that satisfy a certain predicate P . We denote this operation FilterP (T). The filter
operator is also commonly referred to as the selection operator [RG03]. The result of
Filterk2>40&v1<10(S) is shown in Figure 2.1(d).

Before we describe the remaining operators, let us define some more table terminology.
For many operators, the columns of a table must be partitioned into key columns and
value columns. The value columns are together called the payload. The partitioning is done

24 Chapter 2 Background on Database Systems

based on the parameters of the operator itself and does not affect how the table is stored.
Note that contrary to the traditional definition of key columns, here, we do not require
them to be unique for each row.

2.2.3 Sort

The sort operator sorts a table based on one or more of its columns, called the key columns
[GUW09]. We denote this operation SortC(T) where C is a sequence of key columns.
The result of Sortk1,k2(S) is shown in Figure 2.1(e). In our example k1 and k2 are the
key columns. Concatenated together, k1k2 defines a sort key for each row. For instance,
assuming k1 and k2 are integer columns with values ranging from 0 to 999, the composite
key for the first row of table S is 088095. The non-key columns v1 and v2 constitute the
value columns or the payload. Note that the database sort operator does not require
stable sorting.

2.2.4 Aggregation

The aggregation operator starts by grouping the rows of a table T based on one or more of
its columns, called the grouping key columns or key columns for short. Essentially, rows
with the same values in their key columns belong to the same group. The value columns
(i.e., the non-key columns) of the rows in the same group are then accumulated using a
function [GUW09, CR07]. We denote this operation AggrC,V (T) where C is a set of key
columns and V a set of functions performed on the value columns. The two steps of the
operation executing Aggrk1,k2,sum(v1),max(v2)(R) are shown in Figure 2.1. First, rows with
the same value in both of their k1 and k2 columns are grouped together, as shown in
Figure 2.1(f). Next, rows in the same group are accumulated using the SUM() function
for column v1 and the MAX() function for column v2. The final result of the aggregation
operator is shown in Figure 2.1(g).

Functions used in aggregation are either algebraic or holistic [GCB+97]. For algebraic ag-
gregation functions, a fixed-size result can represent a sub-aggregate. Therefore, they can
typically be computed incrementally, i.e., a new row belonging to a group can immedi-
ately be accumulated into that group without requiring additional storage space for the
group. SUM(), MIN(), MAX(), and AVG() are all algebraic aggregation functions. How-
ever, in the case of holistic aggregation functions, there is no constant bound on the size of
the storage needed to summarize a sub-aggregate. MEDIAN() is a holistic aggregation
function. If an aggregation operator involves only algebraic functions, the grouping and
accumulation steps can be (and typically are) combined in order to reach higher perfor-
mance.

2.2.5 Join

The equi-join operator pairs rows from two tables T1 and T2 that agree in a common set of
columns, called the key columns [GUW09]. We denote this operation JoinC(T1, T2) where
C is a set of columns present in both T1 and T2. The result of Joink1,k2(R, S) is shown in
Figure 2.1(h). The first row of the result is made by pairing row 1 of table R and row 3 of
table S as they both have the same key (k1 = 21, k2 = 34). The second row of the result is
similarly obtained by pairing row 3 of table R and row 3 of table S. Each row of the result
contains both sets of key and payload columns of each of the pairing rows. We use the

2.2 Database Operators 25

notation T.x to refer to column x in table T . Given that both sets of key columns in the
result are equal (in equi-joins), a projection operator typically follows the join (implicitly)
in order to get rid of the redundancy. The rows involved in a pairing are said to match
and sometimes called the matching rows.

We define an M : N equi-join with M, N ∈ N as an equi-join where the size of the cross
product of the matching rows from both input tables is upper bounded by M × N , with
at most M rows from the first table and N rows from the second table participating in the
cross product. We use the term join to refer to equi-joins in the remainder of this thesis.

We refer the interested reader to [GUW09, Dat03, RG03] for more information on
database operators and their formal definitions based on relational algebra. These ref-
erences also explain the material in the remainder of this chapter in greater detail and
with more examples.

2.2.6 Operator Classification

Database operators can be classified based on their complexity and execution model as
follows [Gra93]:

• Streaming operators: The operators belonging to this category can be executed on
a continuous stream of rows on the fly, i.e., rows do not need to be buffered or
materialized from when they are first read until the output is produced. Streaming
operators can be easily pipelined: load a row, apply operator 1, apply operator 2, ...,
apply operator n, store result. Examples include the projection and filter operators.

• Pipeline-breaking operators: The operators belonging to this category need to read
at least one of their input tables completely before being able to produce an output.
The input tables(s) that need to be consumed completely "break the pipeline". These
operators often perform multiple passes over their input (e.g., for sorting) or the
insertion and probing of their input in special data structures such as hash tables or
binary search trees. Examples include the sort, aggregation, and join operators.

2.3 DATABASE QUERIES

Database systems allow users to query and modify the data using a query language. A
query is a question about the data. Structured Query Language (SQL) is the most popular
query language for relational databases [GUW09].

A simple SQL query is shown in Figure 2.2. Let us briefly describe this query and how
it relates to the database operators defined in Section 2.2. Line 2 of the query indicates
that the inputs to this query are tables R and S (defined in Figures 2.1(a) and 2.1(b)). We
use the notation T.x to refer to column x in table T or a table derived from T . Line 3
defines a filter predicate on table R. We name the table resulting from this operation F :=
Filterv1<5(R). Line 4 defines equality predicates for joining tables S and F . We call the
result J := Joink1,k2(S, F). Line 1 requires the result to contain 3 columns R.k1, R.k2, and
SUM(R.v2). We therefore need to remove all the other columns (S.k1, S.k2, R.v1, S.v1,
and S.v2) obtained after the join. The result is named P := ProjectR.k1,R.k2,R.v2

(J). Lines 5
and 1 together define an aggregation operator using k1 and k2 as grouping key columns,

26 Chapter 2 Background on Database Systems

1 SELECT R.k_1, R.k_2, SUM(R.v_2)
2 FROM R, S
3 WHERE R.v_1 < 5 AND
4 R.k_1 = S.k_1 AND R.k_2 = S.k_2
5 GROUP BY R.k_1, R.k_2

Figure 2.2: Example SQL Query on tables R and S from Figure 2.1.

Figure 2.3: Logical query plan of the SQL query in Figure 2.2.

and R.v2 as a single value column accumulated using the SUM() function. We call the
resulting table A := AggrR.k1,R.k2,SUM(R.v2)(P). Table A is the final result of the query.

When a query is submitted to a database system, it is parsed and then transformed into
a logical query plan which is an execution tree of database operators. The logical query
plan of our running example is shown in Figure 2.3. The nodes of the tree are database
operators. The leaves are the input tables. The logical query plan typically goes through
a series of optimization steps transforming it (e.g., by removing redundant joins) into a
more efficient execution tree [RG03].

The optimized logical query plan is then converted into a physical query plan by assigning
to each one or combination of its nodes one or more algorithm(s) that could be used
to evaluate the corresponding database operator(s). Indeed, there are multiple ways
to evaluate a given logical query plan and this step selects an optimal implementa-
tion [Gra93, GUW09]. We describe alternative methods to implement pipeline-breaking
database operators later in Chapter 4.

Once the physical query plan is generated, the execution engine executes it in order from
the leaves up to the root [GUW09]. In push-based query processing, each operator gen-
erates a stream of rows with a common schema that is fed into the parent operator. The
rows produced by the root operator constitute the result of the entire query.

2.4 IMPACT OF ACCELERATION

In general, database acceleration targets the execution engine of a database system. In-
deed, for large databases that benefit the most from acceleration, the cost of executing

2.4 Impact of Acceleration 27

a physical query plan dwarfs that of other processing stages such as parsing and plan
generation. Therefore, most accelerators propose a set of new and improved operator
implementations [FMH+20, OLG+05] with the aim of reducing the cost (time, memory
usage, etc.) of executing the physical query plan.

Based on their goals and requirements, database system architects often focus their ef-
forts on the acceleration of a specific set of operators. Given the performance-oriented
nature of our research, we assign higher priorities to operators whose acceleration has the
highest impact on a query engine’s overall performance. To this end, we use Amdahl’s
law [Amd67, Red11]: "The overall performance improvement gained by optimizing a
single part of a system is limited by the fraction of time that the improved part is actually
used". In database-friendly terms, higher query execution speedup is achieved by accel-
erating the most time-consuming operators in the query. We must therefore prioritize
popular operators that make up a large part of the execution time of queries. Pipeline-
breaking operators fit the bill. Indeed, pipeline-breaking operators are used in most an-
alytical queries. Moreover, compared to streaming operators, they have a more compli-
cated and compute- and memory-intensive execution flow resulting in higher execution
times. In fact, they typically constitute most of the execution time of a query [DBRU20].
Based on these facts, we orient our research towards the acceleration of the 3 impor-
tant pipeline-breaking operators discussed in this chapter, namely sort, aggregation, and
join. Even though our acceleration platform also supports projections and static filtering,
they remain secondary to our work.

28 Chapter 2 Background on Database Systems

3
BACKGROUND ON FPGAS

3.1 FPGA

3.2 FPGA Design Flow

3.3 Implementation Quality Metrics

3.4 FPGA Cards

3.5 Benefits of Using FPGAs

3.6 Challenges of Using FPGAs

In this chapter we present an overview of FPGA technology. We start by describing
the structure of FPGAs and how they can be programmed to run digital circuits. We
then present the typical FPGA design flow with a brief summary of FPGA compila-
tion/synthesis. FPGA cards are described next. We finish this chapter with a discussion
on both the advantages and the challenges of using FPGAs.

3.1 FPGA

Field-programmable gate arrays (FPGAs) are computer chips with reconfigurable resources
allowing them to run various circuits after production. At its core, an FPGA is a grid of
logic resources (logic elements), block RAMs (BRAMs), digital signal processors (DSPs),
and input/output (IO) elements connected through a programmable interconnect [Int22].
Figure 3.1 depicts the simplified structure of an FPGA.

...

...

...

Logic Element BRAM DSP IO ElementLegend:

Figure 3.1: Simplified Structure of an FPGA.

3.1.1 Logic Element

Logic resources are composed of lookup tables (LUTs), flip-flops, and some basic logic
circuits such as multiplexers. LUTs are small SRAM-based memories whose contents
can be (re-)configured [TW13]. They are arguably the most important building blocks
of FPGAs, allowing them to mimic logic gates in order to run (stateless) combinational
circuits. A flip-flop is a bistable circuit used to store a single bit of data. A collection of flip-
flops is often called a register [HH21]. They enable FPGAs to run (state-full) sequential
circuits as well.

Logic resources are typically organized as logic elements shown in Figure 3.2 [Cor22d].
On the left-hand side, a 2-input LUT accepts two address bits as input and returns the
contents of the memory at the specified address as its output. The numbers inside the
LUT are in binary format. The output of the lookup table is connected to a flip-flop. A
multiplexer (Mux) then chooses either the output of the LUT, or the (delayed) output of
the flip-flop as the output of the logic element. The contents of the LUT and the configu-
ration of the flip-flop (i.e., when to store its input as its output) and the multiplexer (i.e.,

30 Chapter 3 Background on FPGAs

LUT
Address Content

00 0
01 0
10 0
11 0

2
Address

1
FF

Mux

Figure 3.2: Simplified structure of a logic element.

which input to forward as its output) are all programmable, allowing the logic cell to run
a simple logic circuit.

Let us illustrate the inner workings of a logic element using an example. Consider a
single-bit half adder with input bits a and b, and output bit y. The truth table for the
adder is shown in Figure 3.3(a). A truth table defines the output of a function, for every
combination of its inputs. For instance, the second row of the truth table indicates that
adding a = 0 and b = 1 results in 1.

The adder can be represented using a XOR gate shown in Figure 3.3(b) [Wak21]. An
application-specific integrated circuit (ASIC) would typically implement the XOR gate
using complementary metal-oxide-semiconductor (CMOS) transistors. Once the transis-
tors are printed onto the IC substrate, the ASIC will only be able to perform single-bit
addition.

The FPGA-based implementation is shown in Figure 3.3(c). The LUT content is pro-
grammed with values [0, 1, 1, 0]. Note that the address column is shown for the sake of
readability and does not need to be programmed into the LUT. The input address bits of
the truth table are connected to input ports a and b. The output of the LUT is connected
through the multiplexer to the output port y, effectively bypassing the flip-flop. Indeed,
given the combinational nature of our single-bit adder, the flip-flop is not needed. Let
us use test vector a = 0, b = 1 to explain how the LUT works. In this scenario, the ad-
dress input to the LUT is ab = 01. Note that we use the over-line notation to indicate
concatenation, rather than Boolean negation. The LUT retrieves and outputs the content
at address 01, which is 1. The value 1 is then forwarded all the way to the output of the
logic element. The acute reader may have noticed that the contents of the LUT are simi-
lar to those in the truth table. Producing the truth table of a circuit is a common way to
figure out the configuration bits of a LUT equivalent to that circuit. Note that contrary
to an ASIC implementation, the contents of the LUT (and the configuration of the Mux)
can be changed at a later time allowing the logic element and, by extension, the FPGA to
execute a new functionality.

a b y

0 0 0
0 1 1
1 0 1
1 1 0

(a) Truth table

a
b

y

(b) Gate repre-
sentation

LUT
Address Content

00 0
01 1
10 1
11 0

1
FF

a

b

y

(c) Logic element implementation

Figure 3.3: Alternative representations and the FPGA implementation of a single-bit half
adder y = a + b: (a) Truth table, (b) XOR gate representation which can be implemented
on ASICs using CMOS transistors, (c) FPGA implementation using a logic element.

3.1 FPGA 31

In order to keep up with application demands, modern FPGAs have more sophisticated
logic resources to handle complex circuits. Intel® Stratix® 10 FPGAs used in our bench-
marks in this thesis have adaptive logic module (ALMs) each containing two adaptive
LUTs (ALUTs) and 4 registers. An ALM can be used in different modes including one
where it runs 2 separate 4-input circuits (like having two 4-input LUTs) and another
where it runs one large 8-input circuit [Cor22a]. This amount of flexibility presents both
performance and resource optimization opportunities for FPGA tools. Our Stratix® 10
FPGA, code-named 1SX280HN2F43E2V G from the SX 2800 product line, has 933, 120
ALMs that together with a programmable interconnect (allowing arbitrary connections
between the ALMs) enable it to support relatively large circuits used in data center ap-
plications.

3.1.2 Block RAM (BRAM)

BRAMs are dense blocks of SRAM typically used for storing chunks of data or configu-
ration bits. Somewhat similar to CPU caches, they provide high-throughput, low-latency
access to a small amount of on-chip data. Unlike CPU caches, FPGA BRAMs are fully
configurable. Indeed, FPGAs have many small columns of BRAM that can be accessed in-
dependently or combined to make bigger blocks of memory. As an example, the Stratix®

10 FPGA used in our benchmarks has 11, 721 BRAMs, called M20Ks [Cor18a]. Each M20K
can be configured in depth × width as a 512 × 40, 1024 × 20, or 2048 × 10-bit mem-
ory [Cor22b]. They can of course also be combined to produce deeper and/or wider
memories. The BRAMs on our FPGA can collectively store around 30 MB of data.

A BRAM is accessed using read and write ports. Given an address, a read port can pro-
vide the contents of the BRAM at that address within a fixed (typically) 1 clock cycle
latency. Given an address and a value (called data), a write port will write the value to the
address within a fixed (typically) 1 clock cycle latency. The write port also has a single-bit
(Boolean) enable input indicating when its address and data inputs are valid, otherwise
it would be continuously writing the (potentially garbage) values at those inputs to the
BRAM. BRAMs on modern FPGAs can run at up to hundreds of megahertz with all of
their ports beings used in parallel every clock cycle [TW13].

The BRAMs (i.e., M20Ks) in our Stratix® 10 FPGA support 3 modes of operation [Cor22c]:

• Simple dual-port: The BRAM exposes 1 read port and 1 write port.

• True dual-port: The BRAM exposes 2 read-write ports. A read-write port can be used
to either read or write data, but not both at the same time.

• Simple quad-port: The BRAM exposes 2 read ports and 2 write ports.

For each operating mode, all the ports can be accessed simultaneously. For instance, a
BRAM used in quad-port mode allows 2 separate circuits to both read from and write to
it at the same time, every single clock cycle. Note that when BRAMs are combined, the
resulting larger memory will also support the same operating modes. We commonly use
the expression "X BRAM" (e.g., X = simple dual-port) to refer to a BRAM used in mode X.

Given the reconfigurable nature of FPGAs, the line between memory and logic resources
is blurry. For instance, LUTs in logic elements can be used as fast distributed mem-
ories [TW13]. BRAMs can also be used for computing logic functions of many vari-
ables [WIA14]. Therefore, when describing an implementation, designers typically men-
tion the underlying technology used for memories (e.g., BRAM-based on-chip memory).
If not, "on-chip memory" is often assumed to use BRAM technology.

32 Chapter 3 Background on FPGAs

3.1.3 Digital Signal Processor (DSP)

Although FPGAs’ logic resources can run all types of digital circuits, there are com-
plex yet frequently used circuits that warrant an efficient gate-based implementation.
These are often arithmetic units used in digital signal processing applications such
as fast Fourier transform, convolution, and filtering. Our Stratix® 10 FPGA contains
5, 760 variable-precision DSPs capable of performing fixed- and floating-point arith-
metics [Cor18a, Cor21c].

3.1.4 IO Element

IO elements connect the FPGA to the outside world. They are responsible for providing
a physical link between the circuits running on the FPGA and its pins. Those pins are
used to connect the FPGA to a host server (e.g., through PCIe), DRAM, network, etc.

3.1.5 Programmable Interconnect

The programmable interconnect provides configurable routing connections between the
FPGA resources. It allows the FPGA to run complicated circuits spanning multiple logic
elements, BRAMs, and DSPs. The programmable interconnect consists of a mesh of wire
tracks laid out vertically and horizontally, and connected through switch boxes. FPGA’s
resources are then connected to these routing tracks via connection boxes [FMM12]. This
architecture is shown in Figure 3.4. A programmable connection box can connect the
inputs/output of a logic element to any of its adjacent routing tracks. The red dots in our
figure indicate a connection. A programmable switch box is a crossbar switch, capable
of connecting arbitrary sets of wires that cross it. A red line in the figure is a connection
between two routing tracks.

Logic
Element

Logic
Element

Logic
Element

Logic
Element

Connection Box

Switch Box

Figure 3.4: Simplified structure of an FPGA’s programmable interconnect. Connection
boxes provide configurable routing between the logic elements and the programmable
interconnect. Switch boxes define the topology of the interconnect.

3.2 FPGA DESIGN FLOW

Application design for FPGAs is a semi-automated, multi-step process. It consists of a
front-end where the designer develops and functionally verifies a circuit, and a back-end
transforming the circuit into a bitstream that can be programmed onto an FPGA. The
designer is typically involved in all steps of the process and may need to iterate over
one or a series of steps in order to obtain the desired result. The automated steps of the
design process are performed by computer-aided design (CAD) tools mainly provided
by the FPGA vendors [CCP06]. A typical FPGA design flow is shown in Figure 3.5.

3.2 FPGA Design Flow 33

Specifications

RTL Description

Verification

Synthesis

Mapping

Placement and
Routing

Timing Analysis

Bitstream
Generation

FPGA
Programming

Figure 3.5: The steps in the design process for a digital system on an FPGA.

3.2.1 Specifications

Like most designs, the process starts with a list of well-defined specifications (or "specs"
for short):

• Functional specifications: They define the behavior of the system.

• Performance specifications: They define the target performance of the system. For
instance, a specification may require the design to process 1 database row per clock
cycle.

• Timing specifications: They define the expected frequency of each part of the de-
sign.

• Area specifications: They define the amount of space the design is allowed to oc-
cupy on the target FPGA. This often translates into the amount of resources the
FPGA can allocate to the design.

• IO specifications: They define a mapping between the IO pins of the FPGA and the
inputs and outputs of the circuits running on the FPGA.

Unfortunately, FPGA design is generally not an agile process. A minor change in the spec
might require months of going through the remaining steps of the design. Therefore, it
is crucial for the specifications to be both fully- and well-defined before moving onto the
next step.

3.2.2 RTL Description

Based on the specifications, the design’s (micro)architecture can be developed. Basically,
if the specs are the "what?", the architecture is the "how?". It defines a circuit (often split
into a set of smaller inter-connected circuits) that performs the required functionality
while respecting the constraints defined in the specs.

FPGA CAD tools expect a register-transfer level (RTL) description of the design as input.
RTL is a design abstraction which defines a circuit as a set of registers and how digital
signals are transformed between those registers [Vah10]. There are two common methods
to obtain the RTL description of an architecture: using hardware description languages

34 Chapter 3 Background on FPGAs

(HDLs) or high-level synthesis (HLS). Both methods are described later in this Section.
We provide a comprehensive comparison between the two in Chapter 6.

Along with the RTL description, designers must also produce design constraints based
on the specifications. Timing constraints define the expected frequency of the design. IO
constraints specify the connections between the pins of an FPGA and the inputs and out-
puts of the circuit running on that FPGA. Design constraints are well-defined machine-
readable versions of some of the specifications. FPGA CAD tools optimize their efforts
trying to satisfy these constraints.

RTL from HDLs

HDLs define an architecture using a hierarchy of modules directly implemented at the
RTL abstraction. A module is a circuit with a well-defined interface (i.e., inputs and out-
puts) and a structural or behavioral description:

• Structural description: It provides a description of the module in terms of its con-
stituent modules, and the connections between them.

• Behavioral description: The module is described by defining its behavior using the
RTL abstraction.

In many cases, modules are defined using a combination of the two approaches. Indeed,
even simple modules typically contain some primitive modules (e.g., adders, compara-
tors) that the CAD tools can recognize and automatically implement. However, modules
lower down the hierarchy tend to be mostly behaviorally defined; and those near the top
structurally defined.

Examples of traditional HDLs include Verilog, SystemVerilog [IEE18] and VHDL [IEE19].
They are supported by all major CAD tools for both synthesis and functional verification.

Modern HDLs such as Chisel [BVR+12] introduce years of advances in software engi-
neering (e.g., object-oriented programming, design patterns, etc.) into HDLs. They pro-
vide the designer with advanced circuit generation capabilities and higher flexibility, all
while reducing the design time. These features make it easy to customize an architec-
ture for a specific FPGA and workload. Chisel code is written in the feature-rich Scala
programming language [Com22], and then compiled into Verilog before being fed into
FPGA CAD tools. However, Chisel remains an RTL language as it defines specific hard-
ware constructs (e.g., modules, registers, wires) in Scala that are equivalent to the ones
used in other HDLs. As such, it provides equivalent performance, resource utilization,
and achievable frequency compared to traditional HDLs [ANS+14].

RTL from HLS

HLS tools allow designers to implement an architecture using familiar software program-
ming languages such as C/C++ [Int18a, Xil21] or even Java [Miy16]. HLS tools enable
software developers to develop for FPGAs. They also accelerate hardware development
by allowing designers to use high-level languages instead of an RTL description to both
implement and verify their architectures. HLS tools typically compile the language of
the tool into a traditional RTL language such as Verilog or VHDL. The latter is then fed
into FPGA synthesis tools for further processing [DZS13]. We provide a lot more details
on HLS tools, and in particular Intel® FPGA SDK for OpenCL, in the context of database
system acceleration in Chapter 6.

3.2 FPGA Design Flow 35

3.2.3 Verification

Once a design is running on an FPGA, debugging it involves creating new circuits re-
sponsible for monitoring and probing its internal connections. This can become an ex-
tremely lengthy and tedious task. Hardware designers are therefore highly incentivized
to detect and correct bugs and issues as early in the design process as possible. Verifica-
tion is the process of comparing the behavior of the RTL description of a design, against
a high-level model of the design often derived directly from its specifications [Wak21].
The latter is called the golden reference model.

The process is carried out by a simulator. Given the RTL description of a circuit, a golden
reference model, and a set of test vectors, the simulator drives the inputs of the circuit
and the golden reference model using the test vectors and checks their outputs against
each other [Syn21]. Simulators can be very accurate. For instance, if need be, they can
take into account the electrical properties of an FPGA’s logic and memory resources.

If the simulator detects a bug, the designer must review and revise the RTL description,
moving a step back in the design flow. Otherwise, the synthesis process can begin.

3.2.4 Synthesis, Mapping, Placement, and Routing

Synthesis transforms the RTL description of a circuit into Boolean functions, i.e., generic
gate-level components. Mapping maps those functions onto the resources (logic elements,
BRAMs, DSPs, etc.) of the target FPGA technology, resulting in a technology-specific
circuit. Placement consists of assigning the components of the technology-specific circuit
to the actual physical resources of the FPGA. Routing determines the routes to connect
various components [Chu08].

After synthesis and mapping, the resource and area utilizations of the design can be
roughly estimated. After placement and routing, their exact values will be known. If the
design is larger than expected, the designer might need to go all the way back to the RTL
description step to change the architecture or implementation of the design. If this does
not work, a change in the specifications might be necessary. However sometimes, simply
fine-tuning the tools might solve the problem [HH21]. Design constraints defined during
the RTL description step are used here to guide the tools in their search for an optimal
solution. For instance, a very high target frequency will instruct the tools to maximize
their efforts.

The 4 steps described in this section are often collectively called "FPGA synthesis", "syn-
thesis", or "compilation". Synthesizing large circuits on modern high-performance FP-
GAs can take tens of hours.

3.2.5 Timing Analysis

Timing analysis studies the physical layout of the circuit inside the FPGA in order to deter-
mine its timing properties. The timing properties of a circuit include signal delays through
its paths and the maximum frequency at which it can run. They are compared against
the design’s timing constraints derived from its specifications. In case one or more con-
straints are violated (e.g., the design is too slow), the designer might need to move all the
way back to the RTL description step in order to pipeline or even redesign parts of the
architecture [HH21].

36 Chapter 3 Background on FPGAs

3.2.6 Bitstream Generation and FPGA Programming

Bitstream generation produces a bitstream according to the physical layout of the design
on the FPGA. A bitstream is a programming file that specifies the configuration of the
individual FPGA resources, in order to run the desired circuit. For instance, it defines the
contents of the LUTs, the configuration of the interconnect switch boxes, and the initial
contents of the BRAMs. FPGA programming consists of downloading the bitstream onto
the FPGA. For large FPGAs, this may take seconds to perform [Chu08]. FPGA image is
another common name for a bitstream.

3.3 IMPLEMENTATION QUALITY METRICS

In software design, the quality of an implementation is often measured by its perfor-
mance and memory utilization. These metrics remain valid for FPGA implementations.
In addition, FPGAs bring two more dimensions to quality evaluation:

• Maximum achievable frequency: It indicates the maximum frequency (in MHz) the
design can run at. The frequency of the implementation is typically set to this value
in order to reach maximum performance.

• Resource utilization: This is a measure of the amount of various FPGA resources
used by the implementation. Resource utilization reports vary depending on the
FPGA technology. Intel® Stratix® 10 FPGAs provide logic utilization, BRAM uti-
lization, and DSP utilization values in their reports. The units of measurement are
the number of ALMs, M20Ks, and variable-precision DSPs used by the design, re-
spectively [Cor17].

3.4 FPGA CARDS

FPGAs are computer chips that require a set of peripherals for receiving, processing,
and transmitting data. These peripherals are often placed together with the FPGA on
an FPGA card, board, or development kit. Figure 3.6 shows an example FPGA card.
The FPGA is placed in the center. It is connected to 2 DDR slots, hosting dual in-line
memory modules (DIMMs). The FPGA can access the DRAMs either independently
(as channels 0 and 1) or together using memory interleaving techniques [Wik22d]. We
use the term FPGA RAM to refer to DRAM placed on the FPGA card and directly
connected to the FPGA. The two DDR-T slots enable support for non-volatile (persis-
tent) memory [Cor21a]. The peripheral component interconnect express (PCIe) and ul-
tra path interconnect (UPI) are used to connect the FPGA to other FPGAs or CPU sys-
tems [BAS04, Mul19]. The quad small form-factor pluggable (QSFP) cages are typically
used for connecting the FPGA to a network. These peripherals are not present on all
FPGA cards. The one we use in our benchmarks has a PCIe Gen3 connector to communi-
cate with a host server, and 4 DDR4 slots each supporting 8 GB of DRAM [Cor19a]. There
are various ways to integrate an FPGA card into a server. The server is then called the
host. This is discussed in length in Chapter 4.

3.3 Implementation Quality Metrics 37

FPGA

DDR Channel 0

DDR Channel 1

DDR-T Channel 0

DDR-T Channel 1

UPI 1

QSFP 0

QSFP 1

PCIe

UPI 0

Figure 3.6: Example FPGA card, based on the Intel® Stratix® 10 DX FPGA development
kit [Inc19].

3.5 BENEFITS OF USING FPGAS

The unique design of FPGAs provides them with features missing in traditional CPUs.
They offer designers unique opportunities to accelerate their applications. In this section,
we enumerate a few of these features. We use the example of hash table insertion and
probing to illustrate these features. A hash table is a data structure that stores (key,value)
pairs in its entries called buckets. The hash value of a key determines the bucket to which
it belongs. Hash-tables are commonly used in database systems [GUW09] and database
system accelerators [FMH+20]. In our example, we require the hash table to be stored in
on-chip memory in order to achieve fast insertion and probing performance.

Let us start with the benefits of using BRAMs, a key component of FPGAs:

• Dedicated memory: BRAMs used in an application are entirely dedicated to that
application. In contrast, a CPU cache is shared among applications and runs the
risk of being (partially) flushed at every context switch. In our running example,
BRAMs can be used to store the hash table for fast and exclusive access. Note that
dedicated memories are only beneficial when they are relatively frequently accessed
by the application. In other cases, a shared memory system like the CPU cache may
be a better option.

• Configurable memory: The width and depth of BRAMs can be configured to ex-
actly match the needs of an application. This not only avoids wasting precious
on-chip memory but also enables more meaningful and efficient accesses avoiding
alignment-related issues. In our running example, we can build a BRAM-based
memory with the exact dimensions of our hash tables. A single access to this mem-
ory will then return exactly one bucket of the hash table.

• Predictable low-latency memory: Most BRAM configurations can be accessed
within a fixed single clock cycle latency. This allows circuit designers to orches-
trate the execution flow of an algorithm in a precise, cycle-accurate manner. It also
reduces stalls caused by data dependencies. In our running example, during an
insertion, the hash table can report within a single clock cycle whether the target
bucket is full or empty so the algorithm can quickly decide what to do next.

• Parallel access: BRAMs often support simultaneous accesses to their contents. For
instance, M20Ks in simple quad-port mode can perform 2 reads and writes at the
same time (see Section 3.1.2). In our running example, this enables parallel inserts
and probes; effectively increasing the throughput of the hash table operations.

38 Chapter 3 Background on FPGAs

A circuit is "on" when electrical current flows through it. An FPGA-ran circuit is no
exception to this rule. As long as the FPGA is connected to power, all of its circuits will
run in parallel. This, together with the sheer amount of configurable resources on the
FPGA provide:

• Fine-grained parallelism: This enables designers to achieve higher performance
through the inherent parallelism of small sub-circuits on the FPGA. In our running
example, the circuit that performs the insertions and the one that does the probings
can run at the same time, increasing the throughput of the hash table operations.

• Coarse-grained parallelism: This allows designers to achieve higher performance
through duplication. Duplication involves instantiating multiple copies of the same
circuit, to increase the overall performance of the design. In our running example,
we can have multiple insertion and probing circuits, each working on a partition
of the hash table. The distributed hash table can then achieve much higher peak
operation throughput.

• Fine-grained pipelining: Pipelining is the process of dividing a circuit into multiple
sequential stages, separated by memory elements such as registers. Each stage can
work on a different instance of the problem the circuit is made to solve. This typ-
ically results in an increase in the maximum achievable frequency. In our running
example, we can for instance divide insertions into 3 stages: (1) calculate the hash
of the key, (2) read from the hash table, (3) write to the hash table.

• Coarse-grained pipelining: This is the process of pipelining large (sub-)circuits of
the design. The resulting pipeline typically coincides with a natural division of a
data processing pipeline into smaller tasks. As an example, consider a data process-
ing pipeline that requires the collected data to be merged, filtered, timestamped,
and inserted into a hash table. Each of these tasks, implemented as a circuit on the
FPGA, becomes a stage in the pipeline. Data is passed from one stage to the next
without being buffered in on-chip or off-chip memory. These stages work on dif-
ferent parts of the data in parallel. In a nutshell, coarse-grained pipelining reduces
memory usage and improves performance.

3.6 CHALLENGES OF USING FPGAS

Despite the many benefits offered by FPGAs, using them requires developers to over-
come a few challenges. FPGA design is an involved process. It demands a deep un-
derstanding of digital design and architecture, and experience with an arsenal of CAD
tools such as simulators and synthesizers. Moreover, the large design space provided by
FPGAs might be hard to navigate for new and experienced developers alike. The abun-
dance of implementation opportunities requires tremendous effort to reach an optimal
solution.

Another challenge in FPGA development is the lack of agile methodologies. Consider an
FPGA-based data processing pipeline. Imagine that a post-development change in the
specifications requires the addition of a new stage to this pipeline. This seemingly simple
task raises the following concerns unique to FPGAs:

• Performance matching: The performance of the new stage must match that of the
existing ones. Otherwise, it may slow down the whole pipeline.

3.6 Challenges of Using FPGAs 39

• Resource utilization: Adding the new stage may require more resources than what
the target FPGA can offer.

To avoid these issues, designers must plan out their architecture as much as possible in
advance.

A final challenge in FPGA development is the large number of quality metrics that must
be considered by the designers. Indeed, in addition to the traditional ones such as per-
formance and memory utilization, FPGA developers must also consider the achievable
frequency, resource utilization, and sometime even the power utilization of their imple-
mentation to make sure they conform to the specifications. This adds a lot more com-
plexity to the design process.

40 Chapter 3 Background on FPGAs

4
RELATED WORK

4.1 Summary of Related Work

4.2 Platform Type

4.3 Implementation

4.4 A Note on Quantitative Performance
Comparisons

The rise of big data, cloud computing, and the ever so growing demand for higher per-
formance in data processing have led to a steady stream of research in database system
acceleration. In this chapter, we present and discuss some of the key academic and indus-
trial research and contributions in this domain. The goal is to identify distinct properties
of current accelerators that will ultimately help guide us in our own research in Part II of
this thesis.

4.1 SUMMARY OF RELATED WORK

Multicore CPUs, GPUs, and FPGAs constitute the three most popular categories of de-
vices used in high-performance data processing platforms. They help classify current
research in database system acceleration. Platforms using multicore CPUs benefit from
core-level parallelism, modern memory and cache systems, application specific instruc-
tions, and architectural extensions (e.g., SIMD) [CR07, AKN12, KSC+09, BBC+12]. GPU-
based platforms take advantage of the high bandwidth memory and the tremendous
amount of compute power and parallelism provided by GPUs to accelerate database
workloads [BHS+14]. FPGA-based platforms exploit the wide array of configurable re-
sources (e.g., logic elements, BRAMs) present on FPGAs to design custom circuits opti-
mal for query processing [UIO15, HANT15, WFS+19, ABW+16].

Given the large body of work present in each category and the nature of our research, this
chapter focuses on database query acceleration on FPGAs alone. More specifically, we
concentrate on past research related to the acceleration of the three high-impact pipeline-
breaking database operators (i.e., sort, aggregation, join) central to our work (see Chap-
ter 2). We refer the interested reader to [FMH+20] for an excellent survey on other
database operators and database acceleration in general.

Table 4.1 presents and characterizes some of the most prominent past research related to
our work. For each entry in the table, we present the following attributes:

• Platform type: This attribute describes how the FPGA (card) is integrated into the
data processing system. Platform types are presented in Section 4.2.

• Operator support: It is a list of pipeline-breaking operators supported by the plat-
form. Pipeline-breaking operators were presented in Section 2.2.

• Language: This attribute specifies the (HLS or RTL) programming language used
to describe the FPGA design. FPGA programming languages were described in
Section 3.2.2.

• Implementation: This attribute describes how the FPGA platform implements the
database operators. In Section 4.3, we present and discuss various methods used to
implement database operators on FPGAs.

In most of the platforms presented in our table, a host (i.e., CPU-based server) has the
responsibility to schedule, configure, and launch the FPGA. The FPGA then executes the
operators. However, in some cases operator execution is shared between the FPGA and
its host. For instance, some authors propose sorting small chunks of data on the FPGA,
later to be merged [STM+13, STM+15, SMT+14] or joined [CP16] by the CPU in order to
execute the sort or join operators, respectively. In [DZT13], the FPGA performs aggre-
gation but only on data pre-sorted by the CPU. In another platform, the FPGA performs
hash-based aggregation but relies on the CPU to deal with hash collisions, should any

42 Chapter 4 Related Work

occur [WIA14, WTA13]. To deal with these intricacies, the operator support column of
each entry in Table 4.1 indicates the capabilities of the entire corresponding acceleration
stack (FPGA and CPU) rather than the FPGA alone.

It is also worth pointing out that some of the platforms in the table only support
the sliding-window versions of pipeline-breaking operators. Given a stream of rows,
a sliding-window operator implementation continuously executes the operator on a finite
sliding-window over the rows [NSJ13, THSW15]. Sliding-window operators are com-
monly referred to as "streaming operators" [JMS+08, BDD+10], a term we shall not use in
order to avoid any confusion with streaming operators defined in Section 2.2.6. Despite
our own work targeting (non-sliding-window) pipeline-breaking database operators, we
study sliding-window operators as they provide a great deal of insight in fast query pro-
cessing.

The last two entries in the table refer to industry-developed platforms. IBM Netezza and
Swarm64 are other notable products of industry research, omitted from our table due to
their lack of support for pipeline-breaking operators. IBM Netezza supports data decom-
pression, projection, and filtering [Fra14]. Swarm64 supports compression, decompres-
sion, and filtering [Int18b, Xil19].

In what follows, we present a brief description of various platform types and operator
implementations. They are two important characteristics of FPGA-based database accel-
erators, unexplored in previous chapters.

Reference Platform Type
Operator Support

Language Implementation
Sort Aggr. Join

[UIO15] Coprocessor ✓ Verilog
Reconfiguration: sort-merge join and hash
join

[WPC+16] Accelerator Card ✓ ✓ ✓ OpenCL
Reconfiguration: sort-merge, sort-based
aggregation, and hash join

[HSM+13] Accelerator Card ✓ n.d. Hash join
[STM+13, STM+15] Accelerator Card ✓ n.d. Sort-merge
[HANT15] Accelerator Card ✓ n.d. Hash join
[WIA14, WTA13] Smart Storage ✓ Verilog/VHDL Hash-based aggregation
[NSJ13] Network Processor ✓ n.d. Sliding-window nested-loop join
[YKO+14] Smart Storage ✓ VHDL Hash-based aggregation
[MTA09b, MTA10] Network Processor ✓ VHDL CAM-based aggregation
[WFS+19] Smart Storage ✓ n.d. Hash-based aggregation
[CO14] Accelerator Card ✓ ✓ n.d. Sort-merge and sort-merge join
[MTA09a] Coprocessor ✓ VHDL Sliding-window sort-based aggregation
[ABW+16] Accelerator Card ✓ n.d. Hash-based aggregation
[GS21] Network Processor ✓ MaxJ HLD Sliding-window hash-based aggregation
[DZT13] Coprocessor ✓ n.d. Streaming aggregation on pre-sorted data
[SJT+12] Network Processor ✓ n.d. Sliding-window nested-loop join
[SMT+14] Accelerator Card ✓ ✓ n.d. Sort-merge and hash join
[CP16] Coprocessor ✓ n.d. Sort-merge join
Xilinx Vitis GQE [Xil22b, Xil22c] Accelerator Card ✓ ✓ Vitis HLS Hash-based aggregation and hash join
Amazon AQUA [Bar21] Smart Storage ✓ n.d. n.d.

Table 4.1: Past academic and industrial work on database system acceleration on FPGAs,
with a focus on pipeline-breaking database operators. Cells containing n.d. indicate that
the corresponding attribute has not been disclosed.

4.2 PLATFORM TYPE

Platform type defines the position and connections of the FPGA card in a data processing
pipeline. There are 4 common types of FPGA acceleration platforms used with stan-
dalone database systems. They are shown in Figure 4.1.

4.2 Platform Type 43

FPGA CPURAMRAMStorage

(a) Accelerator Card

FPGA CPURAMStorage

(b) Coprocessor

FPGA CPURAMRAMStorage

(c) Smart Storage

Network FPGA CPURAMRAM Storage

(d) Network Processor

Figure 4.1: Various types of FPGA acceleration platforms used for database query pro-
cessing. The CPU and its RAM together form the host (see Section 3.4). The FPGA and
its RAM are placed on an FPGA card. Storage refers to permanent storage, such as hard
disk drive (HDD) or solid-state drive (SSD), commonly referred to as the disk in database
system literature.

4.2.1 Accelerator Card

In accelerator card platforms shown in Figure 4.1(a), the FPGA card is connected via PCIe
or UPI to the host server. To execute an operator, input data is copied from the host RAM
into the FPGA RAM. The FPGA then execute the operator, before copying the results back
to the host memory. Note that the copying of data is not necessary anymore. Indeed,
shared virtual memory featured in modern FPGAs gives them direct access into shared
regions of the host memory [VMB19, Cor14, Sch22].

Accelerator card platforms are easy to setup as they can be simply plugged into most
motherboards’ PCIe slots. This has made them very popular in past research. The authors
of [PHL18, WPC+16] use a DE5Net acceleration card with an Intel® Stratix® V FPGA and
4GB of RAM. The card is connected to the host via an 8-lane PCIe Gen 2 edge connector
with a peak bi-directional bandwidth of 4 GB/s [Inc18]. They transfer input data over
PCIe to the FPGA RAM before executing a query. The results of the query must then be
transferred back to the host. In [HSM+13], an Intel® Stratix® IV GX530 FPGA card sup-
porting an 8-lane PCIe Gen 2 connector is used for accelerating the join operator [Cor10].
The design streams 4KB database pages (containing rows) from host memory directly
into the FPGA. The FPGA then decomposes the rows into 2 parts: (1) key columns rel-
evant to the join operator are kept on the FPGA and advance through the processing
pipeline, (2) value columns are stored on the FPGA RAM, later to be united with the re-
sults of the join. The authors of [HANT15] use the Convey-MX platform composed of 2
Intel® Xeon® E5-2643 processors and 4 Xilinx Virtex-6 760 FPGAs for join processing. The
main memory, although entirely accessible by both the FPGAs and the CPUs, is divided
into two regions connected through PCIe. The FPGAs (resp. CPUs) have fast DDR3 ac-
cess to the hardware (resp. software) region of the memory. Cross accesses are slower
as they must go through PCIe. Although the FPGAs can be setup as coprocessor sharing
both memory regions with the CPUs, they are seemingly used by the authors as acceler-
ator cards with their own dedicated memory. In [ABW+16], a more recent version of this
setup called Convey HC-2ex is used to accelerate the aggregation operator [Con12].

44 Chapter 4 Related Work

4.2.2 Coprocessor

In coprocessor platforms shown in Figure 4.1(b), the FPGA is seen as "another" processing
unit working on the same copy of data as the CPU. The CPU RAM is therefore shared
with the FPGA.

The authors of [UIO15] execute joins on an accelerator card with two FPGAs: (1) a Stratix
IV SE360 FPGA manages communication between the host and the FPGA Card, handling
memory transactions for (2) a Stratix IV GX530 FPGA that performs the actual join. In the
Xilinx XUPV2P platform used in [MTA09a], both the CPU and the FPGA are on a single
chip connected to main memory through a shared bus. The CPU system consists of two
PowerPC 405 cores directly wired to the FPGA fabric [Xil11b]. Much like DSPs discussed
in Section 3.1.3, these are efficiently-implemented hard IP cores permanently instantiated
on the FPGA. The authors propose multiple FPGA architectures. In their most efficient
architecture, the CPU (much like a typical host system) simply configures and launches
the FPGA to read, process, and write back data from and to the shared RAM. Another
interesting type of coprocessor platform is based on Intel’s Xeon+FPGA [OSC+11] archi-
tecture. It is used in [OSKA17] to perform arithmetic, filtering, and skyline operators.
The setup consists of a two-socket server with an Intel Xeon E5-2680 CPU in one socket
and an Intel Stratix V FPGA in the other. The CPU has fast (25 GB/s) DDR access to
the shared main memory. The FPGA can access the memory through a slower (6 GB/s)
Intel QuickPath Interconnect (QPI) link connecting the two sockets. The CPU uses a task
queue to configure and launch the FPGA. IBM’s Power8 CAPI provides a coprocessor
type architecture similar to Intel’s Xeon+FPGA platforms [SBJS15].

Note that many accelerator card platforms can also be used in coprocessor mode, making
it hard to distinguish between the two. We define a coprocessor platform as one where
the FPGA does not use (or simply lacks) dedicated memory.

4.2.3 Smart Storage

Smart storage platforms, shown in Figure 4.1(c), are typically used for accelerating disk-
oriented database systems (see Section 2.1.2). Here, the FPGA is placed as a bump-in-
the-wire device between the disk (or any other storage medium) and the host, providing
two types of functionalities [FMH+20]:

• Operator acceleration: Some database operations can be offloaded to the FPGA for
efficient near-storage processing, freeing the CPU.

• Bandwidth amplification: Compression/decompression can be applied by the
FPGA to the data moving between the disk and the CPU, effectively increasing the
bandwidth of the storage system.

This architecture allows the disk and the FPGA to act together as a "smart storage" sys-
tem, capable of both storing and (to some extent) processing data.

The authors of [WIA14] use a Virtex 5 XC5VLX110T FPGA, connected via Gigabit Ether-
net to the host and via SATA II to a 256 GB SSD, for executing the projection, filtering,
and aggregation operators while transferring data from the SSD to the host. In [YKO+14],
Stratix IV GX FPGAs are placed between an array of flash storage devices and the host.
The FPGA can perform aggregations on data extracted from flash storage while it is being
transferred via a 4-lane PCIe Gen 2 connector to the host. The platform used in [WFS+19]

4.2 Platform Type 45

has the host connected to a PCIe enclosure [Epr18] containing two Stratix V GX FPGAs
and two Intel DC P3700 SSDs with a capacity of 800 GB each. The FPGA platform can
execute the filter and aggregation operators while copying data from the SSDs to the host.

Most commercial database accelerators are smart storage platforms. IBM Netezza per-
forms decompression, projection, and filtering on data extracted from storage [Fra14,
FMH+20]. Amazon AQUA acts as a layer between permanent storage and Ama-
zon Redshift compute clusters, performing aggregation and filtering during data re-
trieval [Bar21].

4.2.4 Network Processor

Network processor platforms, shown in Figure 4.1(d), have a direct connection to a network
where they receive input data. After processing the input, the results are transmitted to
the host. FPGA-host communication may go through network, PCIe, or other mediums.
Network processor platforms are typically used for executing sliding-window operators
on a stream of rows or events.

The authors of [NSJ13] transmit a stream of events over Gigabit Ethernet to the Virtex-5
XC5VLX50T FPGA onboard a Xilinx ML505 board [Xil11a]. The FPGA can perform pro-
jections, selections, and sliding-window joins on the stream of events. The result is also
sent via Ethernet to a host computer. The ML505 board is also used in a similar config-
uration in [MTA10] for executing the projection, selection, and aggregation operators on
stock data received from the network. The only difference is that the FPGA sends the
results of the computation, not via Ethernet, but rather a serial line to the host. The au-
thors of [GS21] perform Ethernet-to-Ethernet sliding-window aggregation on a Maxeler
N-series ISCA (MAX4AB24B) FPGA card. The card provides its Intel Stratix V (5SGXAB)
FPGA with 10 Gigabit Ethernet connectivity for both receiving input data and transmit-
ting aggregation results.

4.3 IMPLEMENTATION

Database operators can be implemented in many ways. Here, we focus on FPGA-based
implementations. They can achieve great performance by benefiting from the wide array
of resources provided by FPGAs, yet must face a few challenges unique to their utiliza-
tion.

In Section 4.3.1, we present simple but descriptive methods to implement pipeline-
breaking database operators. They help us better understand these operators before
introducing more efficient and popular implementation techniques in Sections 4.3.2
and 4.3.3. Finally, methods for combining different implementations on FPGAs are dis-
cussed in Section 4.3.4.

46 Chapter 4 Related Work

k v

43 4
26 3
43 1
26 5
(a) Table R

k v

88 7
64 2
43 9
88 5
(b) Table S

k v

26 5
26 3
43 4
43 1
(c) Sortk(R)

k v

43 9
64 2
88 5
88 7
(d) Sortk(S)

index bucket
0
1 (26, 3), (26, 5)
2
3 (43, 4), (43, 1)
4
(e) Hash Table of R

k sum(v)
26 8
43 5

(f) Aggr
k,sum(v)(R)

R.k S.k R.v S.v

43 43 4 9
43 43 1 9

(g) Joink(R, S)

Figure 4.2: Examples of sort-based and hash-based aggregation and join operator exe-
cution: (a)Table R, (b)Table S, (c)Sorted table R, (d)Sorted table S, (e)5-entry hash table
using hash function h(x) = x%5 and containing all rows of R, (f)Aggregation of R, (g)Join
of R and S.

4.3.1 Loop-based implementation

A straightforward, yet inefficient way to implement pipeline-breaking database opera-
tors is via nested loops. The sort operator can be implemented using the insertion sort
algorithm with the outer loop selecting an unsorted row, and the inner loop inserting it
into its correct position in the already sorted portion of the table [CLRS09]. For aggre-
gations, the outer loop selects an unprocessed row, and the inner loop searches for its
group (if any) in the list of processed rows. For a join of tables R and S, the outer loop
selects an unprocessed row from table R while the inner loop searches for a matching
row in S. This algorithm is called nested-loop join [GUW09]. Given the quadratic time
complexity of these algorithms, they are seldom used in high-performance database sys-
tems. However, thanks to their simplicity, they are employed in a few FPGA platforms
for executing sliding-window operators [NSJ13, SJT+12]. Nested-loop joins are also used
as a fallback option to implement arbitrary join conditions (not simply equality-based
joins) or Cartesian products, when more efficient algorithms fail.

4.3 Implementation 47

4.3.2 Sort-based Implementation

Sorting is an important operation in database query processing. It is not only a database
operator itself, but also a preprocessing step offering an efficient way to execute many
other operators, as explained later in this section [DGN23, Gra06]. Sort-merge is the most
popular FPGA-based sorting algorithm. In sort-merge, a streaming sort phase transforms
a table into small runs of sorted rows. The size of the sorted runs depends on the algo-
rithm and the amount of FPGA resources allocated to it. The runs are small enough that
they can be sorted very efficiently on the FPGA itself, i.e., without transferring data or
intermediate structures back and forth from the FPGA RAM. The sorted runs are typi-
cally stored on the FPGA RAM. A subsequent merge phase merges the sorted runs until,
eventually after multiple passes, the sorted output is produced. Multi-way merging is a
common method to accelerate this step. Indeed, a nw-way merger requires ⌈lognw

(nr)⌉
passes to merge nr sorted runs. Therefore, increasing nw has an exponentially posi-
tive effect on merge performance. Sort-merge is inspired by external sorting described
in [Knu73, HS76]. We study and explore sort-merge extensively and from different an-
gles in Chapters 6, 7, and 8.

Sorting can be used to simplify the processing of complex pipeline-breaking operators.
Indeed, aggregation and join become single-pass algorithms on sorted tables [GUW09].
An example is shown in Figure 4.2. Consider the Aggrk,sum(v)(R) operator. We start by
sorting table R according to key column k. In the sorted table, shown in Figure 4.2(c), all
rows belonging to the same group are placed next to each other. All that remains is to
traverse the sorted table to accumulate neighboring rows with the same key column. This
can be done in a streaming fashion, where we keep the last-seen row as state, bring in the
next one to compare and (potentially) accumulate, before setting it as the new last-seen
row. Basically, sorting does all the heavy lifting. The result of the aggregation operator is
shown in Figure 4.2(f).

Now consider the Joink(R, S) operator. Again, we start by sorting both input tables R
and S according to the join key k. The results of the sorts are shown in Figures 4.2(c) and
4.2(d), respectively. We then traverse both tables at the same time, looking for matching
rows which we combine to produce the join result. For M : N joins with both M and
N > 1, it might be necessary to backtrack while traversing the sorted input tables in
order to get all the join results. The result of the join is shown in Figure 4.2(g). This
algorithm is called sort-merge join.

The authors of [STM+13, STM+15, SMT+14] propose sorting using the tournament tree
sort algorithm [Knu73]. They instantiate two tournament tree sorters, each producing
sorted runs of minimum 16K rows. The outputs of the two sorters are immediately
merged, producing larger sorted runs of at least 32K rows, before being sent to the host.
Using two sorters, they can process 1 row every 7 clock cycles instead of every 15 clock
cycles, allowing them to saturate their PCIe bandwidth. For sorting large tables, they re-
quire the host to run a (potentially) multi-pass merge phase on the sorted runs produced
by the FPGA.

An implementation of sort-based aggregation is proposed in [DZT13]. Here, the authors
assume that the data is either sorted to begin with or sorted at runtime by the host, before
being transferred to the FPGA. The FPGA then streams in the sorted rows, aggregating
them using the technique described earlier in the section.

The authors of [CO14] use sort-merge for executing the sort and the join database opera-
tors. Their high-performance merge tree implementation is capable of merging multiple
(narrow) rows at the same time. The very first merge pass uses a small sorting network to
produce the initial sorted runs which are directly (i.e., without going through RAM) fed

48 Chapter 4 Related Work

to the merge tree [Bat68, MTA12]. Multi-way merging is used to reduce the number of
merge passes necessary to process large tables. They propose a 3-FPGA setup for process-
ing joins. 2 of the FPGAs sort an input table each, streaming the result to a third FPGA
which materializes the result of the join. Sort-based joins are also attempted in [CP16].
The FPGA produces sorted runs using folded bitonic sorting networks. The sorted runs
are then transferred to the host for both merging and to perform the join operator.

4.3.3 Hash-based Implementation

An alternative way to implement complex pipeline-breaking database operators is
based on hashing [GUW09]. The process is exemplified in Figure 4.2. Consider the
Aggrk,sum(v)(R) operator. We start by instantiating an empty hash table. We then in-
sert every row of R into the hash table: A row is inserted into the entry specified by the
hash of its key. Here, we simply use a modulo (%5) hash function. For instance, row
(26,3) is inserted into the hash bucket at index 26%5 = 1. The resulting table is shown
in Figure 4.2(e). At this point, all rows belonging to the same group are in the same hash
bucket. We complete the aggregation process by accumulating the rows belonging to the
same group in every non-empty bucket. In case hash collisions occur, i.e., rows with dif-
ferent keys are mapped to the same bucket, care must be taken not to accumulate rows
belonging to different groups. An almost universally applied optimization is to accumu-
late the rows belonging to the same group, while inserting them into the hash table. This
often results in lower memory consumption and higher performance of the aggregation
operator. The result of the aggregation operator is shown in Figure 4.2(f).

Now consider the Joink(R, S) operator. Like the aggregation operator, we start by in-
stantiating and populating a hash table with the rows of table R. This process is called
the build phase, and table R the build relation. In the subsequent probe phase, for each row
of S, we perform a lookup inside the hash table trying to find matching rows from R.
The matching rows are paired and output as part of the join result. Table S is called the
probe relation. The result of the join operator is shown in Figure 4.2(g). This algorithm is
commonly referred to as hash join.

Smart storage platforms using hash-based aggregation are introduced in [WIA14,
WTA13, WFS+19]. The authors propose implementations using either the BRAMs or
the DRAM of the FPGA for storing the hash table. The hash table can hold a single row
per bucket. In case of hash collisions, they forward the colliding row to the host, later
to be aggregated in software by the CPU. Another smart storage platform described in
[YKO+14] uses a register array to store the hash table. They use the key of a row as
its index into the hash table, i.e., the identity function is used for hashing. This works
well with keys limited to a relatively small range of values. The authors of [ABW+16]
use content-addressable memories (CAMs) as a cache for the hash table, which is itself
stored in the FPGA RAM. The goal of the cache is both to improve memory access per-
formance and to provide synchronization mechanisms (e.g., locking) between multiple
inserting rows trying to access the same bucket in the memory.

The authors of [HSM+13, SMT+14] accelerate the join operator using hash-based tech-
niques. They start by streaming the rows of the build relation from the host onto the
FPGA. The latter extracts the join keys from the rows before storing them on the FPGA
RAM. Every key along with a pointer to its corresponding row in memory is then in-
serted into a hash table on the FPGA. The hash table is implemented using two data
structures. A bit vector indicates whether a given bucket of the hash table is valid (i.e.,
non-empty), and if so returns a pointer to the head of a linked list in the address table.
The address table stores the buckets as linked lists of rows. Both structures are stored

4.3 Implementation 49

on FPGA BRAMs for fast access. After the build phase, the probe relation is streamed
into the FPGA with every row triggering a hash table lookup. Matching rows are paired
and streamed out of the FPGA as the join result. A pairing requires the payload of the
row from the build phase to be fetched from the main memory. Hash-based joins are also
attempted in [HANT15]. This time, the hash table is built and stored in the FPGA RAM.
They use multithreading to achieve high performance despite long memory access la-
tency. While a task such as hash table insertion or probing is waiting for memory, it goes
into idle state allowing other tasks to execute and make progress. They hide memory
latency by launching thousands of tasks (or threads) at the same time. Atomic memory
accesses are used as a synchronization mechanism among the threads.

4.3.4 Mixed Implementation

Database queries are composed of many types of operators that a database system must
support. The same is true for accelerators. In order to offer significant performance
improvements, the accelerator must support as many high-impact (pipeline-breaking)
database operators as possible. This is a requirement discussed in length in Section 2.4.
A common challenge faced by the designers is to fit all the circuits used for executing
these operators on the FPGA. They have come up with a few solutions described in this
section.

Reconfiguration or reprogramming is a property unique to FPGAs. It can be leveraged
to run different operators or even different implementations of the same operator on a
single FPGA. In [UIO15], an FPGA image running hash joins and another running sort-
merge joins are prepared and ready to be programmed onto the FPGA. They choose an
image depending on the characteristics of the workload. The image is then programmed
onto the FPGA in order to run the operator. A more sophisticated approach proposed
in [WPC+16] combines data processing primitives (e.g., map, filter, scatter, gather, sort,
etc.) to execute database operators. The authors introduce a query plan generator and op-
timizer that determines the best combination of primitives and how they should be par-
titioned into (potentially multiple) FPGA images for executing a particular query. This
means that for every new query, multiple images may need to be synthesized. If more
than one image is involved, FPGA reconfiguration is used to switch between them dur-
ing query execution. The authors of [MTA09b, MTA10] introduce a query-to-hardware
compiler which given a query plan, generates the RTL description of a circuit implement-
ing the plan. The code is then synthesized before being executed on the FPGA. Note that
synthesizing can take hours to complete, meaning that ad-hoc queries are not supported.

Partial reconfiguration is another feature of FPGAs allowing designers to reprogram only
a part of an FPGA while the other parts continue running [VF18, KTB+12, FdSJ19]. It
is used in [DZT13] for processing the filter and aggregation operators. They instantiate
query processing data paths composed of partially reconfigurable slots. Each slot can be
programmed at run time to execute a simple filter operator (e.g., <, >,=, AND, OR), or
two of them can be combined to perform aggregation. For aggregation, they assume the
data to be pre-sorted. While reprogramming a data path, others may continue running.

In Part II of this thesis, we propose resource sharing as a means to support multiple
operators on a single FPGA image. It consists of using an efficient common denomina-
tor algorithm such as sorting for accelerating all pipeline-breaking database operators.
Indeed, after the input is sorted, aggregations and joins become simple streaming oper-
ators requiring few FPGA resources to implement. We take this idea to the extremes by
ingraining elements of the aggregation and join operators across the entire sort pipeline.

50 Chapter 4 Related Work

4.4 A NOTE ON QUANTITATIVE PERFORMANCE COMPARISONS

In our presentation of related work in this chapter, we have not shown any performance
numbers for comparing existing accelerators. In fact, it is almost impossible to compare
these accelerators based on benchmarks published in past research. There are a few rea-
sons behind this. First, there is an extreme variety of FPGA platforms used in these bench-
marks. The platforms are different in the number and size of FPGAs, the FPGA family,
the implementation frequency, the number and capacity of the RAMs connected to the
FPGA, the bandwidth between the FPGA and its RAM, the bandwidth of the PCIe bus,
the network speed, etc. Second, there is no standardized dataset used by these bench-
marks. This is in part due to the wide range of capabilities offered by various platforms.
Standardized TPC-H benchmarks commonly used for benchmarking database systems
are often too complex to execute on an accelerator [Cou22]. Finally, there is a lack of
platform-independent performance metrics such as [number of clock cycles / processed
row] in current benchmarks.

In order to provide a fair comparison between these accelerators, they must all be bench-
marked on the same FPGA platform. This leads to a new set of challenges, the most
important being the lack of open source. A full re-implementation may not match the
original code as a lot of implementation and optimization details are missing in research
papers. Even if the original code is available, it might require a lot of effort to optimize
for a given FPGA platform.

We believe benchmarking against state-of-the-art software database systems to be the
best approach for evaluating accelerators. This also aligns with the ultimate goal of ac-
celerators, that is to improve the performance of their host. Nonetheless, we refer the
curious reader to [FMH+20] for some performance numbers on current FPGA-based
database system accelerators.

4.4 A Note on Quantitative Performance Comparisons 51

52 Chapter 4 Related Work

Part II

Cache-Based Morphing Sort-Merge
with KeRRaS (CbMSMK)

53

5
OBJECTIVES AND ARCHITECTURE

OVERVIEW

5.1 From Requirements to Objectives

5.2 Architecture Overview

5.3 Outline of Part II

In Chapter 1, we defined a set of requirements for accelerating in-memory database sys-
tems. In this chapter we use our knowledge of database systems (Chapter 2), FPGA
development (Chapter 3), and related work (Chapter 4) in order to transform those re-
quirements into specific objectives and design guidelines. This allows us to sketch out a
high-level architecture for our FPGA accelerator, leaving it to the chapters that follow to
fill out the specifics.

5.1 FROM REQUIREMENTS TO OBJECTIVES

The accelerator requirements defined back in Chapter 1 are based on the context of our
research and the type of database system and workload we want to accelerate. They are
summarized below:

• Reqmt 1: The accelerator must be able to process a reasonable number of database
operators while also being extensible (through modularity) to support new opera-
tors in the future. The operators must be able to process a diverse range of tables
that have different depths, widths (or number of columns), and data types.

• Reqmt 2: Priority must be given to database operators whose acceleration has the
greatest positive impact on the execution time of database queries. The accelerated
operators should run reasonably faster than state-of-the-art database systems run-
ning on traditional (CPU-based) computers.

• Reqmt 3: The architecture must be flexible enough to allow deployment on different
FPGA platforms.

• Reqmt 4: The target platform type must be suitable for accelerating in-memory
database systems.

• Reqmt 5: The accelerator must be able to serve multiple clients in parallel.

Reqmt 1 and Reqmt 2 focus on the choice of the operators to support. In Section 2.4, we ar-
gued that accelerating pipeline-breaking database operators is our best bet to offer great
performance while covering various analytical workloads. We target the sort, aggrega-
tion, and join operators which are computationally expensive and frequently used in
most analytical queries.

In order to comply with Reqmt 1, we would like our accelerator to support all three of our
target operators at the same time. However, as explained earlier in Section 4.3.4, FPGAs’
limited resources make this a real challenge. Fortunately, a common denominator for
processing all these operators is sorting. Indeed, a high-performance sort-merge imple-
mentation can be used for accelerating the sort, join, and aggregation operators (see Sec-
tion 4.3.2). Moreover, as we shall see in Chapters 7 and 8, sort-based database processing
allows us to process arbitrarily deep and wide tables. We therefore use sort-based imple-
mentations of our operators allowing them to benefit from a shared sort-merge instance.
Note that we still require the FPGA to execute these operators in their entirety. We do not
want the accelerator to rely on host pre- or post-processing for operator execution, as it
closes doors to holistic query execution on the FPGA. Finally, to enable and ease exten-
sions to our platforms, we promote modular designs with standardized interfaces. This
allows new operators to be easily integrated into the sort-merge pipelines. Furthermore,
it simplifies the process of updating existing modules, such as ALUs, in order to include

56 Chapter 5 Objectives and Architecture Overview

more features, such as support for additional data types. The choice of our implemen-
tation strategy will be discussed and justified in much greater detail in Chapter 7 where
we consider and compare many alternatives.

Reqmt 3 and Reqmt 5 may be satisfied thanks to the decisions we made earlier. Indeed,
sort-merge is a highly flexible algorithm, where both the sort and the merge phase can
use a number of different implementations with various area/performance characteris-
tics. Thanks to this, and the fact that our operators can share a single sort-merge instance,
we design resource-efficient accelerator "cores" capable of processing these operators at
various area/performance points. This offers us the flexibility we need to potentially de-
ploy on different FPGA platforms. It also allows us to provide multi-client support by
instantiating multiple cores on the FPGA. Although this idea may seem a bit supposi-
tional, we shall see in Chapter 7 that it works well in practice.

Now all that remains is Reqmt 4, ensuring that the target FPGA platform is optimal for
in-memory database system acceleration. Platform types are described in Section 4.2.
In-memory database systems store their data in the main memory of the host (see Sec-
tion 2.1.2). This eliminates both smart storage and network processor platforms as po-
tential candidates. Modern coprocessor and accelerator card platforms give the FPGA
access to the host CPU RAM. Accelerator cards additionally provide the FPGA with fast
multi-channel dedicated RAM. The DDR link between the FPGA and its RAM has higher
bandwidth than the PCIe or QPI link between the FPGA and the CPU RAM. Moreover,
a dedicated FPGA RAM reduces the load on the CPU RAM which can be used for other
tasks. In a nutshell, an accelerator card platform provides a superset of the features of a
coprocessor platform with the addition of higher memory bandwidth; much appreciated
for accelerating memory-intensive database workloads. Therefore, we target our design
towards accelerator card platforms.

To summarize, our objective is to design a resource-efficient sort-based database query
processor that can accelerate the sort, join, and aggregation operators. The architecture
should be flexible and modular, and support parallelism through multiple clients. The
design must run on accelerator card platforms.

5.2 ARCHITECTURE OVERVIEW

In Section 5.1, we hypothesized that a database system accelerator based on the sort-
merge algorithm is best suited for efficiently processing our target pipeline-breaking
database operators. As a result, the architecture of our accelerator is centered around the
sort-merge algorithm. Sort-merge consists of a sort phase producing sorted runs and a
merge phase for merging them. The details of the algorithm are described in Section 4.3.2.
The input table, sorted runs, intermediate merge results, and the final sorted table are all
placed on the FPGA RAM. Therefore, splitting the sort-merge implementation into a sort
pipeline and a merge pipeline seems natural. The architecture is shown in Figure 5.1.

The Sort-Network executes the sort phase of the sort-merge algorithm. The Load module
is configured to read a table from FPGA RAM and stream its rows into the pipeline. The
pipeline may consist of a series of processing steps (e.g., projection, filtering, caching, ...)
but ends with the Sort module producing the sorted runs and the Store module which
stores them back on the FPGA RAM.

The Merge-Network executes the merge phase of the sort-merge algorithm. The Load mod-
ule provides the Merge module access to a set of sorted runs, which are merged by the
latter before continuing their way down the pipeline. The remainder of the pipeline may

5.2 Architecture Overview 57

Sort

Store

Load

Merge

Store

Load

...

...

So
rt
-N
et
w
or
k

M
er
ge

-N
et
w
or
k

FP
G

A
D

D
R

 R
AM

FPGA

FPGA Card

Figure 5.1: Overview of the architecture of our accelerator. The Sort- and the Merge-
Network implemented on the FPGA execute the sort and the merge phases of the sort-
merge algorithm, respectively. They are both pipelined, and read and write their data
from/to the FPGA RAM.

consist of several processing steps for executing database operators such as aggregation,
join, filtering, projection, etc. The rows are ultimately stored back on the FPGA RAM
through the Store module.

In itself, the architecture offers 2 methods to improve sort-merge performance. First, each
of the networks has a pipelined design, allowing it to process up to one row per clock
cycle. We call this line-rate processing. Second, the two networks can work in parallel,
allowing the FPGA to sort two tables at the same time: After the Sort-Network is done
producing the sorted runs of the first table, it moves onto the second table while the
Merge-Network starts merging those sorted runs.

In order to achieve modularity and extensibility, we require all modules in the pipeline
to have a standard handshaking ready/valid interface [ARM20]. Moreover, they must be
bypassable, i.e., if a module is not needed for a particular task, data should still be able to
move through (or around) it without being modified.

Finally, a resource-efficient implementation of the networks on a large FPGA should al-
low us to instantiate multiple instances of each of them, enabling the accelerator to ex-
ecute multiple operators at the same time. This is an efficient way to support multiple
clients.

Throughout the following chapters, we will present alternative and improving versions
of this architecture. The sort-merge algorithm will, however, remain the centerpiece of
our accelerator.

5.3 OUTLINE OF PART II

Database system designers, who typically have a software background, are naturally
drawn to HLS methodologies for FPGA acceleration. In Chapter 6, we compare tra-
ditional RTL programming with HLS in the context of database system acceleration.
We propose a simple sort-merge architecture and implement it using both VHDL and
OpenCL. The implementations are then compared in terms of performance, resource

58 Chapter 5 Objectives and Architecture Overview

utilization, and development effort. This helps us choose a programming methodol-
ogy for designing our own accelerator. Chapter 6 is based on our publication in Da-
MoN’20 [MFLM20].

In Chapter 7, we propose the first version of our database system accelerator. It is based
on the sort-merge algorithm, can execute the sort, aggregation, and join operators, and is
able run up to 12 queries in parallel. MSM is the name of our row-oriented database sys-
tem accelerator. It is on average 5× faster than the state-or-the-art in software. Chapter 7
is based on our publication in DaMoN’21 [MFL+21].

MSM is capable of processing arbitrarily deep tables, as long as the width of the table
is smaller or equal to the width of its data path. In Chapter 8, we propose an algorithm
allowing MSM to process arbitrarily wide tables. In order to efficiently implement the
algorithm, we convert MSM into a column-oriented database accelerator. The new plat-
form, called MSMK, has performance equivalent to that of MSM. Chapter 8 is based on
our publication in FCCM’22 [MFM+22].

In Chapter 9, we focus on the aggregation operator alone. We propose caching for early
aggregation, resulting in a hybrid hash- and sort-based aggregation algorithm. The new
implementation, called CbMSMK, achieves up to 3 times higher aggregation perfor-
mance compared to MSMK. Chapter 9 is based on our publication in FPGA’23 [MMF+23].

Chapter 10 is the concluding counterpart to the current introductory chapter. There, we
present a brief summary of our final architecture along with some TPC-H benchmarks
showcasing its capabilities. We finally revisit the requirements and objectives defined in
this chapter to examine the extent to which they are satisfied.

5.3 Outline of Part II 59

60 Chapter 5 Objectives and Architecture Overview

6
COMPARATIVE ANALYSIS OF OPENCL AND

RTL FOR SORT-MERGE PRIMITIVES ON
FPGAS

6.1 Programming FPGAs

6.2 Related Work

6.3 Architecture

6.4 Experiments

6.5 Summary & Discussion

Writing an RTL description for programming FPGAs requires deep knowledge of digital
design and HDLs. Intel® OpenCLTM is a mature HLS platform allowing designers to im-
plement their architecture using the relatively high-level C programming language. In
this chapter, we conduct a comparative analysis of OpenCL- and RTL-based implemen-
tations of sort-merge primitives, including a novel heapsort algorithm. We quantitatively
compare their performance, FPGA resource utilization, and development effort. Our re-
sults show that while requiring comparable development effort, RTL implementations of
critical primitives used in the sort-merge algorithm achieve 4× better performance while
using half as much the FPGA resources.

Note that parts of the material presented in this chapter have been previously published
in DaMoN’20 [MFLM20].

6.1 PROGRAMMING FPGAS

The difficulty to program FPGAs is an important obstacle on their way to ubiquity.
Indeed, programming FPGAs requires knowledge of digital design and HDLs for de-
scribing an architecture at the RTL abstraction. One solution is to use HLS tools such
as OpenCL-based programming platforms. OpenCLTM is a standard for parallel pro-
gramming of accelerators such as multi-core CPUs, GPUs, and FPGAs [Inc20]. OpenCL
programs are composed of multiple functions (i.e., kernels or modules) in C, running
in parallel and communicating via channels or DDR RAM. The Intel® FPGA SDK for
OpenCL (or simply OpenCL in the remainder of this chapter) is a platform for synthe-
sizing, executing, and diagnosing OpenCL programs on Intel® FPGAs. Similar tools are
available from other vendors. Two other notable C-based HLS tools are Vitis HLS from
Xilinx [Xil22a] and Catapult from Siemens [Sie21]. Intel itself is developing a SYCL-based
successor to OpenCL using oneAPI [Int23]. These tools offer functionality and capabili-
ties that are comparable to those from OpenCL, which will be the focus of this chapter.

OpenCL promises several advantages compared to RTL [Int13] resulting in a gentler
learning curve (specially for software developers), reduced development effort, and
portability across OpenCL-enabled FPGAs. However, programming FPGAs using soft-
ware programming languages like C, even on highly parallel platforms such as OpenCL,
limits their capabilities. Indeed, one of the greatest advantages of FPGAs compared to
CPUs and GPUs is that they can run any hardware architecture; therefore, provide a
tailored execution model based on the problem at hand (see Chapter 3). RTL-based lan-
guages offer the designer a great deal of control over FPGA resources to define a suitable
architecture. In contrast, the architecture generated by OpenCL is limited by its expres-
siveness. OpenCL was initially developed for multi-core CPU and GPU acceleration and
with their fixed architecture in mind [The08]. Therefore, despite the FPGA-specific fea-
tures added to the platform [Int19], it might not always be able to generate a suitable
architecture. In fact, given the large design space provided by FPGAs, an exhaustive
exploration by OpenCL (or HLS tools in general) proves impossible in practice.

In this chapter, in addition to testing some of the claims on the advantages of employing
OpenCL instead of RTL, we set out to quantify the disadvantages entailed by its usage.
More specifically, we compare the performance, resource utilization, and required de-
velopment effort of OpenCL and RTL implementations of the sort-merge algorithm. We
chose this algorithm because in addition to being one of the most common and critical
functions in many data and query processing pipelines [STM+13, CO14, TW13, UIO15,
WPC+16]; its main primitives, i.e., sorting and merging, represent respectively compute-
and memory-intensive workloads very well. Therefore, our OpenCL vs. RTL benchmarks

62 Chapter 6 Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs

for these primitives would be good indicators of performance for other database pro-
cessing tasks in OpenCL compared to RTL. Furthermore, since sort-merge will serve as
the foundational building block of our database system accelerator (as outlined in Sec-
tion 5.1), these benchmarks will help us in selecting the most optimal implementation for
our platform.

In Section 6.3, we propose a high-performance scalable sort-merge algorithm capable of
sorting large datasets. We also introduce a novel heapsort architecture that eliminates
data hazards while sorting small runs of data. In Section 6.4, we benchmark the perfor-
mance and resource utilization of our OpenCL-based implementation of sort-merge. We
then replace the sorter and merger modules with their equivalent in RTL and present
benchmarks comparing the two. We finally compare the initial OpenCL-based imple-
mentation to the now hybrid OpenCL-RTL implementation. In Section 6.5, we discuss
our results and present some recommendations on developing high-performance FPGA
solutions with OpenCL and RTL.

6.2 RELATED WORK

There is a variety of prior work discussing sorting on FPGAs [STM+13, CO14, TW13,
UIO15, WPC+16]. They all focus on a particular hardware platform and programming
language to implement a sorting algorithm. There has also been research comparing the
performance of other (than OpenCL) HLS tools (e.g., Vivado® HLS, LegUp, Bluespec)
to that of RTL for many algorithms [CDL11, ANA10]. Comparisons between these HLS
tools often show that they result in varying degrees of performance depending on their
maturity, supported features, target applications and input language [ANS+14, NSP+16,
HWFH08].

To the best of our knowledge, we are the first to compare the performance, resource
utilization, and development effort of OpenCL and RTL implementations of a generic
sort-merge algorithm. In what follows, we introduce related work comparing OpenCL
and RTL implementations of other algorithms.

The authors of [ANS+14] compare the OpenCL and RTL implementations of bitonic
sorting networks and linear sorters. For bitonic sorting, RTL achieves 28× higher per-
formance while using 50% of the resources used by OpenCL. For linear sorting, RTL
achieves 2× higher performance while using 10% of the resources used by OpenCL. In the
domain of image processing, the authors of [HCGL15] observe that typical OpenCL ker-
nels for edge detection and feature extraction achieve similar performance to their VHDL
counterparts but at the cost of 2 to 3 times additional resources. For convolutional neural
networks, the authors of [MSC+16] observe 1.9× performance improvements achieved
by using RTL compared to OpenCL. Finally, in the domain of high-energy physics for
floating-point pipelines with low execution hazards, the author of [Fae17] reports a 1.3×
performance boost from OpenCL to RTL.

6.3 ARCHITECTURE

In this section, we outline our sort-merge architecture and describe its constituent mod-
ules and the flow of data among them. We then explain in more detail the design of two
of our key modules: sorters and mergers. We conclude this section by explaining how
our architecture enables resource adaptability and scalability in both input data size (i.e.,
input cardinality) and input data width (i.e., key size).

6.2 Related Work 63

Distributor Distributor

Access

DDR Memory Controller

Merge Scheduler

Merge
Sync

Merge Strategy

Sorter Sorter Sorter Sorter

Merger Merger

Figure 6.1: Sort-merge architecture used for comparing RTL (VHDL) and HLS (OpenCL)
methodologies in the context of database system acceleration.

6.3.1 Global Architecture

Figure 6.1 shows our sort-merge architecture with 4 Sorter and 2 Merger modules. We
assume the input data to be initially placed on the FPGA RAM. The Access module reads
the data and passes it down in a round-robin fashion to the Distributors. The Distributors
in turn pass the data to the Sorters which sort the data in BRAM and write the sorted runs
to the FPGA RAM. Note that depending on the number of Sorters, we can have a network
of Distributors structured like a binary tree.

Once a round of sorting finishes, i.e., every Sorter has written a sorted run to the FPGA
RAM, the Sorters notify the Merge Strategy module to start merging the currently available
sorted runs. They then start the next round of sorting. In the meantime, after being
notified by the Sorters, the Merge Strategy calculates which addresses need to be merged
and sends them, as jobs, to the Merge Scheduler. The latter distributes the jobs to the
Mergers as they become available. Finally, when a stage of merging finishes, the Merge
Synchronizer notifies the Merge Strategy so it can launch new jobs for the next stage.

The arrows in Figure 6.1 represent FIFO buffers that can be implemented in OpenCL as
channels or pipes. They pass data among modules without the need for a shared memory
space. A FIFO buffer is commonly referred to as a queue for short.

To add context relative to the sort-merge architecture introduced in Chapter 5, note that
in Figure 6.1 the modules placed above the DDR Memory Controller make up the Sort-
Network, and the ones below the controller the Merge-Network. The DDR Memory Con-
troller provides access to the FPGA RAM.

6.3.2 Sorter Architecture

When designing an on-chip sorting algorithm on FPGAs, one considers performance,
resource efficiency, and scalability in input cardinality as well as key size. Our additional
challenge was to make sure OpenCL is expressive enough for efficiently describing the
architecture of the algorithm.

With these objectives in mind, we immediately dismissed sorting networks and linear
sorting because of the amount of FPGA resources they require, especially for large input

64 Chapter 6 Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs

cardinalities. In fact, a bitonic sorting network requires O(n log2(n)) comparators and a
linear sorter O(n) comparators in order to sort n numbers. Among traditional sorting
algorithms that require O(1) comparators, we only considered those with a worst-case
complexity in O(n log(n)). This of course also excludes quicksort because its worst-case
complexity can reach O(n2). Between mergesort and heapsort, we opted for heapsort be-
cause of its memory (BRAM) efficiency, given that an efficient mergesort implementation
requires an intermediate result buffer equal in size to the input data. In what follows, we
propose our heapsort algorithm. It is scalable, pipeline efficient (no execution hazards
or stalls), as well as memory efficient (no need for memory duplication or any special
type of on-chip memory). Moreover, it is a traditional sorting algorithm designed for ex-
ecution by CPUs. Therefore, OpenCL is expressive enough to describe it as efficiently as
RTL. Our heapsort algorithm uses a min-heap in order to output data in ascending order.

The heapsort algorithm can be divided into two phases: In phase 1, at each iteration, the
algorithm accepts a new input and inserts it into the heap. With n the total size of the
heap, for every new input it takes up to log(n) reads, log(n) writes and log(n) compar-
isons for the heap property to be valid again. Indeed, the ith input must be compared
with the ancestors of the ith position in the heap until one that is smaller, say at position
k, is found. Then all ancestors connecting position i to k should be shifted down for the
new element to become the direct child of position k. In a pipelined implementation, this
requires a read, a comparison with the new element, and ultimately a write to the lower
position for each ancestor. Finally, a single write is required to insert the new element in
its proper position. Because the paths of the reads, writes and comparisons in the heap
are deterministic (starting from the parent of position i, from child to parent, up to the
root), this results in a fully efficient stall-free execution pipeline. For the same reason,
we can guarantee full pipeline efficiency even with multi-cycle comparators needed to
compare larger data types, resulting in key width scalability. Moreover, given that at ev-
ery clock cycle a single read and write is required, a simple dual-port BRAM available
on almost all FPGAs is sufficient. Overall, this phase of the algorithm requires at most
log(n) + p clock cycles to insert a new element where p is the pipeline depth accounting
for the fixed cost of initially filling the execution pipeline.

In phase 2 of the algorithm, at each iteration, the root (being the smallest element in the
heap) is removed and output. Next, the current last element, say at position i, must be
compared with both children lc and rc of the root for the smallest of the three to become
the new root. If it happens to be element i, the iteration is finished. If, however, the
smallest is one of the children, say lc, then i needs to compete with the children of lc for
its old position. This process must continue until the element at position i becomes the
smallest in comparison with its children, or when it becomes a leaf again. In a pipelined
implementation, an iteration requires up to 2 log(n) reads to access the siblings, 2 log(n)
comparisons to find the smallest of the three elements, and log(n) writes for the smallest
of the three elements to then be written at the available position, at each level of the heap.

The second phase of heapsort as presented here has two main inefficiencies. In what fol-
lows, we shall discuss these inefficiencies and propose optimizations to overcome them.

Dual-Memory Optimization

The first observed inefficiency is that the second phase requires two BRAM reads and
one write at every level of the heap. Simple dual-port BRAMs (i.e., BRAMs used in
simple dual-port mode described in Section 3.1.2) readily available on all FPGAs require
stalling the pipeline until all 3 operations are done. Thus however, the execution pipeline
needs twice the number of clock cycles to handle an iteration of phase 2 of the algorithm,

6.3 Architecture 65

0

3 2

7 4 5 6

-
3
7
5

0
2
4
6

-
F
F
T

LM RM LSRM

Figure 6.2: An example of the memory model used by our heapsort algorithm. Left
memory (LM) and right memory (RM) are used to store the left and right siblings in the
heap, respectively. The left smaller-than right memory (LSRM) indicates, for each pair of
siblings, whether the left sibling is smaller than the right one.

compared to a phase 1 iteration. Although quad-port BRAMs available on most modern
FPGAs can solve this issue, a simpler yet more elegant solution is to arrange the memory
differently.

The solution is based on the observation that the two reads at every level of the heap
are to two siblings. Therefore, by storing the heap in two simple dual-port BRAMs, one
left memory (LM) containing only the left children and another right memory (RM) con-
taining only the right children, we can do both reads and the write in a single clock
cycle. An example heap and its corresponding memory configuration are shown in Fig-
ure 6.2. The memories are presented vertically for better visualization. Note that the
optimization presented in this section is achievable in OpenCL as it provides support
for multi-bank BRAM-based memories with independently accessible read/write ports
for each bank [Int19]. Also note that although our optimization is somewhat similar to
the ones used by the algorithms presented in [Zab11] and [TMA11], the former requires
substantially more comparators and the latter uses mixed-width BRAMs.

Lookahead Optimization

Another inefficiency in the second phase of our heapsort algorithm occurs due to control
hazards. Indeed, the nodes that must be fetched from the BRAM at every level depend
on the result of the comparisons at the parent levels. The negative effects of such haz-
ards scale with the key size. For larger keys, multi-cycle comparisons might be needed
resulting in more pipeline stalls.

To overcome this challenge, we augment our dual-memory heap data structure to indi-
cate, for each element in the LM, whether it is smaller than its corresponding sibling ele-
ment in the RM. This part of the data structure is represented as the left smaller-than right
memory (LSRM) shown in Figure 6.2. LSRM has a width of 1 bit (as it stores Booleans)
and a depth equal to half the cardinality of the input data, therefore needs a negligible
amount of BRAM to store. Assuming we can maintain such a data structure, all control
hazards may be avoided. Indeed, given that comparison results between all siblings in
the heap are available, the path of an element i down the heap can be determined in ad-
vance. Hence the pipeline could issue reads to the lower levels of the heap without the
need to have the results of the comparisons at the previous levels. Once i finds its proper
place, the previous stages of the pipeline should be flushed.

The only remaining question is how to create and maintain such a data structure. At the
beginning of phase 1 of the algorithm, the heap is empty, so the LSRM property holds.
In future iterations of phase 1, every time a new element goes up the heap, we use the
dual-memory data structure to compare it, in addition to the parent, with the sibling

66 Chapter 6 Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs

CMMemory
Master

0

1

S0

Memory
Master

Merger

DDR Memory Controller

Figure 6.3: Merger Architecture

of the parent. Hence in the event the new element takes the place of the parent, we
know how the LSRM memory should be updated. Moreover, when an element is pushed
down, because of the heap property it will be smaller than its new sibling. Thus, with
one additional comparator we can maintain the LSRM memory property during the first
phase of the algorithm. The same trivial analysis can be applied to the second phase
of the algorithm, for which one additional comparator is needed to maintain the LSRM
memory property. Note that this optimization can also be fully implemented in OpenCL
by adding a new memory bank for storing the LSRM structure.

6.3.3 Merger Architecture

The architecture of the Merger is shown in Figure 6.3. A Memory Master reads the sorted
runs from the FPGA RAM and feeds them through FIFO buffers to a comparator-merger
(CM). The latter merges the sorted runs before storing the result back into the FPGA
RAM through another FIFO buffer-Memory Master pair. The architecture can be scaled
for merging more than two lists at a time.

The OpenCL implementation consists of 3 modules. Two of them fetch sorted runs from
the FPGA RAM feeding them into two inter-kernel channels. The third module merges
the keys coming from those channels and writes the result back to the FPGA RAM.

Note that the throughput of the CM module decreases linearly with the number of cy-
cles the comparators require. If an n-cycle comparison is required, n + 1 Mergers will
be needed to merge at maximum throughput. This is manageable thanks to the small
resource footprint of the Mergers (see Section 6.4.3).

6.3.4 Scalability and Resource Adaptability

The proposed architecture is easily scalable and adaptable to different key sizes and
FPGA platforms. The number of Sorters and Mergers can be increased to achieve higher
throughput and to take advantage of the full bandwidth of the FPGA RAM. One im-
portant functionality of the Distributors and the Merge Scheduler is to decrease the fanout
of the design and ultimately reduce the impact of such up-scaling on the system fre-
quency. The Sorters can also be configured to sort smaller (or larger) runs depending on
the amount of resources the FPGA can dedicate to this functionality.

Merging is divided into four phases: Strategy, Scheduling, Execution, and Synchroniza-
tion. Each phase can be fine-tuned to better suit the problem and hardware at hand.
For instance, in the absence of high-bandwidth FPGA RAM, the Merge Strategy could be
modified so it only starts merging after all the sorted runs are available. This decreases
congestion on the memory bus, ultimately improving performance.

6.3 Architecture 67

Impl. Freq. [MHz] LU [ALM] BU [M20K] ET [s] Thr. [MB/s]
OpenCL 184 408, 683 (43.8%) 1762 (15%) 3.77 284

Table 6.1: Characteristics of the OpenCL implementation of the sort-merge algorithm
with 16 Sorters and 4 Mergers. Execution time (ET) and throughput (Thr.) values are for
sorting the Basic Workload.

6.4 EXPERIMENTS

In this section, we start by presenting benchmarks of our sort-merge architecture devel-
oped entirely using OpenCL. We then identify underperforming modules and compare
them with their RTL equivalent. Next, we replace them with their RTL equivalent result-
ing in a hybrid OpenCL-RTL sort-merge architecture. Finally, we compare the OpenCL
and the hybrid implementations.

For comparing the different implementations, a data set of 16.5 million randomly gener-
ated 512-bit numbers, which we shall call the Basic Workload is used. 512-bits is the width
of the OpenCL memory bus for our FPGA platform; hence our modules could receive up
to one new key per clock cycle without any potential width conversion overhead. The
sort-merge implementation used in our benchmarks has 16 Sorters configured to sort runs
of 1022, 512-bit numbers, and four 2-way Mergers for merging the sorted runs.

The implementation runs on the D5005 PCIe-based Intel® FPGA acceleration card sup-
porting a Stratix® 10 FPGA and 32 GB of DDR4 RAM [Cor19a]. We use OpenCL compiler
version 19.1 which supports a maximum DDR RAM throughput of 20 GB/s at 333 MHz
on our FPGA. The FPGA RAM is divided into 4 channels. OpenCL uses memory inter-
leaving to provide fast access to all 4 channels at the same time [Int19, ZZZ00].

We present logic utilization (LU), BRAM utilization (BU), DDR RAM bandwidth utiliza-
tion, throughput, and workload execution time (ET) to characterize and compare differ-
ent implementations. Moreover, the OpenCL compiler provides for each loop in every
module, a Loop Initiation Interval (II) and a latency value. II is the estimated number
of clock cycles between the launch of successive loop iterations [Int19]. Indeed, based
on the amount of dependency between loop iterations, OpenCL can pipeline the hard-
ware needed for an iteration so multiple of them can be launched in parallel, resulting
in smaller II values. An II value of 1 is the theoretical best and means that a new loop
iteration can launch at every clock cycle. The latency of a loop is the number of clock
cycles it takes for an iteration to finish.

It is important to note that the OpenCL compiler first compiles the input C code into RTL
before synthesizing it into an image for the FPGA. However, this generated RTL is not
"human-readable", especially for medium to large designs. This makes a deep analysis
of OpenCL and a perfect comparison with custom RTL practically impossible and leaves
us with the aforementioned metrics such as II and latency to characterize and compare
OpenCL and RTL code.

6.4.1 OpenCL Sort-Merge Implementation

The characteristics of the OpenCL implementation of our sort-merge algorithm and its
performance on the Basic Workload are shown in Table 6.1. The entire architecture took us
about 3 weeks to implement and optimize.

68 Chapter 6 Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs

Impl. Freq. [MH] LU [ALM] BU [M20K] Thr. [MB/s]
OpenCL 223 13, 725 (1, 47%) 52 (0.44%) 126

RTL 325 4, 488 (0.48%) 27 (0.23%) 843

Table 6.2: Comparison between the OpenCL and RTL implementations of the Sorter.
Throughput (Thr.) is for sorting random 512-bit keys producing runs of 1022 numbers.

Both the Access and Distributor modules have a main loop where they continuously read
data and distribute it to the lower layer of the distribution network. Both loops have an
II of 1. It signifies that at every clock cycle, they can read and distribute one new element.
Hence, they reached maximum theoretical performance.

The Merge Strategy, Scheduler and Synchronizer have IIs of respectively 3, 1, and 1 for their
main loops. Only the Merge Strategy has an II larger than the minimum theoretical value;
but this is fine given that it can still provide jobs to the Mergers far faster than they can
execute them.

The Sorter modules are composed of two nested loops. In the first nested loop, the outer
loop accepts a new element which the inner loop places in its correct position in the heap.
The second nested loop is similarly structured with the outer loop yielding a new output
and the inner loop restructuring the heap for correctness. It is crucial for the inner loops
to have the highest theoretical performance. However, both inner loops have an II of 2.
Therefore, they are estimated to have a throughput which is two times lower than they
were designed to process. They also present an unexpected high latency of 21 and 13
clock cycles. This means that for every new input (resp. output) handled by the outer
loop, it takes 21 (resp. 13) clock cycles before even the first iteration of the inner loop is
done. Given that the inner loops need to iterate at most as many times as the height of
the heap, these additional latencies incur a significant burden. Indeed, for our heaps of
1022 elements, the inner loops require 21 and 13 clock cycles to start, after which they
will run for at most II × 10 = 20 clock cycles. This level of overhead is unacceptable.

As for the Mergers, their performance-critical main loop compares two numbers to out-
put the smaller of the two while replacing it with a new one. Because of the dependency
between consecutive iterations (inherent to the nature of merging) we expect an II of 3.
Indeed, the comparison (of two 512-bit numbers) should take approximately two clock
cycles and the input/output functionality another, resulting in a 3 clock cycle delay be-
fore data for the next iteration is ready. However, OpenCL reports an II of 8 which is
approximately three times higher than expected. It also reports a loop latency of 35,
which is fine considering that the loop performs a large number of iterations.

Based on our analysis, we decided to use an RTL implementation of the performance-
critical Sorter and Merger modules. The following two sections discuss improvements
due to these changes.

6.4.2 RTL Sorters

In this section, we compare the characteristics of a single OpenCL Sorter against those of
an equivalent RTL implementation, both based on the architecture described in Section
6.3.2. Our RTL Sorter has an II of 1 and a latency of 6 clock cycles. This is an improvement
over the II of 2 and latency of up to 21 clock cycles for the OpenCL Sorter. Based on these
values, we expect the RTL implementation to perform at most 2 to 3 times better than the
OpenCL implementation.

6.4 Experiments 69

Impl. Freq. [MHz] LU [ALM] BU [M20K] Thr. [MB/s]
OpenCL 267 25, 913 (2.8%) 92 (0.78%) 1, 142

RTL 302 1, 803 (0.2%) 43 (0.37%) 6, 500

Table 6.3: Comparison between the OpenCL and RTL implementations of the Merger.
Throughput (Thr.) is for merging 2 sorted lists of 16.5 million 512-bit keys.

However, our benchmarks shown in Table 6.2 tell a different story. The RTL Sorter, de-
spite using half as much the FPGA resources, reaches more than 6 times the throughput of
the OpenCL Sorter. After normalizing for frequency, this improvement factor goes down
to 4.5×, remaining well above our expectations. Given that the II and latency values
obtained from the RTL description are accurate, we can only conclude that the OpenCL
estimations are off by approximately a factor 1.5. This casts doubts on other modules’
II estimations. The Access, Distributor and Merger modules are the only performance-
critical components of our design. For the Access and Distributor modules, additional
benchmarks show that they reach an II of 1 as advertised by OpenCL. As for the Mergers,
they are discussed in length in Section 6.4.3.

Finally, it is interesting to note that each of the OpenCL and RTL Sorter designs took ap-
proximately 1 week to implement. The unexpectedly short implementation time of the
RTL version is mainly thanks to OpenCL. Indeed, OpenCL can automatically generate
simulation testbenches for modules written in RTL. This greatly reduces RTL develop-
ment time as functional verification is a lengthy part of the digital design flow.

6.4.3 RTL Mergers

In this section, we compare the characteristics of a single OpenCL Merger against those
of an equivalent RTL implementation, both based on the architecture described in Sec-
tion 6.3.3. The RTL Merger has both an II and a latency of 3 clock cycles. The OpenCL
Merger discussed in Section 6.4.1 achieves an II of 8 and a latency of 35 clock cycles. Based
on these values, we expect the RTL implementation to reach approximately 3 times the
throughput of the OpenCL implementation.

Table 6.3 shows the results of our benchmarks. The throughput numbers, after normal-
izing for frequency, indicate that the RTL Merger has 5 times the performance of the
OpenCL implementation. This is again higher than the expected improvement factor of 3.
It could be partially explained by the inaccuracy in the II values reported by OpenCL. An-
other plausible explanation is the inefficiency of memory accesses. Indeed, merging is a
memory-intensive task with sequential burst memory access patterns. It could be that
OpenCL is unable to make efficient burst accesses to the FPGA RAM. Further bench-
marking dismissed this second hypothesis: a simple OpenCL kernel copying data from
the FPGA RAM back to the FPGA RAM with the same access pattern as merging can
achieve throughputs of more than 20 GB/s. This observation left us again with the in-
accurate estimation of II by OpenCL as the only explanation. This is a major issue, as it
affects the predictability of hardware designs in OpenCL.

Table 6.3 also shows that the RTL Merger uses approximately 10 times less logic and half
as many BRAMs than the OpenCL Merger. We believe that these large factors are mainly
due to the generic nature of the primitives used by OpenCL to implement various mod-
ules.

Finally, the RTL and OpenCL Mergers cost us each approximately one working week to
implement. Our conclusions regarding development effort for the Sorters apply equally
well for the Mergers.

70 Chapter 6 Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs

Impl. Freq. [MHz] LU [ALM] BU [M20K] ET [s] Thr. [MB/s]
OpenCL 184 408, 683 (43.8%) 1762 (15%) 3.77 284
Hybrid 217 163, 848 (17.5%) 1706 (14%) 1.03 1000

Table 6.4: Comparison between the OpenCL and hybrid OpenCL-RTL implementations
of the sort-merge algorithm. Both implementations boast 16 Sorter and 4 Merger units.
Execution time (ET) and throughput (Thr.) are for sorting the Basic Workload.

6.4.4 Hybrid OpenCL-RTL Sort-Merge Implementation

Based on our findings from Sections 6.4.2 and 6.4.3, we decided to use the RTL versions
of the Sorter and Merger modules in our now hybrid sort-merge implementation. We
continue using the OpenCL implementation of the remaining components.

Table 6.4 shows the characteristics of the hybrid sort-merge implementation. For the sake
of comparison, we also included the characteristics of the equivalent OpenCL implemen-
tation from Section 6.4.1. The hybrid design runs at a higher frequency, uses considerably
less logic, and has 3.5× higher throughput. This is a smaller improvement in perfor-
mance compared to what we obtained for the individual RTL modules in Sections 6.4.2
and 6.4.3. There are two reasons behind this. First, the frequency of the overall archi-
tecture is about 30% lower than the individual RTL modules in their own benchmarks.
Second, all Merger and Sorter modules access the FPGA RAM simultaneously. In our sort-
merge implementation with 16 Sorters and 4 Mergers, memory bus congestion can play
an important role in degrading system performance. Indeed, our hybrid design saturates
the 14 GB/s DDR RAM bandwidth provided by the FPGA platform at a frequency of 217
MHz.

As mentioned earlier, the sort-merge implementation runs at a lower frequency than the
individual Sorter and Merger modules. The amount of drop in frequency seems to be a
function of the size of the design. For instance, increasing the number of Sorters from 16 to
32 reduces the frequency by about 30MHz. OpenCL has pragmas and compiler flags for
controlling the design frequency. However, it seems incapable of reaching timing closure
if higher frequencies are requested. Moreover, given that the RTL generated by OpenCL
is not human-readable and that it does not provide links between the source code and
the generated RTL, it is quite difficult to detect, correct or even influence timing closure
or placement and routing at OpenCL level. The OpenCL programming guide suggests
decreasing the size of the design or trying different compilation seeds as ways for dealing
with failed timing closure [Int19]. The former may result in a loss of functionality or
performance and the latter could only solve relatively small timing issues.

Our final remark on the hybrid implementation concerns portability. Intel® OpenCL pro-
vides seamless integration of RTL into OpenCL code: the RTL description is wrapped
inside a C function that can be called anywhere within the OpenCL code. This means
that our architecture remains OpenCL-compatible, keeping most of the advantages of
the platform discussed in Section 6.1. However, although OpenCL itself is standardized,
the version used by Intel FPGA tools is not universally adopted. This means that code
written in OpenCL for Intel FPGAs may result in inefficiencies or not compile at all in
tools from other FPGA vendors. Indeed, each vendor has its own extension to OpenCL,
with unique pragmas and optimization features added to support FPGA development.
RTL languages (e.g., VHDL, Verilog) do not have this issue.

6.4 Experiments 71

6.5 SUMMARY & DISCUSSION

In this chapter we quantitatively measured the tradeoffs of using OpenCL and RTL for
implementing sort-merge primitives. We compared our implementations in terms of per-
formance, FPGA resource utilization, and required development effort. In what follows,
we list and discuss our main findings:

• Performance: Despite similar development effort, our RTL implementations of
the Sorter and Merger modules perform at least 4 times better than their OpenCL
counterparts. However, for some of the simpler modules such as the Distributors,
the OpenCL implementations reach optimal performance. We can therefore con-
clude that depending on the complexity of the algorithm, OpenCL may or may
not achieve performance comparable to that of hand-crafted RTL. Nonetheless, it
is difficult to quantitatively measure the complexity of a design in order to decide
whether it should be implemented in OpenCL or RTL. In addition, with OpenCL-
generated RTL being hard to read and the compiler reporting inaccurate efficiency
measures, it is also difficult to estimate the quality of an OpenCL implementation.
Our recommendation for deciding between OpenCL and RTL is based on the nature
of the module. We recommend performance-critical modules be primarily imple-
mented in RTL.

• FPGA Resource Utilization: The OpenCL vs. RTL benchmarks show that our RTL
implementations use less than half the resources (both logic and BRAM) of their
OpenCL counterparts. These results are to be considered in applications where
FPGA resources are scarce, either due to the size of the design or that of the FPGA.
They must also be taken into account in applications that achieve scalability through
replication. For instance, with the same FPGA resources, we can implement twice
as many RTL Sorters than OpenCL ones, resulting (theoretically) in twice the sorting
throughput.

• Development Effort: Optimizing the OpenCL implementations of the Sorter and
Merger modules took us nearly as much time as efficiently implementing them in
RTL. However, RTL development effort was greatly reduced thanks to the testbench
generation and simulation capabilities provided by OpenCL for RTL modules.

To put our findings into context, consider the development of a database system acceler-
ator. It has many more performance-critical modules (e.g., filter, aggregation, join, pro-
jection) than the simple sort-merge design studied in this chapter. These modules are
typically placed in a pipeline where bottlenecks should be avoided (see Section 5.2). In-
deed, a slow module placed anywhere in the processing chain slows down the entire
pipeline. It is therefore crucial for these modules to be implemented using RTL. When it
comes to resource utilization, one must remember that database system accelerators are
large systems, so resource efficiency is essential for fitting them on an FPGA (see Section
4.3.4). This gives us another reason to use RTL instead of OpenCL (or HLS in general),
given that it almost universally results in considerably lower resource utilization. To con-
clude, our analysis shows that a fully RTL-based implementation is more suitable for
database system acceleration. The only potential downfall is increased simulation ef-
fort. We can overcome this by using modern HDLs such as Chisel allowing us to write
testbenches in high-level languages such as Scala. Moreover, they help us achieve the
compile-time flexibility we need to customize the architecture for a particular workload
and FPGA platform, as discussed in Section 5.1.

72 Chapter 6 Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs

7
RESOURCE-EFFICIENT ACCELERATION OF

PIPELINE-BREAKING DATABASE OPERATORS
ON FPGAS

7.1 The Case for Resource Efficiency

7.2 Related Work

7.3 Architecture

7.4 Experiments

7.5 Summary

FPGAs are composed of a limited amount of reconfigurable resources. This restricts the
number and type of modules (i.e., circuits) that an FPGA can support at the same time.
Therefore, resource efficiency is crucial for accelerating large database systems on FPGAs.
In this chapter, we propose morphing sort-merge (MSM): a sort-based database system
accelerator that achieves resource efficiency by reusing the FPGA’s resources to execute
different pipeline-breaking database operators at runtime. Our benchmarks show that
MSM reaches an average speedup of 5× compared to MonetDB.

Note that parts of the material presented in this chapter have been previously published
in DaMoN’21 [MFL+21].

7.1 THE CASE FOR RESOURCE EFFICIENCY

Resource constraints are a major hurdle in system design on FPGAs. In the context
of database system acceleration, these constraints are often not a limiting factor for
streaming operators (e.g., filter, projection) as they have low complexity and thus re-
quire few resources [FMH+20]. The challenge is in implementing the more complex
pipeline-breaking database operators. Indeed, current implementations of both hash-
based [HSM+13, ABW+16, HANT15] and sort-based [STM+13, CO14] database opera-
tors on FPGAs are quite resource-demanding.

The authors of [HSM+13] report a 26% BRAM utilization for hash joins on a Stratix IV
FPGA. In [ABW+16], around 20% of a Virtex-6 FPGA’s BRAMs are used for hash-based
aggregation. The authors of [HANT15] store their hash tables on the FPGA RAM result-
ing in an 18% BRAM utilization and a whopping 46% logic utilization for hash joins on
a Virtex-6 FPGA. The authors of [STM+13] report approximately 24% BRAM utilization
for sorting with a Stratix V FPGA while [CO14] reports at least a 50% BRAM utilization
for a 12-level merge tree on a Virtex-6 FPGA.

We dedicated Section 4.3.4 of this thesis to a survey on various methods used by existing
database system accelerators to overcome FPGA resource limitation challenges. In this
chapter, we describe the tradeoffs of these methods and proposes our own technique for
efficiently accelerating the sort, aggregation, and join operators by optimizing the usage
of FPGA resources.

An FPGA design can achieve resource efficiency by reusing its dedicated resources to sup-
port different functionality through runtime configurability. Compile-time parameters are
parameters of the RTL code that often affect the architecture of the design and can only
be changed before compilation begins. Runtime parameters are control-flow and data-flow
parameters that can be altered while the design is running on the FPGA. Runtime config-
urability allows users to change the behavior of the design while it is running on the
FPGA, through runtime parameters.

In Section 7.3 we propose a resource-efficient database system accelerator, called MSM.
MSM is a set of FPGA modules based on the sort-merge algorithm that can support any
of the sort, aggregation, and join operators through runtime configuration. We also in-
troduce a few optimization mechanisms (e.g., dynamic distribution and feedback) that
improve the performance of MSM on both uniform and highly skewed datasets. MSM
also achieves efficient RAM bandwidth utilization, as explained in Sections 7.3.2, 7.3.4,
and 7.3.5. Benchmarks in Section 7.4 demonstrate throughput speedups of on average 5×
compared to a 28-threaded MonetDB installation.

74 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

7.2 RELATED WORK

In Chapter 5, we defined the objective of our research to be the acceleration of pipeline-
breaking database operators. Past research listed in Section 4.3 proposes a few efficient
techniques for implementing these operators. We summarize and describe the tradeoffs
of these techniques below.

Hash-based techniques are commonly used to accelerate the join [PHL18, HSM+13,
HANT15] and aggregation [PHL18, WIA14, WFS+19, ABW+16] operators. Hash tables
stored on the BRAMs of the FPGA benefit from low-latency and high-throughput, but
often lose performance or rely on subsequent processing to deal with overflows and col-
lisions [WIA14, WFS+19]. Indeed, collision resolution using techniques such as linear
probing or double hashing makes hash table access times unpredictable, thus greatly re-
ducing the efficiency of the processing pipeline [WTA13, UIO15]. Hash tables stored on
the FPGA RAM benefit from latency hiding through pipelining and offer better resis-
tance to overflows and collisions, but are limited by the bandwidth of the RAM which
is lowered due to their random access patterns [HANT15, WIA14]. Cache based imple-
mentations using constructs such as content addressable memories (CAM) try to strike a
balance between the two but are limited due to the complexity of large CAMs negatively
affecting the design frequency [ABW+16]. Hash-based sorting attempted in [PHL18]
constraints the range of the input keys and may result in sub-optimal memory usage
depending on their statistical distribution [Gil04].

Sort-based techniques present a more generic and end-to-end solution compared to
hash-based techniques [STM+13, CO14]. Indeed, when operating on sorted tables,
pipeline-breaking operators become much simpler to implement, often turning into
single-pass algorithms [Sch09]. Moreover, sorting performance is typically far less sensi-
tive to the distribution of data, compared to the performance of a hash table. However,
sorting presents some of its own disadvantages. Sort-merge, the commonly used algo-
rithm for sorting large tables may require multiple passes over the data; therefore, it is
often memory bound [CO14]. Furthermore, depending on the size and distribution of the
input tables, sorting might result in sub-optimal performance on hash-friendly operators
such as aggregations and joins [UIO15]. Indeed, the expected algorithmic complexity of
hashing (O(n)) is lower than that of sorting (O(n log(n))). However, the cost of sorting is
often amortized across multiple operators through interesting orders [SAC+79, GSDB12].

FPGA reconfiguration (reprogramming) can be used to switch between hash-based and
sort-based implementations. For instance, the authors of [UIO15] implement sort-merge
join and hash join as separate FPGA images and switch between the two based on a cost
model. Approaches based on reconfiguration have a few drawbacks. First, the full re-
configuration of an FPGA takes time in the order of seconds to perform, limiting system
performance if the stream of operators requires frequent image swaps. Second, reconfig-
uration resets all FPGA logic, hence the accelerator can only be dedicated to executing a
single operator at a time. Third, reconfiguration might also reset the RAM controllers po-
tentially leading to data corruption [WPC+16]. Therefore, data needs to be reacquired by
the FPGA after every image swap. Dynamic partial reconfiguration techniques, whereby
only a portion of the FPGA chip is reconfigured, could alleviate the latter two limitations
but the first one remains [VF18]. The authors of [DZT12] take advantage of this technol-
ogy to accelerate streaming operators projection and restriction.

We design our accelerator for multi-client data center environments where a continuous
stream of concurrent and consecutive queries needs to be executed. The overhead of po-
tentially reconfiguring (a part of) the FPGA before the execution of every query is too
high for our application. Among the other two techniques, sort-based implementations

7.2 Related Work 75

appear to be more adequate for FPGA acceleration. To start, they allow us to efficiently
implement all three of our target pipeline-breaking database operators. This is how we
justified sort-based query processing in Chapter 5. Furthermore, compared to hash tables
that needs to deal with overflows and collisions, sorting follows a more regular execution
flow when dealing with a large number of rows or various data distributions. This has
two implications. First, sorting has a more predictable performance compared to hash
tables whose performance may be significantly impacted by the number of collisions and
overflows. Second, sorting is more resource efficient. Indeed, in digital design, the worst-
case time of an operation may determine the complexity of the implementation [KM10].
This means that for hash-based techniques, the circuit employed for dealing with colli-
sions/overflows, no matter how rarely used, must still be present and run on the FPGA
all the time. Sorting achieves higher resource efficiency by using all of its circuits during
normal operations, thanks to its more regular execution flow. Resource efficiently is of
course also achieved by sharing the sort pipeline among all three of the pipeline-breaking
database operators, as explained earlier in Chapter 5.

In this chapter, we use runtime configurable sort-merge primitives to support multiple
database operators and to adapt to different data distributions on a single FPGA image.
This allows us to achieve an efficient use of FPGA resources. The idea of runtime config-
uration has been successfully applied in past work [SIOA17, TWN12, WIA14], but often
at smaller scale and for single operators (e.g., defining automata for regular expression
matching, or predicates for filtering). To the best of knowledge, this is the first work ex-
ploring this idea for accelerating distinct resource-intensive pipeline-breaking database
operators, and with the goal of achieving both high performance and resource efficiency.

7.3 ARCHITECTURE

The architecture of MSM is based on the sort-merge algorithm, described in detail in
Section 4.3.2. As a reminder, the algorithm works as follows. A streaming sort phase
transforms a table into small runs of sorted rows. A subsequent merge phase merges the
sorted runs, after potentially multiple passes, into the sorted output. Our main contri-
bution to the typical sort-merge algorithm is the design of a sort phase that can morph
into an efficient early aggregation phase, and that dynamically adapts to the statistical
distribution of the input for higher performance. Early aggregation is a streaming algo-
rithm capable of partially aggregating data, but which requires further processing by the
merge phase to ensure complete aggregation [Lar02]. The benefit of early aggregation
is that it may reduce the amount of data there is to merge, thus improving the perfor-
mance and memory bandwidth efficiency of the aggregation operator. Early aggregation
is discussed in greater detail in Chapter 9.

An overview of our architecture is shown in Figure 7.1. The sort phase of our algorithm is
performed by a Sort-Network and the merge phase via a multi-way Merge-Network. They
both access the FPGA RAM to read initial and intermediate data and to store their results.
Throughout our architecture, we use modular components with standardized interfaces.
This makes it easy to both update previous modules and insert new ones for extending
the functionality of the accelerator.

76 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

Distributor

Collector

Sorter Sorter

Distributor

Collector

Sorter Sorter

Distributor

Collector

Multi-Buffer Store

Sequential Load

Hasher

D
is

tri
bu

tio
n

Tr
ee

FP
G

A
D

D
R

 R
AM

8:4 Merger

Multi-Buffer Load

4:2 Merger

2:1 Merger

JoinMat

Sequential Store

Sort-Network

Merge-Network

FPGA
FPGA Card

Request Response

Q
2

Q
0 Q

1
Q
3

LM RM

2-Way Merger

Distributor

Response Request

Request Response

4:2 Merger

WriteRead

Read

N
ew

 R
oo

t Q
ue

ue

New Row

Output Row

Sorter

Treap Memory

Fr
ee

 A
dd

re
ss

 Q
ue

ue

Insert Logic

Output Logic

By
pa

ss

Request Response

Request Response

Figure 7.1: Architecture of our database system accelerator MSM

7.3.1 Sorters

A Sorter in the Sort-Network transforms a stream of rows into sorted runs of cS rows and
can be configured to perform early aggregation at the same time. For sorting, we consid-
ered algorithms that offer performance, resource efficiency, and scalability; as previously
discussed in Section 6.3.2. Sorting networks and linear sorting were dismissed due to
their resource requirement (e.g., O(cS log2(cS)) comparators needed for bitonic sorting
networks [Bat68]) and scalability issues. We also dismissed algorithms with relatively
high time/space complexity such as insertion sort, selection sort and mergesort. To sup-
port early aggregation, we considered algorithms and data structures that ensure that an
inserting row is compared and aggregated with a potentially existing row with the same
key, allowing them to absorb more rows than they output. This is for instance not the
case for the heapsort algorithm explored in Chapter 6. With these criteria in mind, we
selected the treap data structure as the basis of our Sorters, both for its simplicity and to
enable some further optimizations discussed below.

A treap is a randomized binary tree where each node consists of a key and a random
priority. The treap is a binary search tree (BST) with respect to the key values and,
simultaneously, a max-heap with respect to the priorities [MR95]. To insert a new key,
the treap is first considered to be a BST. The key is inserted as a leaf of the tree. Next, a
random priority is assigned to the key, and left/right rotations are performed until the
heap property is satisfied. It can be shown that the expected depth of a treap of cS nodes
is in O(log cS) [MR95]. As a result, the treap is statistically expected to be balanced.

In our implementation, each node of the treap represents a database row. The row’s key
becomes the node’s key, and its columns are considered as values attached to the key
and stored within the node. The treap is stored in the BRAMs of the FPGA enabling fast
random access. It can hold at most cS nodes, a compile-time parameter bounded by the
FPGA’s limited BRAM resources. The randomized priorities are generated by a Galois
linear-feedback shift register [Lim08]. When the treap becomes full, an in-order traversal
of its nodes extracts the rows in sorted order, until the treap is empty again. We define

7.3 Architecture 77

this as the fill-empty cycle of the Sorter. The treap capacity cS defines the size of the sorted
runs produced by a Sorter.

We use treaps for both sorting and early aggregation. Given that a treap is a BST with
regards to its keys, the first step in inserting a row ρi into the treap is inherently the same
as searching for a node representing a row with the same key. If such node does not
exist, a leaf will be reached where ρi is inserted. Otherwise, the search leads to a node
containing row ρj with the same key. In this case, depending on the target operator (sort
or aggregation), different actions need to be taken:

• Sort: The search ignores ρj and continues down the tree.

• Aggregation: ρj is updated with the result of accumulating ρi into ρj . ρi is discarded
and the insertion operation terminates.

The runtime configurability of this choice of action translates into a Sorter’s morphing
capabilities, hence our goal of resource efficiency. Note that regardless of the operator,
a Sorter always produces sorted runs which can later be merged to complete sorting or
aggregation.

We conclude this section by describing some of the performance improving optimizations
applied to our Sorter implementation.

Prefetching The BST-like part of the treap insertion process requires the Sorter to com-
pare a new key to a sequence of the nodes of the treap starting from the root down to
(potentially) a leaf where it should be placed. The comparison result with a given node
determines which of its left or right children must be fetched and compared next. If every
comparison requires multiple clock cycles to perform, the Sorter can preemptively fetch
(from the BRAMs) the children of a node ensuring that they will be ready to compare
once the current comparison completes. This results in latency hiding, thus better uti-
lization of the BRAM bandwidth and a faster treap insertion operation. Needless to say,
depending on the result of the current comparison, only one of the prefetched children
should be compared next. A further optimization can be applied to pipelined multi-cycle
comparators: in case the prefetched children of a node are received before its comparison
ends, they can speculatively start their comparison to the new key as well.

Parallel IO This optimization parallelizes the fill-empty cycles of a Sorter. As the
Sorter’s treap becomes full and is being emptied, a new treap can grow in its place, reusing
the incrementally freed up memory of the previous instance. The Sorter architecture is il-
lustrated in Figure 7.1. A quad-port memory is the centerpiece capable of holding up to
cS treap nodes. Initially, the Insert Logic populates a treap. Once full, it notifies the Output
Logic about the existence of a new treap that needs to be emptied producing a sorted run.
It does so by pushing a pointer to the root of the treap into the New Root Queue. It then
moves on to create a new treap. Every time the Output Logic outputs a row, it frees a node
by pushing its pointer to the Free Address Queue so it can be reused by the Insert Logic
when inserting a row into the new treap.

78 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

Feedback This optimization is based on the observation that nodes closer to the root
of a treap are the first to be reached, hence more quickly examined while inserting a
new row. It aims at improving the performance of early aggregation on highly skewed
data by bringing nodes with frequently occurring keys close to the root of the treap.
We use feedback as a means to implement this optimization. Each node of the treap
maintains a counter for the number of times it has been aggregated, called hit count.
When the treap becomes full, it is emptied and a new treap is created. The feedback
optimization reinserts nodes with a high hit count back into the new treap and assigns to
them a relatively high priority to ensure that they remain close to the root. This happens
automatically thanks to the max-heap and randomization properties of treaps.

7.3.2 Sort-Network

As the Sorters sort/aggregate with an expected time complexity in O(cS log cS), they re-
quire on average O(log cS) clock cycles to process a new row. In order to reach higher
throughputs, a sort-network with multiple Sorters sharing the load is required. We use
nS to refer to the number of sorters in a sort-network. Figure 7.1 presents the architec-
ture of the sort-network. The Sequential Load module reads and streams the rows of a
table stored on the FPGA RAM to the Hasher. The latter hashes the rows based on their
keys and distributes the (row, hash) pairs through the Distributor modules down to the
Sorters. The distribution strategy varies depending on the data and is described later in
this section. Depending on the operator, the Sorters produce sorted and potentially par-
tially aggregated runs of cS rows. The Collector and Multi-Buffer Store modules collect the
sorted runs and store them in separate buffers on the FPGA RAM so they can be further
processed by the merge-network (see Section 7.3.4).

The dynamic distribution strategy implemented by the distribution tree helps MSM
achieve lower reduction factors for early aggregation. Reduction factor is the ratio of the
number of rows at the output of the Sort-Network over its input. Improved data reduc-
tion results in fewer sorted runs being produced, therefore less work for the merge phase.
This in turn reduces RAM bandwidth utilization and improves performance. The opti-
mization ensures that rows with identical keys are distributed to the same Sorter, so they
have a better chance of being aggregated. To achieve this, the Distributors can switch
between two distribution mechanisms:

• Hash-based distribution mechanism: The hash-based mechanism distributes a row
to a Sorter based on the hash of its key, hence guarantees that rows with identical
keys are distributed to the same Sorter. This allows the nS Sorters of a Sort-Network
to collectively absorb up to cN = nS ×cS unique keys, where cN denotes the capacity
of the Sort-Network.

• Availability-based distribution mechanism: The availability-based mechanism dis-
tributes a row to the first Sorter that is available to accept it, ensuring maximum
throughput by keeping all Sorters busy at all times.

The dynamic distribution strategy consists of switching between the two mechanisms based
on the input data. The Hasher regularly and heuristically measures the statistical distri-
bution of the hashed keys. Upon discovering that the input rows can be evenly dis-
tributed to the Sorters based on the hash of their key, the Hasher activates the hash-
based distribution mechanism resulting in higher-quality early aggregation. Otherwise,
the availability-based distribution mechanism is selected in order to ensure maximum
throughput. Note that for the sort operator, the availability-based distribution mecha-
nism is used regardless of the distribution of the data.

7.3 Architecture 79

7.3.3 X:Y Mergers

An X : Y Merger, merges X buffers of sorted rows into Y new sorted buffers. Our
implementation of X : Y Mergers assumes Y = X/2 to be a power of two. Therefore an
X : Y merger on input buffers [I0, I1, ..., IX−1] produces output buffers [O0, O1, ..., OY −1]
where Oi is the result of merging I2i and I2i+1. Figure 7.1 illustrates the architecture of a
4 : 2 Merger. The implementation details are described below. For the sake of brevity, we
shall use the term "merger" to refer to an X : Y Merger throughout this section.

The mergers use request-response interfaces to interact with other modules and each
other:

• Input Interface: The merger makes a request with ID r. The response should con-
tain a burst of rows from Ir that will be buffered in a corresponding BRAM-based
on-chip queue Qr.

• Output Interface: The merger receives a request with ID r, and responds with a
burst of new rows from Or produced by merging on-chip queues Q2r and Q2r+1. If
the queues are (nearly) empty, the merger uses the input interface to request new
rows for filling them up.

Burst transfers reduce the frequency of requests and with it the impact of the overhead
of handling each request. They also result in more efficient RAM transactions. On-chip
queuing of the input buffers is used for latency hiding. Indeed, the response to a request
is not guaranteed to arrive immediately after the request is made. This happens for in-
stance when the requested new rows are on the FPGA RAM which has a high response
latency. The on-chip queues Q2i and Q2i+1 used to produce a given output buffer Oi

are stored in separate BRAM-based memories (LM and RM in Figure 7.1). This enables
the parallelized drainage of the queues; therefore, results in higher merging throughput.
Note that only 2 memories are required for storing all the on-chip queues.

A 2-Way Merger is used in every X : Y Merger, as shown in Figure 7.1. It merges two
on-chip queues by following a 3-step cycle. First, it waits until the tops of both queues
are read, therefore a row is present at each of its 2 inputs. We shall name these rows
ρi and ρs. Next, the keys of ρi and ρs are compared against each other. Finally, the
row with the smaller key is popped from the input and presented at the output. The
merger’s morphing capability to support both sorting and aggregation comes from the
action taken when ρi and ρs have the same key:

• Sort: The equality of the keys is ignored. One of ρi or ρs is arbitrarily forwarded as
the output.

• Aggregation: ρi and ρs are both popped from the inputs, accumulated, and the
result presented at the output.

It is important to note that in the context of merging, aggregation is done completely as
opposed to partially.

80 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

7.3.4 Merge-Network

The Merge-Network is responsible for merging the sorted runs produced by the Sort-
Network. The architecture of the Merge-Network is shown in Figure 7.1. The Multi-Buffer
Load module reads from up to nW sorted buffers on the FPGA RAM to feed a nW : nW /2
Merger. The latter is the first in a sequence of mergers that together are functionally equiv-
alent to a nW : 1 Merger. For both the sort and aggregation operators, JoinMat (used for
joins as explained in Section 7.3.5) is bypassed, and the final sorted or aggregated run
is written by the Sequential Store module to the FPGA RAM. Depending on nW and the
number of sorted runs produced by the Sort-Network, the Merge-Network may need to per-
form multiple merge passes. As explained in Section 7.3.3, the merge results are always
sorted, but can also be aggregated if the X : Y Mergers are configured for aggregation.

The Merge-Network achieves resource efficiency through the morphing capabilities of its
X : Y Mergers and by only requiring log(nW) of them. This logarithmic resource utiliza-
tion helps achieve higher nW , resulting in a more efficient use of the RAM bandwidth
by reducing the number of merge passes required to sort relatively large tables. A similar
optimization is proposed in [CO14].

7.3.5 Join Materialiser (JoinMat)

MSM can perform M : N (equi-)joins where M < ℓ, with ℓ ∈ N1 a compile-time param-
eter. N , however, can be arbitrarily large, only limited by the size of the FPGA RAM.
M : N joins are defined in Section 2.2.5.

The execution of Joink(R, S) starts by sorting the union of both input tables, on modified
keys. The union of the input tables is sorted by programming the Sequential Load mod-
ule of the Sort-Network to read and stream R and then immediately S, together as one
large table. Modified keys are generated on the fly by shifting a table-ID bit to the least
significant position of each row’s key. A key k becomes k0 if from table R and k1 if from
table S. Once sorting is done, the resulting rows are ordered according to their key and
within rows with the same key, according to their table-ID (table 0 and then table 1). The
modified keys can now be ignored. The JoinMat module is activated on the last merge
pass. As sorted rows stream into the JoinMat module, it stores rows with the same key
kr from table R in a BRAM-based on-chip buffer. Once a row ρs from S arrives, its key is
compared to kr and in case they are equal, the join of ρs with each of the buffered rows
from R is produced. This routine continues until all the rows from S with the same key
kr are processed. The buffered rows from R are then discarded and JoinMat restarts the
process with new keys from R. Note that the size of the on-chip buffer defines the con-
stant ℓ described above. It is limited by the amount of BRAM that can be dedicated to
JoinMat. In our experiments in Section 7.4, we set ℓ = 512, which is largely sufficient for
our join benchmarks. Also note that executing JoinMat after the last merge pass achieves
RAM bandwidth efficiency by eliminating the need to store intermediate sort results in
the FPGA RAM.

7.4 EXPERIMENTS

In this section, we present the results of our benchmarks comparing the throughput
of MSM against that of the state-of-the-art CPU-based database management system
MonetDB. The input (resp. output) throughput, measured in millions of rows per second
(MR/s), is the size of the input (resp. result) table divided by the execution time of the
operator. The reported throughput values are the average over benchmarks repeated 5
times after warm-up runs.

7.4 Experiments 81

8GB DDR4 RAM

Intel® Stratix® 10 SX FPGA
D5005 Intel® FPGA Acceleration Card

Merge-Network

Sort-Network

Merge-Network

8GB DDR4 RAM

Merge-Network

Sort-Network

Merge-Network

...

...

...

...

Figure 7.2: Setup of our benchmarking platform. Multiple Sort- and Merge-Networks are
instantiated to improve the performance the system, and to benefit from the four DDR
RAM channels provided by the accelerator card.

7.4.1 Experimental Setup

Following our findings in Chapter 6, we decided to implement MSM in Chisel 3.4.2
[Chi21a, BVR+12]. The implementation runs on our PCIe-attached D5005 Intel® FPGA
acceleration card with an Intel® Stratix® 10 FPGA and 32 GB of RAM [Cor19a] provided
using four 8 GB channels. At a clock frequency of 195 MHz, each RAM channel provides
a bandwidth of about 12.5 GB/s for a total of 4 × 12.5 = 50 GB/s.

Our software benchmarks use MonetDB v11.39.5 [Mon21] running on an Intel® Xeon®

Platinum 8180 CPU @ 2.50GHz (28 cores, 38.5 MB L3 Cache, 6 memory channels)
with 376 GB of DDR4 RAM [Int17]. The benchmarks are run by up to 4 clients in parallel,
matching the capabilities of our MSM implementation which will be described shortly.
MonetDB uses up to 28 CPU threads. Increasing the number of threads beyond this
values did not result in further performance improvements. The reported performance
numbers from MonetDB do not include query plan generation time but only pure query
execution time on warm data, i.e., data cached in memory.

7.4.2 Implementation Description & Tuning

Our implementation of MSM uses a 128-bit data path in order to process database rows
that are up to 128 bits wide. The row layout consists of four 32-bit integer columns. The
keys can span any number of these columns. Non-key columns can be used as values
for the aggregation (SUM(), COUNT(), MIN(), and MAX() functions are supported) or
as a payload for the sort and join operators. With this level of runtime configurability,
we can process datasets commonly used for benchmarking in-memory query processing
algorithms [ABW+16, BATÖ13, BLP11, BMK99].

Let us now discuss the parameter tuning process for our implementation. We aim to max-
imize the capacity of the Sorters (cS) in order to increase the size of the sorted runs, while
also keeping BRAM size and latency at reasonable levels. Sorter capacity is set to 2048.
The Sort-Network has nS = 32 Sorters in order to achieve line-rate processing, i.e., to pro-
cess one row per clock cycle, therefore maximizing pipeline efficiency. The Merge-Network
performs 256-way merging so that only 2 merge passes are necessary to sort up to 130
million rows (or a 2 GB table). Therefore, for large tables the overall throughput of merg-
ing is 2× slower than that of producing the sorted runs. To equalize the throughputs, we
use 2 Merge-Network to process the sorted runs produced by a single Sort-Network.

82 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

Module R Logic Utilization [ALM] BRAM Utilization [M20K]
Full System 1 489, 602 (52%) 6, 558 (56%)

MSM Core 4 102, 156 (11%) 1, 533 (13%)
Sort-Network 1 73, 173 (7.84%) 947 (8%)

Sorter 32 1, 413 (0.15%) 24 (0.2%)
Distribution Tree 1 8, 401 (0.9%) 4 (0.03%)
Collection Tree 1 14, 079 (1.51%) 128 (1.1%)

Merge-Network 2 14, 492 (1.55%) 293 (2.5%)
2:1 Merger 1 869 (0.09%) 10 (0.085%)
256:128 Merger 1 1, 121 (0.12%) 106 (0.9%)
JoinMat 1 540 (0.058%) 6 (0.051%)

Table 7.1: FPGA resource utilization of our implementation of MSM (with a 128-bit wide
data path) and some of its major components. Replication factor (R) is the number of
instantiations of a module within its level in the hierarchy (e.g., there are 32 Sorters in a
Sort-Network). The percentage resource utilizations are calculated over the total amount
of resources provided by the FPGA.

The benchmarking platform achieves high throughput and support for multiple clients
through replication, an idea proposed in Chapter 5. Figure 7.2 shows a high-level view
of the platform. Each of the 4 RAM channels is connected to a Sort-Network and 2 Merge-
Networks, together forming an MSM Core. Thanks to the 4 MSM Cores, we can issue
four operators at the same time matching the capabilities of our 4-client MonetDB. This
enables us to execute multiple database queries or operators within the same query in
parallel. Alternatively, partitioning can be used to execute a single operator using multi-
ple MSM Cores. As a general tuning guideline, replication should be practiced until either
the RAM bandwidth or the FPGA resources are saturated, and a reasonable frequency is
still attainable. MSM is particularly suitable for replication as its morphing capabilities
result in less constraints and limitations during operator scheduling. Moreover, MSM’s
efficient use of FPGA resources allows higher replication factors.

The resource utilization of our entire implementation along with some of its key modules
is shown in Table 7.1. All modules run at 195 MHz, which is the highest achievable by
the synthesis tools. Throughout our benchmarks, on average less than 62% of the FPGA
RAM bandwidth was utilized.

Influence of Architectural Parameters on Resource Utilization

We now present a brief analysis of the most important parameters influencing FPGA re-
source utilization in our system. The resources allocated to the Sort-Network are mostly
dedicated to the Sorters. Each Sorter in our main implementation has a 128-bit wide data
path and the capacity to hold cS = 2048 rows. These parameters have a strong im-
pact on its resource utilization, as demonstrated in Table 7.2. Data path width has a
greater impact on logic utilization than capacity does. This is because increasing the data
path width requires more arithmetic and logic units for handling wider rows (i.e., more
columns and/or larger columns), whereas increasing the capacity requires only wider
pointer structures and pointer arithmetic units for handling deeper memories. In con-
trast, capacity has a greater impact on BRAM utilization than data path width does. This
is because increasing the capacity also increases the memory overhead of storing larger
pointers in the treap data structure kept in the BRAMs of the Sorter.

Let us now discuss the resource utilization of the Merge-Network. In our implementation,
the 256-way Merge-Network consists of eight X : Y Mergers (256 : 128 Merger, 128 : 64

7.4 Experiments 83

Data Path Width cS Logic Utilization [ALM] BRAM Utilization [M20K]
128 2048 1413 24
128 4096 1601 48
128 8192 1772 96
128 2048 1413 24
256 2048 2384 37
512 2048 4438 62

Table 7.2: Sorter resource utilization as a function of capacity (cS) and data path width.

Merger, ..., 2 : 1 Merger) consuming most of its resources. For the sake of brevity, the
resource utilization of only the smallest and the largest Mergers are provided in Table 7.1.
The X and Y parameters of a Merger mainly influence its BRAM utilization. This is
because each of the X inputs to a X : Y Merger needs a dedicated buffer space in BRAM
(see Section 7.3.3). The logic utilization, however, is for the most parts unchanged as X
varies.

Next, we measure the amount of resource overhead inflicted by runtime configurability
on our architecture. To this end, we hardcoded all configurable parts of our implemen-
tation, and stripped away modules and optimizations pertaining to the aggregation and
join operators (e.g., the JoinMat module, the Sorter feedback optimization) resulting in a
simple sort-merge implementation. Resource utilization numbers show that the runtime
configurable implementation supporting all 3 pipeline-breaking database operators re-
quires 7.7% more logic and 1.5% more BRAM resources compared to the stripped-down
version supporting only the sort operator. We conclude that support for multiple opera-
tors at runtime fully justifies the small additional overhead of the morphing logic.

Finally, let us say a few words about deployability. Indeed, a promise of our research is to
ensure that the architecture of the accelerator is (resource-wise) flexible enough to allow
deployment on different FPGA platforms. In Section 5.1, we argued that the sort-merge
algorithm can be implemented with various area/performance characteristics, allowing
the accelerator to adapt to a target FPGA platform, in terms of resources. The results
presented in this section confirm our hypothesis. Indeed, the parameters of our Sorters
(e.g., cS), Mergers (e.g., number of ways), and the overall system (e.g., number of MSM
Cores) all have tremendous effects on the accelerator’s resource utilization and memory
bandwidth requirements. They can easily be tuned (in parts also thanks to Chisel) to
target a specific workload and FPGA platform.

7.4.3 Sort Benchmarks

The datasets used in our sort benchmarks consist of tables with a single key column and
3 payload columns. The U-Random dataset has its keys chosen randomly from a uniform
distribution of all possible 32-bit integers. The U-Sorted dataset consists of sorted keys
from a uniform distribution. All the keys in the Single Point dataset are equal. Tables
from the U-Sorted and Single Point datasets have a few exceptions (noisy rows) to their
order and equality properties to ensure that MonetDB cannot avoid sorting altogether.

The benchmark results are shown in Figure 7.3. The initial ramp-up of the throughputs
is due to the operator launch overhead losing its significance against the actual sort time.
MSM’s sudden decrease in throughput happens when a new merge pass is required, i.e.,
when the table size is cS ×(nW)i or in our case 2048×(256)i∀i ∈ N. MSM achieves around
3 to 6 times higher throughput than MonetDB on the U-Random dataset. It performs bet-
ter on the U-Sorted and Single Point datasets as well, but with MonetDB slowly catching
up by benefiting from the existing order in those datasets. MSM’s performance shows
little variation among different datasets.

84 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

210 212 214 216 218 220 222 224 226

Table Size [Rows]
0

50
100
150
200
250
300
350
400
450

In
pu

t T
hr

ou
gh

pu
t [

M
R/

s]

MSM U-Random
MDB U-Random

MSM U-Sorted
MDB U-Sorted

MSM Single Point
MDB Single Point

Figure 7.3: The results of our benchmarks of the sort operator comparing the performance
of MSM and MonetDB (MDB) on the random uniform (U-Random), sorted uniform (U-
Sorted), and single-key (Single Point) datasets.

7.4.4 Aggregation Benchmarks

The datasets used in our aggregation benchmarks consist of tables with a single key col-
umn and 3 value columns aggregated using the SUM() function. The keys are selected
randomly from a uniform or Zipf (exponent 0.5) distribution or with a moving cluster
generation mechanism (with a window size of 1024 values) [CR07]. The latter produces
a sequence of keys where those with close values are clustered together. These datasets
are commonly used to benchmark the aggregation operator [CR07, MSL+15, ABW+16].
All the tables in our datasets have 226 rows.

The benchmark results are shown in Figure 7.4. MSM performs consistently well on
the moving cluster dataset. This is thanks to the fill-empty cycles of the Sorters, allowing

212 213 214 215 216 217 218 219 220 221 222 223 224

Domain Size of the Grouping Key
0

100

200

300

400

500

600

700

In
pu

t T
hr

ou
gh

pu
t [

M
R/

s]

MSM Uniform
MDB Uniform

MSM Zipf
MDB Zipf

MSM Moving Cluster
MDB Moving Cluster

Figure 7.4: The results of our benchmarks of the aggregation operator comparing the
performance of MSM and MonetDB (MDB) on the uniform, Zipf, and moving cluster
datasets, with keys chosen randomly from the corresponding distributions.

7.4 Experiments 85

20 21 22 23 24 25 26 27

N
0

100

200

300

400

500

600

700

800

Ou
tp

ut
 T

hr
ou

gh
pu

t [
M

R/
s]

MSM M = 1
MDB M = 1

MSM M = 8
MDB M = 8

MSM M = 64
MDB M = 64

Figure 7.5: The results of our benchmarks of the M : N join operator comparing the
performance of MSM and MonetDB (MDB) on uniform datasets with various values for
M and N .

them to adapt to distributions where the local range of keys changes over time. The mov-
ing cluster distribution exhibits such behavior by choosing the values of the keys based
on their position in the table. Benchmarks on the Zipf and uniform datasets manifest an
important decrease in performance until a domain size of 217 values is reached, where
the curves switch to a slower, more gradual decline. This happens just after the Sort-
Network capacity nS × cS = 32 × 2048 = 216 is saturated. The Zipf dataset benefits from
the feedback optimization of Section 7.3.1 and the uniform dataset from dynamic distri-
bution introduced in Section 7.3.2. The sudden performance drops of MonetDB happen
due to cache effects. MSM performs on average 5× better than MonetDB.

7.4.5 Join Benchmarks

The datasets used in our join benchmarks consist of tables with 64-bit keys (spanning two
32-bit columns) and 32-bit payloads. The join result rows contain the join key, and the
payloads of the two joined rows in the remaining two columns. In our benchmarks, MSM
performs an M : N join of tables R and S, with the keys of R and S chosen randomly
from a uniform distribution with domain size D. The size of the input tables |R| and |S|
and the domain size D are chosen so that the size of the cross product of the same-key
rows from both tables is exactly M × N , and that the join result contains 226 rows.

The benchmark results are shown in Figure 7.5. MSM performance increases for larger
values of M and N . Indeed, joins are executed by buffering same-key rows from R and
pairing them, one by one in a loop, with all the rows from S that also have the same
key (see Section 7.3.5). Increasing M and N increases the ratio of the join materialization
time (proportional to M × N) to the overhead of buffering the rows (proportional to M)
and launching the materialization loop (proportional to N); thus effectively improving
performance. MSM performs on average 5× better than MonetDB on our join datasets.

86 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

7.5 SUMMARY

Given the resource constraints imposed by FPGAs, the quality of data processing units
should not only be measured in their performance but also in how efficiently they use
FPGA resources. In this chapter, we proposed MSM: a set of runtime configurable mod-
ules realizing both goals. Resource efficiency is achieved by reusing the same FPGA
resources to support multiple pipeline-breaking database operators. This is a major ac-
complishment as pipeline-breaking operators are among the most popular, yet resource
demanding operations executed by database systems. High performance is achieved by
using parallel optimized sorters with a dynamic distribution mechanism, early aggrega-
tion, multi-way merging, and a multi-core design to support multiple clients in parallel.
The performance of MSM measured against MonetDB shows relatively high speedups
on various datasets. To conclude, MSM is in perfect alignment with the objectives of our
work defined back in Chapter 5.

7.5 Summary 87

88 Chapter 7 Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs

8
KERRAS: COLUMN-ORIENTED WIDE TABLE

PROCESSING ON FPGAS

8.1 The Scope of Database System Acceler-
ators

8.2 Related Work

8.3 Key-Reduce Radix Sort (KeRRaS)

8.4 Architecture

8.5 Experiments

8.6 Summary

In Chapter 7, we proposed MSM, a database system accelerator with support for the sort,
aggregation, and join operators. MSM is a sort-based accelerator: It starts by sorting its
input, before executing additional operators. Using sort-merge with multi-pass merging,
it can sort arbitrarily deep tables. However, it is quite limited with regards to the table
width. Indeed, the implementation proposed in Chapter 7 can only support tables with
up to four 32-bit columns. The number and size of supported columns is a compile-time
parameter of MSM and has a large impact on the FPGA resource utilization. Unfortu-
nately, this lack of support for arbitrarily wide tables that are present in many modern
database workloads, is ubiquitous in past research on FPGA accelerators.

In this chapter we propose KeRRaS, an abstract sorting algorithm that enables existing
sort-based query processors to support arbitrarily wide tables while offering scalability,
preserving modularity, and having low resource overhead. We then present an imple-
mentation of KeRRaS based on MSM. The new implementation, called MSMK, behaves
similarly to MSM on narrow tables and demonstrates good scalability as the number of
columns increases. An efficient implementation of KeRRaS requires us to transform our
row-oriented accelerator (MSM) into a column-oriented accelerator (MSMK). This brings
about a few more advantages (e.g., support for projections) discussed in this chapter.

Note that parts of the material presented in this chapter have been previously published
in FCCM’22 [MFM+22].

8.1 THE SCOPE OF DATABASE SYSTEM ACCELERATORS

Database system accelerators trade off generality for performance. Indeed, FPGA-based
accelerators are often limited in terms of the types of database operators they can sup-
port, the layout (e.g., table depth and width) and distribution of data (including the data
types) they can process, and more commonly a combination of these two. These limita-
tions restrict the usability of the accelerator and increase its dependence on the host. The
implications are twofold:

• The accelerator is less efficient, as it can only work on a narrow range of workloads.

• An increase in FPGA-host collaboration incurs performance penalties (e.g., by mov-
ing data through the PCIe bus) and takes time and bandwidth away from the host
by involving it in the execution of some parts of the query.

An important objective of our work is to strike a balance between generality and per-
formance. Indeed, MSM proposed in Chapter 7 supports the most commonly used yet
computationally intensive pipeline-breaking database operators, allowing the FPGA to
process a wide range of queries. As for the input data, the sort-based MSM is capable
of processing tables with an arbitrary number of rows, only limited by the amount of
RAM available to the FPGA. The arithmetic logic units (ALUs) used in MSM define the
data types supported by the accelerator, and can be updated based on the workload. A
crippling limitation of MSM, however, is its lack of support for arbitrarily wide tables.
Indeed, the number of supported input columns is a compile-time parameter of MSM
and has a large impact on its resource utilization. This is a major hurdle, as support for
wide tables is necessary for many database workloads, data warehouses, and scientific
computations [RK13]. The main challenge in processing these tables is to deal with a
large number of key columns, as value columns can often be processed independently of
each other (see Chapter 2).

90 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

In this chapter, we propose key-reduce radix sort (KeRRaS), an algorithm that enables MSM
to process tables with an arbitrary number of key columns; thus, enhancing the use cases
and acceleration potential of our platform. Moreover, thanks to the genericity of our so-
lution, it can be applied to many existing sort-based database system accelerators. KeR-
RaS targets the most important primitive used in these accelerators: sorting. Indeed,
FPGA-based sorting algorithms often put constraints on the width of the keys. This in
turn limits the number of key columns the database system accelerator can process (see
Section 8.2). KeRRaS is capable of extending an ordinary (width-limited) FPGA-based
sorter to provide it with support for an arbitrary number of key columns. The extension
causes minimal resource overhead, preserves modularity, and offers scalability. KeRRaS
is described in detail in Section 8.3.

In order to efficiently extend MSM with KeRRaS, we convert it into a column-oriented
database system accelerator by using interface adapters. Interface adapters are also used
to implement the functionality required by KeRRaS. The modified architecture is pre-
sented in Section 8.4. We call our extended accelerator MSM with KeRRaS, or MSMK for
short. The features of MSMK that are not present in MSM and are enabled by its new
architecture are summarized below:

• The column-oriented MSMK can choose which columns to load when processing
a table. Therefore, no matter the width of the input table, MSMK can efficiently
support queries involving a number of columns that can together fit in its data path.

• If a query involves more columns than MSMK’s data path can accommodate (due
to its width), KeRRaS is used to process those columns in smaller partitions using
an iterative approach.

• After processing a table, the column-oriented MSMK can also choose which
columns of the result to store, enabling support for the projection operator intro-
duced in Section 2.2.1.

In Section 8.5, we provide an experimental evaluation of MSMK against both MSM and
MonetDB. Our benchmarks show that MSMK performs similarly to MSM on narrow
tables, and exhibits great scalability with increasing numbers of key columns. MSMK
also demonstrates relatively good performance compared to MonetDB on wide tables.
We summarize our findings in Section 8.6.

8.2 RELATED WORK

There have been many proposals for designing custom architectures that can accelerate
pipeline-breaking database operators. Because of their high architectural complexity and
resource demands (e.g., [ABW+16, HANT15, HSM+13, CO14, STM+13]), most research
supports only a limited number of these operators at the same time on the FPGA. The au-
thors of [STM+13, MNC09, KT11, MCK17, SKLG16, SCPC15, MFLM20] focus solely on
the sort operator, while those in [DZT13, ABW+16, WIA14, YKO+14, MTA09b, WFS+19]
target the aggregation, and others in [HANT15, ABW+16, NSJ13, LMM+22] the join op-
erator. Broader research such as [SAS+16] accelerate both the aggregation and join, and
[CO14] the sort and join operators. MSM proposed in Chapter 7 supports all three of
the sort, aggregation, and join operators. We refer the reader to Chapter 4 for a more
comprehensive survey on operator support.

8.2 Related Work 91

Parameter Description
nr Number of rows in the unsorted table.
nkc Number of key columns in the unsorted table.
nvc Number of value columns (payload) in the unsorted table.
nbsc Number of key columns the base sorter can sort at a time.
nit Number of iterations.

Table 8.1: Parameters of the KeRRaS algorithm.

In addition, previous studies often impose constraints on the distribution of the data that
can be processed by the accelerator. This typically happens in architectures relying on
hash-based techniques for operator acceleration. In [WFS+19], hash-based aggregation
forwards hash collisions to the host to be later aggregated by the CPU (in software), lim-
iting the distribution of the keys that the FPGA can process alone. Hash-based sorting
attempted in [PHL18] bounds the maximum range of the keys and may result in sub-
optimal memory usage depending on their statistical distribution [Gil04]. Sort-based
approaches like MSM are less sensitive to the distribution and size of the data thanks to
a more regular execution flow (see Chapter 7). Finally, sliding-window operator acceler-
ation proposed in [NSJ15, NSJ13, MTA09b] limits the number of rows being considered
and, therefore, the scope of the operators. Chapters 4 and 7 present a lot more details
regarding past research’s support for various data distributions.

The final set of constraints in the state of the art and the main focus of this chapter is the
width of the rows or the number of columns that an accelerator can operate on. Indeed,
the width of the data path in current architectures often matches that of the widest row
they can process. Supporting wider rows requires more of the FPGA resources (bounded
by the size of the FPGA) and may result in lower achievable clock frequencies. To name
a few examples, the sort operators implemented in [MNC09, SKLG16] and [KT11] can
handle 4- and 8-byte keys, respectively. The implementation in [CO14] supports sorts on
8-byte rows, and joins on tables with 4-byte keys and 2-byte values. Finally, the authors
of [ABW+16] and [HANT15] assume 8-byte rows and at most 8-byte keys for the aggre-
gation and join operators, respectively; whereas the more flexible architecture presented
in [WIA14] can aggregate rows with up to 8 × 4-byte columns.

Techniques for expanding the number of supported columns typically involve either sim-
ply increasing the data path width and/or multi-cycle processing whereby a row is cut
into pieces and sent through a narrower data path over multiple clock cycles. Using
these techniques in their architectures, the authors of [STM+13] and [MFLM20] sup-
port the sorting of rows with up to 40- and 64-byte keys, respectively; and the authors
of [WFS+19] support aggregations on 4 key columns, 256 bytes each. These solutions still
require entire rows or at least their keys to be loaded on the FPGA chip (e.g., for com-
parisons) which, given FPGAs’ resource limitations, sets a hard limit on the width of the
supported rows.

To the best of our knowledge, this is the first work on FPGA-based database system
acceleration, proposing an approach for processing arbitrarily wide tables in an iterative
way and completely independently of the width of the accelerator’s data path.

8.3 KEY-REDUCE RADIX SORT (KERRAS)

In this section, we present KeRRaS, a novel abstract algorithm capable of extending ex-
isting sort-based query accelerators, such as MSM, to enable them to process an arbitrary

92 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

k1 k2 k3 k4

3 4 7 5
8 6 1 1
5 7 0 2
3 4 7 1
5 7 0 2
8 6 1 1
5 7 3 9

(a) Table U

k1 k2 id

3 4 0
8 6 1
5 7 2
3 4 3
5 7 4
8 6 5
5 7 6

⇒

sk1 sk2 sid ω1−2 κ1−2

3 4 3 0 0
3 4 0 0 2
5 7 2 1 1
5 7 6 1 0
5 7 4 1 1
8 6 1 2 2
8 6 5 2 1

(b) Iteration 1: Reduce k1k2 into κ1−2

κ1−2 k3 id

0 7 0
2 1 1
1 0 2
0 7 3
1 0 4
2 1 5
1 3 6

⇒

sκ1−2 sk3 sid ω1−3 κ1−3

0 7 0 0 0
0 7 3 0 3
1 0 4 1 1
1 0 2 1 0
1 3 6 2 1
2 1 5 3 3
2 1 1 3 2

(c) Iteration 2: Reduce κ1−2k3 into κ1−3

κ1−3 k4 id

0 5 0
3 1 1
1 2 2
0 1 3
1 2 4
3 1 5
2 9 6

⇒

sκ1−3 sk4 sid ω1−4 κ1−4

0 1 3 0 1
0 5 0 1 4
1 2 4 2 2
1 2 2 2 0
2 9 6 3 2
3 1 1 4 4
3 1 5 4 3

(d) Iteration 3: Reduce κ1−3k4 into κ1−4

Figure 8.1: Example run of the KeRRaS algorithm with nkc = 4 and nbsc = 2.

number of key columns. The algorithm has a low resource overhead, respects modu-
larity by requiring little to no modifications to the original platform, and is compatible
with most existing sort-based database system accelerators. KeRRaS also provides mech-
anisms to help processing arbitrarily large payloads. However, since the way payloads
are processed is often specific to a particular accelerator, we shall present concrete pay-
load processing techniques based on these mechanisms on MSM in Section 8.4.3.

KeRRaS is an abstract variant of the forward radix sort algorithm [AN94]. Much like
radix sort, it processes wide keys by sorting groups of key columns in an iterative man-
ner. At each iteration, up to nbsc key columns of the unsorted input table are sorted
and replaced by a single column, which we shall call the reduced key κ. The reduced
key is then used in the subsequent iteration to represent the already-sorted key columns.
Following this schema from the most significant to the least significant key columns pro-
duces the sorted result. The sorting at each iteration can be performed by any sorting
algorithm (e.g., sort-merge, quick-sort, radix sort, ...), which we will refer to as the base
sorter. nbsc is defined by the base sorter and must be larger than 1 for reduction to take
place. KeRRaS works best with column-store databases. Its parameters are summarized
in Table 8.1.

Figure 8.1 illustrates KeRRaS through an example. The unsorted table U consists of nkc =
4 key columns k1–k4 and is shown in Figure 8.1(a). We use the notation c[i] = v to indicate
that the row at index i of column c has value v. In the example, we assume that the base

8.3 Key-Reduce Radix Sort (KeRRaS) 93

Overhead
Column Definition

ω1−j ω1−j [i] =

⎧⎪⎨⎪⎩
0 if i = 0
ω1−j [i − 1] if 0 < i < nr and sk1...skj [i − 1] = sk1...skj [i]
ω1−j [i − 1] + 1 if 0 < i < nr and sk1...skj [i − 1] ̸= sk1...skj [i]

κ1−j κ1−j [sid[i]] = ω1−j [i], ∀i ∈ [0, nr) where sid is from the same iteration as κ1−j

Table 8.2: Formal definitions of ω and κ produced by the KeRRaS algorithm. They can
both be generated using single-pass algorithms. While ω does not need to be stored in
memory, κ must be stored in memory and preserved across KeRRaS iterations.

sorter can sort up to nbsc = 2 columns at a time. Figure 8.1(b) shows the first iteration
of the algorithm, where the nbsc most significant key columns (k1 and k2) along with an
incrementing id column attached as a payload are sorted on composite key k1k2. The
results of the sort are columns sk1, sk2, and payload column sid. Ordering ω1−2 starts at
ω1−2[0] = 0 and increments for each change in sk1sk2 compared to the previous row. The
ordering is a compressed version of sk1sk2. Finally, the reduced key κ1−2 is obtained
by storing the values in ω1−2 at indices defined by sid. For instance, the first row of the
table with values sid = 3 and ω1−2 = 0 indicates that the third index (starting from 0)
of the reduced key κ1−2 should contain the value 0. The reduced key is a compressed
version of k1k2. ω and κ are formally defined in Table 8.2. In the next iteration of the
algorithm, shown in Figure 8.1(c), κ1−2 is used to maintain the order imposed by the first
iteration. Given that nbsc = 2, only a single other column k3 can now be sorted alongside
κ1−2. In this iteration, we simply use sκ1−2sk3 instead of sk1sk2sk3 when producing ω1−3.
Eventually, by the third iteration shown in Figure 8.1(d), columns sk1–sk4 highlighted in
blue font represent the fully sorted result.

Note that sid and κ need not be computed in the last iteration of the algorithm, but can
prove beneficial for further processing of table U . sid is a bijective mapping of the sorted
row indices to the unsorted row indices [Wik22a]. It can be used for ordering potential
payload columns. For instance, sid[0] = 3 requires the payload at row 3 of table U to
move to row 0 of the sorted table. Using this payload processing mechanism, KeRRaS can
achieve stable sorting if the base sorter itself is stable. κ, which is a compressed version
of the keys in the unsorted table, can replace those keys in many situations. For instance,
if hashing the keys is necessary to carry out an operation (e.g., hash-based aggregation),
κ presents an order-preserving minimal perfect hash function [Jen09].

Note also that KeRRaS accepts all the data types supported by its base sorter. Moreover,
large data types can be spread across multiple columns if they are partially reducible,
such as strings and unsigned integers that can have their matching bits compared inde-
pendently and the results combined later.

Lastly, let us discuss an important limitation of our algorithm. During an iteration, effec-
tive reduction can only happen if the width of the reduced key column is smaller than
the aggregate widths of the key columns used to produce it. More concretely, if the key
columns involved in an iteration together contain as many distinct values as can be en-
coded within their width, no reduction can take place. This limitation can be overcome
using partitioning techniques beyond the scope of our work [Rei15].

94 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

8.3.1 Time Complexity

In this section, we study the time complexity of KeRRaS. Let us start our analysis by
considering the overhead columns. id is generated on-the-fly as the base sorter reads
its input table. Both ω and κ are obtained by traversing the sorted columns of their
corresponding iteration and performing comparisons among the neighboring rows. The
overhead columns are therefore obtained with time complexity in O(nr). This equates the
time complexity of every iteration of KeRRaS to that of its base sorter. Except in the first
iteration, where nbsc key columns are sorted, all other iterations sort nbsc − 1 additional
key columns as they need to include a reduced key into their computation. The total
number of iterations is therefore given by

nit(nkc) =
⌈︃

nkc − 1
nbsc − 1

⌉︃
(8.1)

Provided tbs(nr), the time complexity of the base sorter, KeRRaS is in O(nit(nkc)×tbs(nr)).

8.3.2 Space Complexity (Memory Utilization)

The memory footprint of KeRRaS during an iteration equals that of its base sorter sorting
nbsc key columns with payload id, plus the storage of κ. Note that ω does not need to
be stored as it is a means for producing κ and can be both generated and discarded on-
the-fly. Moreover, every new κ can replace its predecessor from the previous iteration
(if one exists) in memory. Only κ needs preserving across iterations and, except for the
sorted key columns skx, all other columns can be discarded. The space complexity of the
algorithm is therefore the same as that of its base sorter on the entire table plus a constant
number of additional columns, namely sid and κ.

8.3.3 Discussion and Optimizations

KeRRaS presents a convenient way to add support for arbitrarily wide keys to an existing
sort-based query accelerator, with the latter acting as the base sorter for the algorithm.
The only requirement for the base sorter is that it must be able to sort at least 2 key
columns (nbsc > 1) with a single payload column at each iteration. We also recommend
that the base sorter uses a columnar access and storage model, as it will make it easier to
rearrange the columns from iteration to iteration.

After being extended with KeRRaS, the database system accelerator is able to sort any
number of key columns within a proportionately large number of iterations. Sort-based
operators (e.g., aggregation and join) can also be extended to support large payloads. A
few potential approaches are discussed in Section 8.4.3.

KeRRaS is specifically designed to be suitable for database system acceleration on FP-
GAs, making it distinct from typical CPU- and FPGA-based sorting algorithms in several
ways. First, KeRRaS decouples the width of the rows from that of the accelerator’s data
path. The latter is defined by the base sorter. Moreover, the KeRRaS-specific overhead
columns id, ω, and κ can be generated in a streaming fashion using a simple pipeline
structure, which is optimal for implementation on FPGAs.

8.3 Key-Reduce Radix Sort (KeRRaS) 95

Second, if used in conjunction with a merge-based sorting algorithm (as its base sorter),
KeRRaS can produce the reduced key during the final merge pass of each iteration, re-
quiring no further accesses to the sorted columns stored in the memory. This is an impor-
tant feature as many of the existing FPGA-based sorters, including MSM, use a variant of
the sort-merge algorithm [STM+13, CO14, UIO15, MFL+21].

Additionally, the recommended column-oriented approach requires only the columns
targeted by an iteration to be available to the FPGA. The limited amount of RAM in
typical FPGA setups (e.g., [Cor20, Cor19a, Bit22]) can therefore be used more efficiently.
The algorithm also ensures that each column of the input table is exclusive to a single
iteration, with the corresponding sorted column of the final result materialized at the
end of that iteration. Therefore, the host-FPGA link only needs to transfer each column
once to the FPGA and each sorted column once from the FPGA back to the host.

Finally, unlike typical CPU-based radix sort algorithms that move entire rows every time
a set of columns is sorted [CLRS09], the key-reduce approach used in KeRRaS requires
only the columns targeted by an iteration to move in the memory. This results in a more
predictable and efficient memory bandwidth utilization. Other variants of the radix sort
algorithm rearrange pointers to the rows every time a set of columns is sorted. This
entails random accesses to the columns involved in the following iterations. KeRRaS,
however, pays the cost of rearrangement (via random accesses) once per iteration when
producing the single-column reduced key. Our algorithm can therefore run more effi-
ciently on FPGAs, which do not have large caches like CPUs do and therefore exhibit
lower random access performance in comparison to CPUs.

KeRRaS also offers a few workload-specific optimizations:

• Parallel optimization: In case the algorithm is run with the single purpose of pro-
ducing the final reduced key, it can be parallelized and executed by multiple ex-
ecutors (e.g., CPUs, FPGAs). Each executor reduces an exclusive subset of the key
columns (i.e., run an independent iteration), and a series of hierarchical passes per-
form further reductions until the final result is obtained.

• Shortcut optimization: In case the sorted order of the rows can be established solely
based on the most significant key columns (e.g., if k1k2 in our running example was
unique for each row), KeRRaS can terminate early and process the remaining key
(k3 and k4) and payload columns using the last obtained sid as explained earlier in
our example.

8.4 ARCHITECTURE

We start this section with a summary of the MSM architecture, highlighting its most rele-
vant components for a KeRRaS implementation. We then present MSMK, an implemen-
tation of KeRRaS with MSM as its base sorter. Afterwards, two approaches for processing
arbitrarily large payloads on the new platform are proposed. Finally, we discuss some of
MSMK’s limitations.

96 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

Sorters

Multi-Buffer Store

Sequential Load

Mergers

Sequential Store

Multi-Buffer Load

So
rt
-N
et
w
or
k

M
er
ge

-N
et
w
or
k

FP
G

A
D

D
R

 R
AM

JoinMat

FPGA

FPGA Card

Figure 8.2: Overview of the MSM architecture proposed in Chapter 7.

8.4.1 MSM

The architecture of MSM, which is based on the sort-merge algorithm, is shown in Fig-
ure 8.2. The Sort-Network is responsible for the sort phase of the algorithm. The Sequential
Load module reads a stream of rows from the FPGA RAM. The Sorters transform the
stream of rows into small fixed-size sorted runs. The runs are stored back in the mem-
ory via the Multi-Buffer Store module. The Merge-Network is responsible for the merge
phase of the sort-merge algorithm. The Multi-Buffer Load provides the Mergers access to
the sorted runs in the memory. The Mergers merge the sorted runs. The result is streamed
through the JoinMat for potential join processing. The Sequential Store module stores the
final result back in the FPGA RAM.

Both networks assume a row-store database and only make full burst accesses to the
memory. The width of the rows and their division into columns are architectural param-
eters of MSM and define the width of its data path. Each column can be configured as
a key or a value column (payload) at runtime. The width of the rows (i.e., the data path
width) is defined such that a full burst memory access contains an integer number of
rows; therefore, we call it a “row burst access”. The host CPU connected through PCIe
to the FPGA schedules, launches, and controls operator execution by programming the
networks via memory mapped control and status registers (CSR) [HH21].

MSM is particularly suitable for a KeRRaS implementation. The high-performance Sort-
and Merge-Networks constitute the perfect base sorter. Moreover, their additional capabil-
ities can be leveraged to support aggregations and joins on arbitrarily large tables, with
minimum effort. Finally, the row burst access patterns of the networks can be translated
into multiple column burst access patterns, efficiently and with no waste of memory
bandwidth. This is optimal for KeRRaS that works best with a column-store model.

8.4.2 MSMK: Extending MSM with KeRRaS

KeRRaS was designed with compatibility and ease of integration in mind. Indeed, ex-
tending MSM with KeRRaS requires principally changing the host scheduling algorithms
that control the Sort- and Merge-Networks. The algorithms should apply KeRRaS when
executing operators on tables wider than supported by MSM alone. As for architec-
tural modifications, the networks should change their interface to support column-store

8.4 Architecture 97

Rexhaust

Pump
Column Burst Read RequestColumn Burst

Exhaust

Merge-Network
Row Burst Read RequestRow Burst

Row Burst Write Request

r5ck r3ck

FP
G

A
D

D
R

 R
AM

r7ck r2ck

Column Burst Write Request

Burst = 4 beats × 3 columns
 = br rows × wr columns

r2c1
r1c1

r4c2
r3c2

r2c3
r1c3

r4c1
r3c1

r2c2
r1c2

r4c3
r3c3

r4c1 r4c2 r4c3

r1c1 r1c2 r1c3

r1c1 r1c2 r1c3

r4c1 r4c2 r4c3

r4c3
r3c3

r2c2
r1c2

r4c1
r3c1

r2c3
r1c3

r4c2
r3c2

r2c1
r1c1

FPGA Card
FPGA

Burst = 2 beats × 2 rows = bc columns × wc rows

Random Write Request

Figure 8.3: Architectural extensions to MSM’s Merge-Network for implementing the KeR-
RaS algorithm. The Pump, Exhaust and Rexhaust interface adapters are the only compo-
nents needed to implement KeRRaS.

databases and be able to generate and store the reduced key. We use interface adapters
to implement both functionalities while preserving modularity.

The adapters surrounding the Merge-Network are shown in Figure 8.3. The Sort-Network
requires a subset of the same adapters and is therefore omitted from this figure. The
Merge-Network and its interface remain unchanged. Upon making a row burst read re-
quest, br rows (beats) are expected to arrive sometime in the future. Each row has wr
columns. A row burst write request consists of br rows that must be written to the mem-
ory. The figure contains in-flight rows and columns to exemplify data moving through
the interfaces. Table cell ricj is from row i column j. In our example, burst requests
read/write 4 rows of 3 columns each; therefore, br = 4 and wr = 3.

The Pump and Exhaust adapters convert row burst accesses into column burst accesses.
A column burst has bc beats of wc rows each. The values of bc and wc are chosen to
maximize memory access efficiency. br is then defined based on their values. In our
running example, the memory supports 2-beat burst accesses where each word contains
2 table cells, resulting in bc = 2 and wc = 2. A row burst request is transformed into wr
column burst requests, each bringing back bc × wc = 4 cells that are assembled into br
rows in return. Therefore, br must equal bc × wc for maximum bandwidth efficiency. br
and wr are architectural parameters of MSM, thus facilitating this type of optimization
and parameter tuning. The Sort-Network is also extended with a Pump and an Exhaust
adapter.

The Rexhaust adapter is responsible for producing and storing the reduced key κ in each
iteration of KeRRaS. κ is obtained during the last pass of the Merge-Network which pro-
duces the final sorted run. While storing this sorted run, the Rexhaust is activated gener-
ating ω and κ on-the-fly and storing the latter in the memory. This eliminates the need

98 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

,QSXW�/RJLF

2XWSXW�/RJLF

U�F� U�F�
U�F� U�F�
U�F� U�F�

7UDQVSRVHU

U�F� U�F� U�F�

U�F� U�F� U�F�

&ROXPQ
%XUVW

5RZ
%XUVW

5HTXHVW�*HQHUDWRU

F�
F�
F�

6RXUFH 9DOXH�

PHP �[���

LQFU �

FVW �

PHP
�

LQFU
��
FVW
�

PHP
�[���

,Q�)OLJKW
5HTXHVW

&ROXPQ�%XUVW�
5HDG�5HTXHVW

&ROXPQ�%XUVW &ROXPQ�%XUVW
5HDG�5HTXHVW

3XPS

5RZ�%XUVW
5HDG�5HTXHVW5RZ�%XUVW

U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�
U�F�U�F�

Figure 8.4: Architecture of the Pump interface adapter used by MSMK for converting row
burst accesses into column burst accesses, as shown in Figure 8.3.

for an additional pass over the result. Note that unlike the final sorted run that is pro-
duced sequentially, i.e., in the order of the sorted rows, the reduced key is generated out
of order. This is because the location of a particular row in the reduced key is defined
by its corresponding value in sid, as explained in Section 8.3. Consequently, the Rexhaust
is the only module in our architecture that performs random writes. However, as it is
activated only once per KeRRaS iteration and to write a single column, it has a minimal
negative impact on memory bandwidth efficiency. Note also that the Sort-Network does
not require a Rexhaust adapter, as it only produces the intermediate sorted runs.

Let us now take a closer look at the architecture of the Pump shown in Figure 8.4. We
shall follow the path of a row burst read request, arriving from the bottom-right of the
figure. The Request Generator receives the request and transforms it into wr column burst
read requests, with the help of a table containing information about each column. The
table, stored in BRAMs, contains a single entry per column indicating its Source and an
attached Value:

• mem: The column resides in the memory. Value indicates the address of its first row.

• incr: The column is an arithmetic sequence with increments of +1 starting at Value.
This is useful for generating the id column used in KeRRaS.

• cst: A column of constants, all holding Value. This is useful for processing the join
operator, described in Section 7.3.5.

The table is filled by the host’s scheduling algorithms depending on the needs of the
operator. The Request Generator computes the effective memory address or increment

8.4 Architecture 99

,QSXW��

,Q
SX

W��

2XWSXW��

2
XW
SX

W��

&ROXPQV

5RZV

7UDQVSRVHU

U�F�U�F�

U�F� U�F�

�

�

�U�F�U�F�

Figure 8.5: Architecture of the Transposer used by the Pump interface adapter to transpose
database columns into rows, as shown in Figure 8.4.

offset of a column based on this table and the position of the requested burst of rows
within the stream of data. For columns residing in memory, a column burst read request
is made. For every column, an in-flight request is sent to the Input Logic.

The Input Logic takes various actions based on the nature of an incoming in-flight request:

• mem: The Input Logic waits for the column burst to arrive from the memory, and
stores it into the column buffer.

• incr and cst: The Input Logic generates and stores the requested rows into the col-
umn buffer.

The column buffer, stored in BRAMs, has a width matching that of a memory word and
must be capable of holding at least wr column bursts for a row burst to be producible.
In our simple example, it can hold up to 2 row bursts in order to support multiple in-
flight row burst requests and benefit from latency hiding. After storing enough data to
produce a full row burst, the Output Logic is notified. It reads the first beat of each of the
column bursts and sends them to the Transposer. It then moves onto the second beats,
and continues this pattern should a column burst have more beats.

The Transposer transforms a set of columns into rows by transposing them. The opera-
tion is similar to that of matrix transposition [Wik22i]. The design of the Transposer is
shown in Figure 8.5. It is based on the universal array architecture [Pan92]. It contains a
wt × wt array of registers, each capable of holding a cell of the table. Proper column to
row transposition requires the equality wt = max(wr, wc) to hold. The registers forward
their data either downwards or to the left, but all in the same direction. The direction
alternates every wt clock cycles. Let us describe a cycle of the universal array to clarify its
functionality. During the first wt clock cycles, wr = 3 columns enter from Input 1, moving
downwards until occupying their current positions shown in Figure 8.5. The array then
switches directions and outputs wc = 2 rows from Output 1, while at the same time load-
ing wr new columns from Input 2. The array switches directions again. The rows now exit
from Output 2 while new columns enter from Input 1, reaching a full cycle. The benefit of
the universal array is its ability to continuously consume, process, and output data. This
allows it to achieve the maximum possible throughput constrained by the widths of the
input and output data paths.

The Exhaust performs the same operations as the Pump but in reverse. Therefore, the two
modules are quite similar in design and comprise the same important building blocks.

100 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

Rexhaust

r1c1 r1c2 r1c3

r2c1 r2c2 r2c3

≠
+1

Rows

Index Value

Counter

Figure 8.6: Architecture of the Rexhaust interface adapter used by MSMK to produce and
store the ω and κ columns, as shown in Figure 8.3.

The major operational difference of the Exhaust is that it can either store a column in
memory or completely discard it if the column is unused. This allows us to efficiently
execute the projection operator.

The Rexhaust architecture is shown in Figure 8.6. The design compares neighboring rows
while keeping track of a counter for producing ω and κ. Indeed, a shift register of depth 2
is used to keep track of adjacent rows. In the figure, the composite keys c1c2 of the cur-
rent row r2 and its predecessor r1 are being compared. If different, a signal triggers the
Counter to increment in the next clock cycle. By then, r2 will be shifted down while r3
takes its place. Therefore, the value of the Counter represents the ordering ω of the oldest
row in the shift register. The reduced key is produced by storing the value of the Counter
at the index specified by the sid column. The latter is represented by c3 in our exam-
ple. Finally, note that the last row of ω, i.e., the value of the Counter for the last sorted
row, indicates the number of unique keys (counting from 0) in the table. This is used for
implementing the shortcut optimization introduced in Section 8.3.3.

Finally, let us emphasize some of the important design decisions leading to an efficient
KeRRaS implementation. The Pump’s latency hiding mechanism and universal array-
based Transposer architecture allow it to reach very high throughputs. In addition, the
data generators of the Input Logic reduce the overall memory footprint and memory band-
width utilization of the platform. Similar optimizations are applied to the Exhaust. The
Rexhaust’s implementation allows it to process a stream of rows by buffering only two
rows at a time, which is sufficient for comparing consecutive rows as required for the
generation of ω and κ. Indeed, upon the arrival of a new row, the oldest row in the buffer
can be discarded. Therefore, the Rexhaust has very low resource demands. Moreover, the
design is fully pipelined, enabling the processing of a new row every clock cycle.

8.4.3 Payload, Aggregation and Join Processing

MSMK can support payload processing in two ways. The first approach is to use the
technique mentioned in Section 8.3 whereby the sid obtained in the last iteration of KeR-
RaS is used to adjust the payload. Another approach is to use κ as a replacement for all
the key columns and sort it with the payload attached. The sort is not part of KeRRaS
hence no id processing or κ generation and storage (random memory writes) is necessary,
thus resulting in better performance. While the first approach does not require sorting, it
moves data with random access patterns. The second approach performs sorting, which
is more complex, but with the same sequential access patterns as MSM. Depending on
the efficiency of the memory system, the size of the payload, and the number of columns
it spans, one or the other approach may be preferred.

8.4 Architecture 101

We implement the second approach for our experiments in Section 8.5 as using MSM
allows us to perform the aggregation and join operators on the payload at the same time.
For aggregations, ω of the last iteration can be stored to obtain all the unique keys in their
sorted order, matching the result of aggregating the payload. For joins, the keys of both
input tables should be reduced together resulting in rows with the same key to have the
same reduced key. An incrementing id column can then be tagged along to point to the
matching rows of the two tables. Finally, note that as MSM is not a stable sorter, neither
of the two payload processing approaches results in stable sorting.

8.4.4 Limitations

KeRRaS is an abstract algorithm hence mostly limited by its underlying base sorter. Let
us discuss a few ways in which MSM constrains the use of MSMK. Our MSM implemen-
tation fixes the column width at compile time. This in turn limits the number of unique
id values and therefore the number of rows MSMK can support at runtime. The imple-
mentation used in our experiments in Section 8.5 uses 4-byte wide columns allowing up
to 232 rows to be sorted. This is more than enough for our benchmarks. Indeed, our
FPGA platform’s memory can only hold two 4-byte wide column with this many rows.
However, if support for more rows is needed, increasing the column width relaxes this
constraint exponentially. Increasing the column width also allows us to support wider
(> 4-byte) individual key columns. Although a better solution in this case is to spread
those columns, if possible, across multiple smaller ones as described in Section 8.3. An-
other limitation imposed by the base sorter is the data types supported for each column.
Although we use unsigned integers in our experiments, the ALUs used in MSM may be
extended to support other data types as well.

8.5 EXPERIMENTS

In this section, we investigate how MSMK performs on various datasets and compare it
with the performance of its base sorter, MSM, and the state-of-the-art CPU-based query
processor, MonetDB [Mon21]. We use throughput in million processed rows per second
(MR/s) as a measure of performance in our benchmarks, as we did in Section 7.4.

8.5.1 Experimental Setup

The experimental setup is fairly similar to the one we used in Chapter 7. MSMK is written
in Chisel 3.4.3 [BVR+12, Chi21b] which makes it highly parameterizable and thus easy to
adapt to various FPGA platforms. The parameters of our main implementation, which
we use for scalability analysis and comparison with MonetDB, are br = 64, wr = 6, bc =
8, and wc = 8. They are tuned based on the FPGA memory system characteristics, as
explained in Section 8.4.2. The benchmarks run on our PCIe-attached Intel® D5005 FPGA
acceleration card with an Intel® Stratix® 10 FPGA and 4 banks (channels) of DDR4 RAM,
each with an 8 GB DDR4 RDIMM module [Cor19a]. We instantiate 4 MSM Cores, one per
memory bank, allowing us to issue up to 4 database operators at a time. Each MSM Core
includes a single Sort-Network and two Merge-Networks, as described in Section 7.4.

MSMK’s FPGA resource utilization values are shown in Table 8.3. Note that the KeRRaS-
related interface adapters (Pump, Exhaust, and Rexhaust) constitute a small percentage

102 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

Module R Logic Utilization [ALM] BRAM Utilization [M20K]
Full System 1 686, 809 73.60% 10, 474 89.36%

MSM Core 4 151, 341 16.22% 2, 512 21.43%
Sort 1 102, 250 10.96% 1, 218 10.39%

Pump 1 1, 458 0.16% 14 0.12%
Sort-Network 1 99, 374 10.65% 1, 183 10.09%
Exhaust 1 1, 215 0.13% 21 0.18%

Merge 2 24, 545 2.63% 647 5.52%
Pump 1 1, 458 0.16% 14 0.12%
Merge-Network 1 20, 778 2.23% 607 5.18%
Exhaust 1 1, 215 0.13% 21 0.18%
Rexhaust 1 833 0.09% 5 0.04%

Table 8.3: FPGA resource utilization of our implementation of MSMK (with a 192-bit
wide data path) and some of its major components. Replication factor (R) is the number
of instantiations of a module within its level in the hierarchy. The percentage resource
utilizations are calculated over the total amount of resources provided by the FPGA.

of the design’s resource utilization. This is consistent with our claim in Section 8.3 that
implementing KeRRaS has a low resource overhead. The Rexhaust’s BRAM utilization
value, is due to the BRAM-based FIFOs we placed around the module for buffering pur-
poses. The design runs at 191 MHz.

We continue comparing the performance of our accelerator with that of MonetDB
v11.39.5 [Mon21], a state-of-the-art column-store DBMS [DBRU20]. It runs on an Intel®

Xeon® Platinum 8180 CPU @ 2.5 GHz (28 cores, 38.5 MB L3 Cache, 6 memory chan-
nels) with 376 GB of DDR4 RAM [Int17]. MonetDB is allowed to use up to 28 threads
on a single socket. Increasing the number of threads beyond this value did not result in
any further performance improvements for our benchmarks. The MonetDB performance
measurements ignore query plan generation, and only include pure operator execution
on warm data. By means of multiple clients, we issue 4 operators at a time to match the
capabilities of MSMK. The reported performance numbers reflect the aggregate through-
put achieved by all 4 MSM Cores/MonetDB clients.

8.5.2 Datasets

The parameters of our datasets are listed in Table 8.1, with the exception of nbsc and
the addition of rkc. The former is an architectural parameter with value wr − 1, as the
base sorter uses one of its columns for processing id. The latter is the domain size of
the individual key columns. Indeed, the keys are all chosen randomly from a uniform
distribution in the range [0, rkc).

As mentioned in Chapter 7, our uniformly distributed datasets are commonly used
for studying individual database operators [ABW+16, CR07, MSL+15, MFL+21] and to
benchmark sorting algorithms [NS22]. They allow us to analyze the behavior of our sys-
tem as we gradually increase the number of key or value columns. Moreover, we briefly
present some TPC-H based benchmarks demonstrating the capabilities of our platform
on standardized workloads [Cou22].

8.5 Experiments 103

0 100 200 300 400 500 600 700
Input Throughput [MR/s]

nkc = 1
nvc = 3

nkc = 2
nvc = 2

nkc = 3
nvc = 1

MSMK Sort
MSM Sort

MSMK Aggregation
MSM Aggregation

Figure 8.7: The results of the sort and aggregation benchmarks comparing the perfor-
mance of MSMK and MSM on narrow tables with nkc+nvc ≤ 4. The benchmark datasets
have nr = 224 and rkc = 256.

8.5.3 MSMK vs. MSM

To begin our analysis, we compare the performance of MSMK with its base sorter, MSM,
using builds with comparable parameters. Since MSM can only operate on tables with
up to 4 columns, the tables in our datasets must satisfy the inequality nkc + nvc ≤ 4.
Some of our most representative results are shown in Figure 8.7. The slightly higher
performance of MSMK compared to MSM is mainly due to the Pumps and Exhausts in-
creasing the memory prefetching and buffering capacity of the accelerator. Our memory
bandwidth measurements on benchmarks with similar runtime characteristics show that
MSMK uses on average 6% more memory bandwidth compared to MSM.

In the case of the sort operator, the number of key and value columns has no significant
impact on performance. The slight increase in throughput for larger nkc is due to the
increase in the range of keys positively impacting the performance of the Merge-Networks.

In the datasets used for benchmarking the aggregation operator, decreasing the number
of key columns results in more rows with duplicate keys. The early aggregation opti-
mization implemented by MSM, and thus inherited by MSMK, partially aggregates these
rows early in the sort process (see Section 7.3). This results in considerably fewer rows
that need to be sorted/merged and thus higher throughputs. The effects of this optimiza-
tion are visible in the results of our aggregation benchmarks shown in Figure 8.7.

The MSM implementation of the join operator is only capable of processing 2 key
columns. The MSMK join benchmarks (omitted from the figure) behave similarly to those
from MSM as well.

8.5.4 Payload-Less Benchmarks

In Section 8.5.3, we benchmarked MSMK on narrow tables without producing the re-
duced key. Producing the reduced key results in a decrease of on average 30% in perfor-
mance. This is due to the random memory accesses made by the Rexhaust, even though
it is only activated once per KeRRaS iteration to write a single column. It also empha-
sizes the importance of the shortcut optimization introduced in Section 8.3.3. A future
optimization of the implementation could improve random access performance by either
using a small cache, or a different memory technology to store the reduced key. In this
section, we focus on wide tables that require KeRRaS for processing. We assume KeRRaS
is used for sorting and to produce the final reduced key for future operations.

104 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

212 213 214 215 216 217 218 219 220 221 222 223 224

nr

0

20

40

60

80

100

120

140

160

180

In
p
u
t

T
h
ro

u
g
h
p
u
t

[M
R

/s
]

MSMK nkc=5

MDB nkc=5

MSMK nkc=9

MDB nkc=9

MSMK nkc=13

MDB nkc=13

(a) Throughput of the sort operator as a function
of nr , with rkc = 2 and nvc = 0

5 6 7 8 9 10 11 12 13 14 15
nkc

0

25

50

75

100

125

150

In
p
u
t

T
h
ro

u
g
h
p
u
t

[M
R

/s
]

MSMK rkc=2

MDB rkc=2

MSMK rkc=128

MDB rkc=128

MSMK rkc=8192

MDB rkc=8192

(b) Throughput of the sort operator as a function
of nkc, with nr = 224 and nvc = 0

Figure 8.8: The results of the payload-less performance and scalability benchmarks com-
paring the performance of MSMK and MonetDB (MDB), as the number of rows (nr) or
key columns (nkc) varies.

Figure 8.8(a) shows the results of our benchmarks varying nr for multiple values of nkc.
The observed behavior of the individual MSMK curves mirrors that of the base sorter
from Section 7.4.3. The relatively low performance for small nr is due to the significance
of the operator’s launch overhead against its actual execution time. The sudden decrease
in performance at nr = 218 happens as an additional merge pass of the sort-merge algo-
rithm is required to merge the many sorted runs. While these properties are inherited
from the base sorter, the disparity between the curves with different nkc is due to KeR-
RaS. Indeed, the datasets with nkc = 5, 9, and 13 require 1, 2, and 3 KeRRaS iterations
to be sorted, respectively. Therefore, nkc = 5 has approximately twice the throughput of
nkc = 9, and three times that of nkc = 13, in line with our time complexity analysis from
Section 8.3.1. MonetDB curves exhibit a similar relationship with respect to nkc.

The results of a fine-grained scalability analysis of MSMK are shown in Figure 8.8(b).
In these benchmarks, we vary nkc for multiple values of rkc. The step-like behavior
of MSMK is because datasets with more key columns require more KeRRaS iterations
to be processed. Indeed, given the parameters of our system, Equation 8.1 becomes
nit = ⌈(nkc − 1)/4⌉, which is reflected through our benchmarks. Moreover, our mem-
ory consumption analysis shows that per iteration, MSMK requires the same amount of
memory as MSM (including the id column), plus additional memory to store κ. This is
also in accord with our space complexity analysis from Section 8.3.2. The three MSMK
curves start with the same throughput but deviate from each other due to the shortcut
optimization. For instance, at nkc = 9, curve rkc = 8192 requires a single KeRRaS it-
eration as the first 5 key columns are unique enough to define the sorted order. The
remaining key columns are then treated as payload and processed to be aligned with
the first 5 sorted key columns. Curves rkc = 2 and rkc = 128, however, require two
KeRRaS iterations to define their order, thus resulting in lower throughput. To conclude,
note that MSMK achieves a nearly consistent level of performance improvement (ap-
proximately 5×) compared to MonetDB across all nkc values, indicating that they scale
similarly well.

Finally, Figure 8.9 presents the results of our benchmarks for the standalone sort oper-
ators extracted from 4 TPC-H queries. The TPC-H dataset has a scale factor of 8 and
is stored uncompressed. As the benchmarks show, MSMK performs consistently bet-
ter than MonetDB. The varying degrees of speedup are mainly due to the behavior of the
base sorter (MSM) on different input sizes. Indeed, queries 12, 4, 20, and 16 require 3, 2, 1,
and 2 merge passes of MSM to sort, respectively. This is because the number of rows (nr)
of the tables used in these queries is widely different; ultimately resulting in variations
in the performance of MSM and consequently MSMK (see Chapter 7).

8.5 Experiments 105

0 30 60 90 120 150
Input Throughput [MR/s]

Query 12
(10 Bytes)

Query 4
(15 Bytes)

Query 20
(25 Bytes)

Query 16
(39 Bytes)

MSMK MDB

Figure 8.9: The results of the standalone sort operator benchmarks of 4 TPC-H queries
with various key lengths (noted below each query) on MSMK and MonetDB (MDB).

1 2 3 4 5 6
Dataset

0

15

30

45

60

75

90

In
p
u
t

T
h
ro

u
g
h
p
u
t

[M
R

/s
]

MSMK Sort

MDB Sort

MSMK Aggregation

MDB Aggregation

(a) Sort and Aggregation Benchmarks

7 8 9 10
Dataset

0

15

30

45

60

75

90

O
u
tp

u
t

T
h
ro

u
g
h
p
u
t

[M
R

/s
]

MSMK Join

MDB Join

(b) Join Benchmarks

nr rkc nkc
nvc

10 30 50

222 16 5 Dataset 1 Dataset 2 Dataset 3
10 Dataset 4 Dataset 5 Dataset 6

(c) Sort and Aggregation Dataset Parameters

nvc nkc rkc
Join Type

2 : 2 1 : 3

1 5 16 Dataset 7 Dataset 8
10 4 Dataset 9 Dataset 10

(d) Join Dataset Parameters

Figure 8.10: The results of the payload-based sort, aggregation, and join operator bench-
marks comparing the performance of MSMK and MonetDB (MDB), and the parameters
of the datasets used in these benchmarks.

8.5.5 Payload-Based Benchmarks

In our implementation of KeRRaS, we use the naive sort-based approach described in
Section 8.4.3 for processing arbitrarily wide payloads. The approach leverages the exist-
ing capabilities of the base sorter (MSM); therefore, requires no extra logic to implement
on the FPGA.

The results of our sort and aggregation benchmarks, along with the parameters of the
datasets used in these benchmarks are shown in Figures 8.10(a) and 8.10(c). The widths
of the keys and payloads are chosen to match the ones in [STM+13], an existing work fo-
cused on large payload processing on FPGAs. In our benchmarks, increasing the number

106 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

Data Path Width wr = 4 wr = 6 wr = 8
Resource

Utilization
Logic 44% 52% 62%

BRAM 43% 53% 65%

performance

nkc = 5 Throughput [MR/s] 74 119 120
KeRRaS Iterations 2 1 1

nkc = 10 Throughput [MR/s] 32 45 59
KeRRaS Iterations 5 3 2

nkc = 15 Throughput [MR/s] 23 32 38
KeRRaS Iterations 7 4 3

nkc = 20 Throughput [MR/s] 16 25 28
KeRRaS Iterations 10 5 4

Table 8.4: Experiments illustrating the impact of the architectural parameter wr on the
performance and resource utilization of MSMK.

of value columns decreases the throughput improvement factor of MSMK compared to
MonetDB. This is expected because our payload processing routine is also based on sort-
ing, which makes payload operations costly. Nonetheless, MSMK achieves on average 3
times higher throughput compared to MonetDB.

The results of our join benchmarks are shown in Figure 8.10(b). Since joins involve two
tables and the output may be larger than the input, throughput is measured in the num-
ber of result rows per second. The datasets used in our join benchmarks are described in
Figure 8.10(d). The input tables are chosen such that for an M : N join, the size of the
cross product of the same-key rows from both tables is M × N , and that the tables con-
tain 222 rows in total. Our benchmarks show that for the join operator, MonetDB is much
more competitive, with performance surpassing that of MSMK as nkc increases. Indeed,
MonetDB uses a hash-based join algorithm to execute our join workloads. MSMK joins
by first sorting and then pairing the rows, leading to worse scalability but sorted results.
This can prove beneficial in processing chains of operators. For instance, aggregation on
a prefix of the join key is faster if the join result is already sorted.

8.5.6 Flexibility

One of the major benefits of our flexible architecture, is that it can be optimized for differ-
ent workloads. An architectural parameter that is particularly relevant for KeRRaS, is the
data path width of its base sorter (wr). The results of a study examining the impact of this
parameter on the performance and resource utilization of MSMK are shown in Table 8.4.
In these experiments, we benchmark three MSMK implementations with wr = 4, 6, and
8 on workloads with varying numbers of key columns. Throughput values in MR/s are
correlated to the number of KeRRaS iterations required to process the input. Accord-
ing to Equation 8.1, the number of KeRRaS iterations is itself a function of nbsc and thus
wr. Therefore, wr can be modified to generate an MSMK implementation suitable for
processing a particular workload. Minimizing wr constrained by the target performance
reduces the accelerator’s resource utilization, allowing the FPGA to accommodate new
logic that is useful for the target workload (e.g., filtering, compression, etc.). More impor-
tantly, thanks to KeRRaS enabling MSMK to process arbitrarily wide tables (even with
the smallest wr), the database system user can configure the accelerator to have optimal
performance for the common case, while still being able to use it for larger (and of course
also smaller) tables that appear less frequently in their workloads.

8.5 Experiments 107

8.6 SUMMARY

Optimal database system acceleration requires the data to be as close and exclusive to
the FPGA as possible. This can be achieved by increasing the capabilities of the acceler-
ator. These capabilities include support for multiple operators and various input tables.
Although we addressed both areas fairly extensively in Chapter 7, one major limitation
remained: the inability of MSM to support arbitrarily wide tables. This became the focus
of the current chapter, where we propose KeRRaS as a solution.

KeRRaS is an abstract sorting algorithm that can extend existing sort-based query ac-
celerators to enable them to support arbitrarily wide keys efficiently and with minimal
overhead. Moreover, it produces metadata (e.g., reduced key) that can represent the ini-
tial data more efficiently or be used for payload processing. An implementation along
with some benchmarks were provided to verify these claims. Indeed, MSMK is a min-
imal (adapter-based) extension of an existing query accelerator (MSM), that can sort an
arbitrary number of key columns in a scalable manner. Moreover, a simple payload-
processing routine allows MSMK to support the aggregation and join operators on arbi-
trarily wide tables. Our benchmarks show that MSMK performs equally well as MSM
on narrow tables, and demonstrates great scalability with increasing numbers of key
columns. Finally, MSMK is a column-oriented accelerator that also supports the pro-
jection operator. We showcase more of its capabilities in Chapter 10, where we use our
acceleration platform to process TPC-H queries.

108 Chapter 8 KeRRaS: Column-Oriented Wide Table Processing on FPGAs

9
A STUDY OF EARLY AGGREGATION IN

DATABASE QUERY PROCESSING ON FPGAS

9.1 Early Aggregation

9.2 Background & Related Work

9.3 Simulations

9.4 Cache System Architecture

9.5 Experiments

9.6 Summary

The preceding chapters were dedicated to the research and implementation of a novel
FPGA-based database system accelerator. After our latest developments in Chapter 8,
our accelerator named MSMK is capable of processing the sort, aggregation, and join op-
erators, on arbitrarily large and wide tables. It has a flexible architecture, and can process
multiple operators at the same time. With these features, MSMK meets all of our objec-
tives outlined in Section 5.1. We dedicate this chapter to performance improvements. In
particular, we focus on the aggregation operator.

Early aggregation is a popular method for improving the performance of the aggrega-
tion operator [YL94, Lar02]. We implemented early aggregation in our treap sorters back
in Chapter 7. In this chapter, we present a comprehensive survey of various early ag-
gregation algorithms and compare their characteristics. The comparative study leads us
to set-associative caches with a low inter-reference recency set replacement policy. They
show both great performance and modest implementation complexity compared to some
of the most prominent early aggregation algorithms. We also present a novel application-
specific architecture for implementing set-associative caches. Benchmarks of our new im-
plementation show speedups of up to 3× for end-to-end aggregation compared MSMK.

Note that parts of the material presented in this chapter have been previously published
in FPGA’23 [MMF+23].

9.1 EARLY AGGREGATION

Aggregation is a commonly used, yet computationally expensive database opera-
tor [DBRU20]. Most implementations resort to hashing or sorting for intermediates.
Hash-based aggregation produces a hash table where rows with the same key are in-
serted into the same bucket, allowing them to be accumulated into their group imme-
diately. Sort-based aggregation sorts the rows according to their key if needed, ensuring
that those belonging to the same group become neighbors so they can be easily accumu-
lated [GUW09]. Both algorithms are described in detail in Section 4.3.

The runtime of both algorithms increases with the size of the input. Indeed, for hash-
based aggregation, a larger input requires more random accesses to the hash table in
memory. Sort-based aggregation, often implemented using the sort-merge algorithm (see
Section 9.2), needs more merge passes and a larger memory to sort and eventually aggre-
gate larger tables. In these scenarios and to improve the performance of aggregation in
general, early aggregation comes to the rescue.

Early aggregation consists of partially aggregating the input table using a simple and
often streaming algorithm, before complete aggregation with hashing or sorting takes
place [YL94]. An example is shown in Figure 9.1. The algorithm produces table S by
accumulating the rows belonging to the same group that appear consecutively in the in-
put table. Table S, although smaller than table R, contains duplicate keys and requires
complete aggregation to produce table T . However, thanks to the smaller input size,
the cost of complete aggregation is reduced. The impact of early aggregation is often
strong enough that many aggregation algorithms integrate it either directly or indirectly
into their execution flow. They employ sophisticated sort-based [YL94, DG20, HNM02]
or cache-based [CR07, HNM02, MSL+15] early aggregation algorithms for higher perfor-
mance. It shall be noted that early aggregation is only applicable for algebraic aggrega-
tion functions such as SUM() or MAX(), but not holistic aggregation functions such as
MEDIAN() [GCB+97].

110 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

K V
5 2
8 1
3 5
8 2
8 1
2 1
5 4
5 3

(a) Table R

Early=========⇒
Aggregation

K SUM(V)
5 2
8 1
3 5
8 3
2 1
5 7

(b) Table S

Com lete=========⇒
Aggregation

K SUM(V)
5 9
3 5
8 4
2 1

(c) Table T

Figure 9.1: Example run of the aggregation operator T = AggrK,SUM(V)(R), using early
aggregation as an intermediate step. Table R is the input of the operator. Table S is
the result of early aggregation, and contains duplicate keys that need further processing.
Table T is the final result of the aggregation operator.

The goal of this chapter is to explore early aggregation on FPGA-based database system
accelerators, fitting the application for several reasons. First, reducing the size of the
input table has a positive impact on the ability of the FPGA to accelerate the aggregation
operator. Second, early aggregation may reduce the memory footprint of the aggregation
operator, enabling the processing of larger input tables on the (often) relatively small
amount of DRAM onboard PCIe-attached FPGA cards. Finally, most cache-based early
aggregation algorithms can be efficiently implemented in a pipelined manner on FPGAs.
We draw upon the extensive body of research on caching in hardware (mostly CPUs) to
explore the design space for cache-based early aggregation [HP17].

This chapter is organized as follows. In Section 9.2, we survey existing early aggregation
algorithms. We then perform accurate simulations to compare the performance of the
ones that are adequate for an FPGA-based implementation. The simulations presented
in Section 9.3 lead us to a family of cache-based early aggregation algorithms fit for our
application. We then introduce a quantitative methodology for selecting a member of
this family for a given accelerator architecture. In Section 9.4, we propose a novel cache
architecture enabling an efficient implementation of early aggregation, based on our pre-
vious findings. In Section 9.5, we integrate our new cache architecture into MSMK. The
resulting platform, called CbMSMK, is benchmarked against both MSMK and MonetDB.
Finally, a summary of the chapter is presented in Section 9.6.

9.2 BACKGROUND & RELATED WORK

Efficient early aggregation algorithms can be classified into two major categories: Sort-
based and cache-based. Sort-based early aggregation may be used in combination with
sort-based aggregation. Cache-based early aggregation can be used with both sort- and
hash-based aggregation. In this section, we shall present the state of the art in both cate-
gories. Every algorithm is followed by a discussion on the efficiency of a potential FPGA-
based implementation. The discussions are based on commonly followed accelerator
specifications:

• Spec 1: Early aggregation may only use on-chip FPGA resources, i.e., logic elements
and BRAMs. DRAM or disk utilization often interfere with complete aggregation
causing slowdowns down the processing pipeline.

• Spec 2: If the input rows are narrower or as wide as the query accelerator’s data
path, an early aggregation algorithm must process the input at near line-rate speeds,
i.e., one row per clock cycle.

9.2 Background & Related Work 111

9.2.1 Sort-Based Early Aggregation

In sort-based aggregation, the sort-merge algorithm is commonly used to sort the input.
The sorted table is then aggregated at the end of the final merge pass. MSMK, which is
based on MSM, relies on this algorithm for executing the aggregation operator.

Sort-based early aggregation intervenes during the sort phase of the sort-merge algo-
rithm. Two prominent methods are fixed-length and variable-length sorting. In fixed-
length sorting [YL94, MFL+21], while loading the rows into the memory, we check if a
new row belongs to a group encountered so far. If so, it is immediately accumulated into
that group. Once the memory is full, the groups are sorted and output as a fixed-length
run. In variable-length sorting [YL94, DG20, HNM02], the memory maintains two sorted
runs: current and next. Initially, new rows are all inserted into the current run. Once the
memory is full we output the (key-wise) smallest group of the current run. Upon arrival
of a new row, (1) if it belongs to a group in either of the two runs, it is accumulated into
that group. Otherwise, (2) if the row is larger than the previously output group, it is in-
serted into the current run. Otherwise, (3) the row is inserted into the next run. In cases
(2) and (3), the smallest group of the current run is then output at the end. When the
current run becomes empty, it switches places with the next run.

MSMK performs fixed-length sorting along with early aggregation using the treap data
structure. Each treap sorter needs multiple clock cycles to process a single key, thus 32
sorters are used in parallel to achieve line-rate processing. Moreover, the merge phase
is optimized to perform on-the-fly aggregation while merging the sorted runs. Variable-
length sorting, although without early aggregation, is attempted in [STM+13] where the
authors also use multiple sorters in parallel to maintain their target throughput. In Sec-
tion 9.3, we simulate and compare both fixed- and variable-length sort-based early ag-
gregation using 32 parallel sorters.

9.2.2 Cache-Based Early Aggregation

Hash-based aggregation populates a hash table in the main memory (DRAM for both
FPGA and CPU). Each row is stored as a group in the bucket corresponding to its hash
value [GUW09]. The hash of a row/group is the result of applying a hash function to its
key. The hash table needs to deal with two types of collisions: (1) Key collisions occur
as rows belonging to the same group, hence with the same key, are mapped to the same
bucket. They are resolved by accumulating a colliding row into its group (if present) in
the hash table. (2) Hash collisions occur if rows with different keys have the same hash
value, therefore, also map to the same bucket. They are resolved using techniques such
as separate chaining or open addressing [Ski08]. Once every row is processed, all of the
groups in the hash table form the result of the aggregation operator.

Cache-based early aggregation is commonly implemented as a scaled down version of
hash-based aggregation, where the hash table is stored in a cache. The cache must be
designed for fast access, in order to avoid adding too much overhead to the complete
aggregation process. For instance, it might reside in the cache of a CPU or on the BRAMs
of an FPGA [CR07]. The often small and static structure of the cache may cause some
rows to overflow, and thus not meet their matching group. These rows, along with the
content of the cache after every row has been processed are sent to a hash- or sort-based
aggregation algorithm for complete aggregation.

In the context of early aggregation, the architecture of a cache is based on three impor-
tant design decisions: (1) cache structure is the layout of the cache, (2) placement strat-
egy is the mapping of rows to buckets, and (3) replacement policy determines a group to

112 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

evict in case of a new hash collision in an already-full bucket. Most database-related
caching mechanisms use hashing as a placement strategy. MurmurHash [App16] is a
non-cryptographic, robust, hash function commonly used in recent database literature
(e.g., [MSL+15, KGA17]). Furthermore, it can be pipelined, which results in an efficient
FPGA-based implementation [KA16]. Therefore, we shall only focus on studying differ-
ent cache structures and replacement policies. In what follows, we present the decisions
made in past research with regards to both categories. The proposed mechanisms are
used in the execution of many database operators (e.g., aggregation and hash join) and
at different granularities (e.g., rows or pages). However, note that the cache structures
that despite being pipelined/parallelized may require multiple clock cycles for lookup
(e.g., they use separate chaining [HSM+13]), replacement, or reorganization [KM10] vi-
olate Spec 2, hence are excluded from our study. We start by presenting various cache
structures.

Cache Structures

An n-way set-associative cache has buckets with a maximum capacity of n entries. n is
the degree of associativity of the cache. Each entry can hold a single group. We shall use
the terms "group" and "entry" interchangeably. The buckets are referred to as sets. A row
is mapped to a single set, defined by its set index (i.e., hash of its key). Upon inserting a
row into a set, it can be placed in any of its n entries. If all of the entries are full, and the
new row does not belong to any of the existing groups, the replacement policy is called.
A 1-way set-associative cache is typically referred to as a direct-mapped cache. The size or
capacity of a cache (in general) is the maximum number of groups it can hold at any given
point in time. Set-associative caches are commonly used in CPUs [HP17].

An m-lookup n-way set-associative cache is an n-way set-associative cache where a row
may be placed in m different sets. An implementation would typically hash a row with
m different hash functions in order to find its corresponding sets [GS21]. Considering
Spec 2 and given that most modern FPGAs allow at most two simultaneous read accesses
to arbitrary lines of BRAMs (see Section 3.1.2) used for storage by the cache (Spec 1), we
shall limit the scope of our study to 2-lookup n-way set-associative caches only.

A k-level cache is a sequence of k caches of any of the types described above, laid out
and connected according to their order in the sequence. An element evicted from a cache
is inserted into its successor in the sequence. Each cache uses a different hash func-
tion [KM10, UIO15]. Note that multilevel caches borrow their name from multilevel
hash tables [BK90] and, despite some similarities, are not to be confused with hierarchical
caches used in CPUs (e.g., L1, L2, ...).

Replacement Policies

Let us now discuss some prominent replacement policies. Each policy takes as input a
set of cache entries/groups that may accommodate a new row. For instance, in a set-
associative cache, the replacement candidates are the entries in the set corresponding to
the inserting row. The output of the policy is at most a single entry that may be replaced.

No-replacement is a policy whereby none of the groups in the cache are ever re-
placed [UIO15]. In random replacement, one of the groups is chosen at random [HNM03].
First-in first-out replacement (FIFO) selects the group that has been created the earli-
est [EH84]. Least recently used replacement (LRU) chooses the group that was last accessed

9.2 Background & Related Work 113

the earliest [EH84, HNM03, Lar02], i.e., not referenced for the longest time. A group is
accessed if it is created or hit. A cached group is hit every time an inserting row belongs to
that group.

Least frequently used replacement (LFU) selects the group with the lowest reference
count [EH84]. The reference count of a group is the number of cache hits into that group.

LRU-2 replacement is a commonly used policy in the family of LRU-K policies [OOW93].
The policy selects the group with the largest 2-distance. The 2-distance of a group is the
distance in time between the last 2 accesses to that group. The notion of time is commonly
defined as the index of the inserting row in the input table. For instance, a hit while
inserting the 5th row of the table into the cache, sets the time of hit to 5.

In low inter-reference recency set replacement (LIRS) [JZ02, Bla10, Wik22e], we compute the
2-distance and age of all input groups. The age of a group in the cache is the current time
minus the time of the last access to that group. The eviction priority of a group is the largest
of the 2-distance and the age of the group. LIRS selects the group with the largest eviction
priority.

Optimal replacement selects the group whose next appearance in the stream of rows is the
farthest off [HNM03]. Given the policy’s need to know about future rows in the stream,
it is not feasible to implement and is only used as an upper bound on replacement policy
performance.

The replacement policies presented in this section may be classified as follows. Recency-
based policies such as LRU use access times to make their decision. Frequency-based policies
such as LFU and LRU-2 select a group based on the frequency of hits into that group. In-
deed, higher frequencies result in higher reference counts and often smaller 2-distances.
Mixed policies such as LIRS consider both recency and frequency. The remaining policies
presented in this section belong to their own unique category.

9.3 SIMULATIONS

In this section, we perform simulations comparing the quality of different early aggre-
gation algorithms. The goal is to choose an adequate algorithm for early aggregation
on FPGAs. The simulations implemented in Scala use the strategy pattern to combine
different cache structures and replacement policies [Wik22h].

9.3.1 Datasets

Our simulations employ synthetic datasets commonly used for benchmarking the aggre-
gation operator [CR07, MSL+15, HNM02, YL94, ABW+16, Lar02]. All of the tables in our
datasets have 226 (≈ 64 million) rows. The distributions (of the keys) used in our datasets
are uniform (like in TPC-D and TPC-H [CG11]), sorted, heavy-hitter, self-similar, moving
cluster, and normal. In the heavy-hitter distribution, 50% of the rows have key 1, and the
remaining rows have their key chosen uniformly from the remaining range of keys. Self-
similar is an 80-20 Pareto distribution reflecting extreme natural phenomena and human
activities [Wik22g]. The Zipf distribution with exponent 1 is a skewed distribution used
to model phenomena such as word occurrences in English texts [YL94]. The moving clus-
ter distribution picks its keys uniformly from a sliding window of size 1024; therefore,

114 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

the distribution of the generated keys varies depending on their position in the table.
Datasets based on real data are described and used in our experiments in Section 9.5.

Although our simulations and experiments were carried out on all of our datasets, we
only show the most representative results that help us compare and study early aggrega-
tion algorithms and better highlight their differences.

9.3.2 Metrics

Memory factor is a parameter of our simulations, representing the ratio of the number of
groups in the input to the number of groups that can be buffered by the partial aggre-
gation algorithm (i.e., its capacity). As an example, a table with any number of rows
belonging to one of 10 groups, input to an early aggregation algorithm with a capacity
of 50 groups, has memory factor = 10/50 = 0.2. The benefit of using memory factor is
that it abstracts away the buffer size (i.e., cache size or run size) of the early aggrega-
tion algorithm, increasing the applicability of our results. With a memory factor ≤ 1, a
perfect early aggregation algorithm capable of holding all of its input’s groups without
overflows should be able to completely aggregate the input. Note that our synthetic data
generators can produce a table with only an approximately accurate specified number of
groups. The memory factors in our graphs, where the capacity of the early aggregation
algorithm is kept constant, are accurate within 0.3% of their shown values.

Reduction factor, which is the result of our simulations, is a commonly used measure of
success for early aggregation. It represents the ratio of the number of rows after early ag-
gregation to the number of rows in the original table. In our simple example in Figure 9.1,
reduction factor = |S|/|R|= 6/8 = 0.75. Reduction factor can take values between 0 and
1, with lower values implying higher quality or higher performance early aggregation.

9.3.3 Sort-Based Versus Cache-Based Early Aggregation

We start our study by comparing the two main categories of early aggregation algo-
rithms. We compare the two sort-based algorithms with the simplest cache-based al-
gorithm, namely a direct-mapped cache. The results of our simulations are shown in
Figure 9.2.

Both sort-based and cache-based algorithms perform poorly on the uniform dataset. In-
deed, uniformly distributed data with memory factor > 1 present a bad scenario for any
type of buffering or caching mechanism as there is no locality in the data. The sort-based
algorithms perform worse than the cache-based algorithm because of their "fill-empty
cycles": as soon as a single overflow occurs, the entire buffer of the sorter starts to be
drained. This is a fairly drastic action resulting in high (bad) reduction factors. The emp-
tying of a variable-length sorter, however, happens while inserting new rows into the
sorter, slightly improving its reduction performance compared to a fixed-length sorter.
This observation is valid on all datasets. It should also be noted that although the sort-
based algorithms have the same capacity as the direct-mapped cache, they have to split
their buffer among their 32 sorters. This is the reason behind the poor performance of the
sort-based algorithms on small memory factors.

The moving cluster distribution has high locality, with the distribution of the keys chang-
ing depending on their position in the table. In this case, the fill-empty cycles of the

9.3 Simulations 115

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Direct-Mapped Cache
32 Variable-Length Sorters

32 Fixed-Length Sorters

(a) Uniform

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Direct-Mapped Cache
32 Variable-Length Sorters

32 Fixed-Length Sorters

(b) Moving Cluster

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Direct-Mapped Cache
32 Variable-Length Sorters

32 Fixed-Length Sorters

(c) Self-Similar

Figure 9.2: The results of the simulations comparing sort-based and cache-based early
aggregation on various datasets.

sort-based algorithms play to their advantage, allowing them to adapt to the varying dis-
tribution. The cache-based algorithm, however, continues to outperform both sort-based
algorithms in terms of reduction.

The simulation results on the self-similar dataset present a middle ground between the
previous two datasets. All three algorithms achieve good reduction thanks to the skew
in the self-similar distribution presenting lots of opportunities for early aggregation.

In a nutshell, even the simplest cache-based algorithm achieves lower reduction factors
compared to both of the sort-based algorithms. Cache-based early aggregation is the
clear winner of this round of our simulations and is therefore the focus of the following
sections.

9.3.4 Comparison of Set-Associative Caches

The results of our simulations comparing set-associative caches are shown in Figure 9.3.
All cache-based algorithms use the optimal replacement policy, allowing us to focus on
the quality of the cache structure alone. The fully set-associative cache, although imprac-
tical to implement with large capacities, represents the lower bounds of the reduction
factor.

Our set-associative caches perform equally well across all memory factors on the sorted
dataset. Indeed, the sorted dataset places all the rows belonging to the same group (per-
fectly clustered) next to each other, allowing the cache-based algorithms to aggregate
them immediately. Similar behavior was observed on the moving cluster dataset.

On both the normal and the heavy-hitter datasets, we see an improvement in the reduc-
tion factor as the degree of associativity of the cache increases: an exponential increase

116 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Direct-Mapped
2-Way Set-Assoc.
4-Way Set-Assoc.

8-Way Set-Assoc.
16-Way Set-Assoc.
Fully Assoc.

(a) Sorted

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Direct-Mapped
2-Way Set-Assoc.
4-Way Set-Assoc.

8-Way Set-Assoc.
16-Way Set-Assoc.
Fully Assoc.

(b) Normal

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Direct-Mapped
2-Way Set-Assoc.
4-Way Set-Assoc.

8-Way Set-Assoc.
16-Way Set-Assoc.
Fully Assoc.

(c) Heavy-Hitter

Figure 9.3: The results of the simulations comparing set-associative caches for early ag-
gregation on various datasets. All the caches used in these benchmarks employ the opti-
mal replacement policy.

in the set size results in a logarithmic decrease in the reduction factor. This behavior is
representative of our remaining datasets as well. The smaller reduction factors achieved
on the heavy-hitter dataset are a result of its larger skew compared to the normal dataset.
Another interesting observation is that larger memory factors reduce the impact of the
set size on the reduction factor.

Our simulations show that most of the improvements in the reduction factor are achieved
by 4- or 8-way set-associative caches. An 8-way set-associative cache performs very close
to a fully set-associative cache in most cases. Any further increase in the degree of asso-
ciativity (i.e., set size) does not seem to have a major impact on the reduction factor, but
will continue having hardware complexity implications. Indeed, increasing the degree of
associativity requires wider BRAM memories to store the larger sets, more comparators
for finding a matching group, and more complex logic for executing any sophisticated
replacement policy. These factors affect both the resource utilization and achievable fre-
quency of the design. Therefore, the optimal degree of associativity must be chosen based
on the design constraints and the underlying FPGA technology. We shall continue our
study with an 8-way set-associative cache as it demonstrates great reduction performance
and is a good fit for our FPGA platform (see Section 9.5).

9.3.5 Comparison of Cache Structures

In this section, we compare an 8-way set-associative cache with equivalent caches of dif-
ferent structure. Two caches are equivalent if they have the same size and offer the same
number of entries for an inserting element. An 8-way set-associative cache maps an el-
ement to a single set, allowing it to be placed (inserted or accumulated) into any of the

9.3 Simulations 117

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

8-Way Set-Assoc.
2-Lookup 4-Way Set-Assoc.
2-Level 4-Way Set-Assoc.

4-Level 2-Way Set-Assoc.
8-Level Direct-Mapped

(a) Moving Cluster

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

8-Way Set-Assoc.
2-Lookup 4-Way Set-Assoc.
2-Level 4-Way Set-Assoc.

4-Level 2-Way Set-Assoc.
8-Level Direct-Mapped

(b) Uniform

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

8-Way Set-Assoc.
2-Lookup 4-Way Set-Assoc.
2-Level 4-Way Set-Assoc.

4-Level 2-Way Set-Assoc.
8-Level Direct-Mapped

(c) Zipf

Figure 9.4: The results of the simulations comparing different cache structures for early
aggregation on various datasets. All the caches used in these benchmarks employ the
optimal replacement policy.

8 entries in that set. A 2-lookup 4-way set-associative cache allows a row to be placed
in any of the 4 entries of 2 distinct sets, for or a total of 8 placement opportunities. A
k-level n-way set-associative cache with k × n = 8 also offers 8 placement opportunities
to every single row. These algorithms are all compared in Figure 9.4. We continue using
the optimal replacement policy in these simulations, as justified in Section 9.3.4.

For the moving cluster dataset, the choice of the cache structure does not have a notice-
able impact on the reduction factor. This is due to the clusteredness of the distribution
explored in Section 9.3.4. Similar behavior was observed on the sorted dataset.

For both the uniform and Zipf datasets, every k-level cache exhibits worse reduction per-
formance than the 8-way set-associative cache. Moreover, the reduction factor degrades
with higher k. This can be explained through the scope of the placement and replace-
ment algorithm. Indeed, when inserting a row into the 8-way set-associative cache, the
algorithm has a global view of all the possible entries that may be targeted for placement
and/or eviction. In k-level caches, the algorithm has to make decisions with limited visi-
bility locally at each level. This is specially the case for hardware implementations where
the cache levels are arranged in a pipeline (each working on a different row) to achieve
high throughput. In a software implementation, the algorithm might obtain a global
view of the target entries in all levels before making a decision. Other types of multilevel
cache structures (e.g., with varying capacities at different levels) are also less efficient for
the same reason. Finally, note that a multilevel cache might be used to break down the
hardware complexity of an equivalent multi-way set-associative cache (explained in Sec-
tion 9.3.4). Our novel cache architecture described in Section 9.4 does the same without
requiring a multilevel implementation.

118 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

The 8-way set-associative cache performs worse than the 2-lookup 4-way set-associative
cache for small memory factors ≤ 5, but then catches up, achieving even slightly better
reduction factors for memory factors > 5. In deciding between these two cache struc-
tures, two aspects should be considered. First, greater importance should be given to
larger memory factors. Indeed, even though small memory factors (≤ 5) offer interest-
ing case studies for comparing caching mechanisms, they only represent a small range of
possibilities for the number of groups in the input. Second, the hardware complexity of
both algorithms should be considered. In this case, data hazard detection and resolution
due to collisions are of particular interest. In flat set-associative caches, collisions are de-
tected by comparing the set index of a new row with the set indices of some of the rows
already in the cache pipeline. The complexity is greatly increased for m-lookup caches
that need to compare each of the m set indices of a new row, with all m set indices of some
of the rows already in the cache pipeline. To add to the mix, considering the large width
of database rows, multi-cycle ALUs are commonly used in FPGA-based accelerators, in-
cluding our own MSMK [MFL+21, STM+13]. These ALUs increase the latency (in clock
cycles) of an update to a set, further intensifying the complexity of hazard detection and
resolution mechanisms. Moreover, if pipeline stalls are used as a means for dealing with
hazards, multiple hash functions may result in lower throughputs as the probability of
collision is increased. Furthermore, 2-lookup caches need to compute 2 hash functions,
and also deal with (rare but possible) situations where both hash functions return the
same result. Finally, an efficient implementation of a 2-lookup cache requires quad-port
BRAMs that are not available to all FPGAs. To conclude, the slightly improved reduc-
tion factors achieved by a 2-lookup cache on small memory factors do not warrant its
higher collision rate (potentially causing more stalls) and hardware complexity. We shall
therefore continue our study with flat set-associative caches.

9.3.6 Comparison of Replacement Policies

The results of our simulations comparing the reduction performance of 8-way set-
associative caches using different replacement policies are shown in Figure 9.5. All re-
placement policies, except from LIRS-512, are described in Section 9.2.2. LIRS-512 is an
approximation of the LIRS policy introduced in Section 9.4.5. All other replacement poli-
cies are implemented accurately, i.e., no approximation was used.

All replacement policies (with the exception of no-replacement) perform equally well on
the sorted dataset. The sortedness of the dataset means that there is no benefit in keeping
a group in the cache once it has been seen before. The no-replacement policy performs
poorly by never evicting a group from the cache.

The moving cluster dataset is a good differentiator for frequency-based replacement poli-
cies like LFU and LRU-2. As explained earlier in Section 9.3.1, the moving cluster distri-
bution represents scenarios where the distribution of the grouping key changes depend-
ing on our position in the table. Frequency-based policies, however, try to keep popular
groups (with many hits) in the cache for as long as possible. Unfortunately, a change
in the distribution would not immediately affect the popularity of old data in the cache.
This explains the poor performance of frequency-based policies on the moving cluster
dataset. Recency-based policies adapt faster to a change in the distribution hence per-
form well on this dataset.

The opposite observation is made on the fairly skewed self-similar dataset. Here, a few
groups have many members, making the frequency-based policy of keeping popular
groups in the cache very effective. A recency-based policy, however, may evict pop-
ular groups if they have not been observed very recently. The FIFO and the random

9.3 Simulations 119

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Optimal
LIRS-512
LIRS

LFU
LRU-2
LRU

FIFO
Random
No-Replacement

(a) Sorted

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Optimal
LIRS-512
LIRS

LFU
LRU-2
LRU

FIFO
Random
No-Replacement

(b) Moving Cluster

0.5 1.0 1.5 5.0 50.0 250.0
Memory Factor

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
Fa

ct
or

Optimal
LIRS-512
LIRS

LFU
LRU-2
LRU

FIFO
Random
No-Replacement

(c) Self-Similar

Figure 9.5: The results of the simulations comparing different replacement policies for an
8-way set-associative cache performing early aggregation on various datasets.

replacement policies that belong to neither of the two categories perform poorly on the
self-similar dataset as well.

LIRS, a mixed policy relying on both the recency and the frequency of the keys in the
stream of rows, performs well across all of our datasets.

In comparing replacement policies, their memory overhead must also be taken into ac-
count. For instance, every replacement policy requires one valid bit per cache entry in-
dicating if it contains a group. A basic LRU implementation on an 8-way set-associative
cache requires 3 additional bits per entry for keeping track of the least-recently used
group. Random replacement, on the other hand, requires no additional bits. Given a
cache structure and an amount of memory dedicated to the cache, the number of over-
head bits affects the depth of the cache. Simply put, more overhead bits result in shal-
lower caches. For the sake of accuracy, we have also performed simulations similar to
those seen in this section, but where the depths of our caches are adjusted so they all use
(approximately) the same number of memory bits. The datasets remain the same. The
results of these simulations are fairly similar to the ones studied in this section. The only
interesting observation was made on the uniform dataset. The reduction performance of
a cache on uniform data depends strongly on its capacity, resulting in low-overhead poli-
cies (e.g., random, FIFO) achieving slightly lower reduction factors compared to high-
overhead policies (e.g., LRU-2, LIRS). Apart from this, all of our prior observations re-
main valid.

9.3.7 Cache Selection Methodology

Based on our simulations, we can confidently claim that the family of n-way set-
associative caches with the LIRS replacement policy is a good fit for early aggregation

120 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

on FPGAs. The value of n affects both the reduction factor and the complexity of the
implementation. Since the cache is typically part of a larger system, we suggest increas-
ing the degree of associativity of the cache as long as the system’s target frequency and
resource utilization are not violated. Any further increase, specially above 8 ways, is
unlikely to be beneficial given the tiny gains in reduction performance.

9.4 CACHE SYSTEM ARCHITECTURE

The most challenging aspect of implementing a cache for early aggregation is dealing
with two types of data hazards:

• Hazards due to key collisions: A row belonging to the same group as its predeces-
sor needs to wait for the latter to be aggregated (compared and accumulated) into
its group in the cache before it aggregates with the result. This will most likely lead
to stalls due to the common use of multi-cycle ALUs in database system accelerators
(see Section 9.3.5).

• Hazards due to hash collisions: Consecutive rows targeting the same cache set
require either stalls or forwarding schemes to avoid read-after-write hazards.

Therefore, both key and hash collisions are likely to introduce stalls, resulting in a viola-
tion of Spec 2 from Section 9.2.

Thanks to the nature of our application, we can efficiently eliminate almost all collision-
related stalls by factoring collision detection and resolution out of the cache and adding
them as preprocessing stages, still performed on the FPGA, just before the cache. Indeed,
a cache implemented with a pipeline of depth w (which includes multi-cycle ALUs) does
not need to deal with collisions if the colliding rows arrive at least w clock cycles apart.
Therefore, the preprocessing stages must eliminate every collision within all windows
of w consecutive rows. We shall use the term window key/hash collisions to refer to these
types of collisions. We propose the following preprocessing stages:

1. Window aggregation: This stage eliminates window key collisions by simply ag-
gregating them as they are detected. No stalls are added.

2. Window collision detection and resolution: This step detects and eliminates win-
dow hash collisions by introducing stalls, in the form of "empty rows".

We must find out the extent to which the stalls introduced by the second preprocessing
stage violate Spec 2. The number of stalls depends on the number of hash collisions,
and therefore the quality of the hash function. According to our simulations using Mur-
murHash in a 216-entry 8-way set-associative cache on both synthetic and real datasets
(from Sections 9.3.1 and 9.5.3), after window aggregation the ratio of the number of hash
collisions within windows of w = 4 rows to the number of rows in the input is at most
3.72 × 10−4. In the worst case scenario where every colliding row has to be stalled by
w − 1 clock cycles, the cache system can still achieve 99.89% line-rate processing speeds.
w = 4 is the depth of the cache pipeline used in our experiments in Section 9.5.

An overview of the architecture of the cache system is shown in Figure 9.6. The following
sections include a detailed description of the modules involved in the architecture.

9.4 Cache System Architecture 121

Window
Aggregator Hasher(Row)

(Row)Collision
Detector

Collision
Resolver Cache

Compressor
(Row, Empty) (Row) (Row, Hash)

(Row, Hash,
Release Index)

(Row, Hash)

Cache System

Figure 9.6: Overview of the architecture of the cache system. The pipeline consists of a
few preprocessing stages that deal with window key/hash collisions, before the rows are
processed by the cache itself.

9.4.1 Window Aggregator

The Window Aggregator is responsible for eliminating key collisions in all windows of
w consecutive rows. It is composed of a series of s-Distance Aggregators, as shown in
Figure 9.7(a). An s-Distance Aggregator compares and potentially accumulates rows posi-
tioned at the two ends of a window of s rows, i.e., they have exactly s − 2 other rows in
between. Its architecture is shown in Figure 9.7(b).

w-Distance
Aggregator

2-Distance
Aggregator

3-Distance
Aggregator(Row, Empty = false) (Row, Empty)

Window Aggregator

(a) Window Aggregator with window size w

rs rs-1 r1

Comparator

Accumulator

(Row, Empty)

(Row, Empty)

s-Distance Aggregator

(b) s-Distance Aggregator

Figure 9.7: Architecture of the Window Aggregator used as a preprocessing stage in the
cache system, as shown in Figure 9.6. The module is responsible for eliminating window
key collisions.

A sequence of (row, empty) tuples arrive from the left. Empty is a Boolean flag. Empty =
true means that the accompanying row is invalid yet considered as a row in a window
of rows. It is different from the "valid" signal in handshaking protocols (which we also
use) indicating the presence or absence of a row. The rows then progress through a shift
register of depth s. The keys of the first (r1) and the last (rs) rows in the shift register are
compared by the Comparator Accumulator:

122 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

• If they match, the rows are accumulated, and the result output. The last row is then
marked as empty, so it won’t be considered for future operations.

• If they do not match, the first row is output.

No matter the number of cycles needed to perform the comparison or the accumulation
operations (aggregation for short), the module can function at line-rate speeds. It does
not introduce any stalls, nor does it increase the size of the stream. Finally, note that
the empty marker is needed for correct functionality. Indeed, if empty rows are simply
marked as invalid and not considered as actual rows, the stream can shrink causing an
s-Distance Aggregator to see different windows than it would have in the absence of its
predecessors.

9.4.2 Compressor & Hasher

The Compressor removes all the empty rows from the stream. This may undo the work of
the previous stage, resulting in window key collisions. The reason we do this is explained
in Section 9.4.3.

The Hasher computes the hash (of the key) of each row according to the 32-bit Mur-
murHash 3 function from [App16]. The implementation is pipelined for line-rate pro-
cessing.

9.4.3 Collision Detector

The stream of rows arriving at this stage may have both window key collisions and win-
dow hash collisions. The Collision Detector calculates the minimum number of stalls that
must be inserted after each row in order to eliminate both types of collisions. It augments
valid rows with release indices defining their position within a new collision-free stream
of rows. For instance, a stream of (row, release index) tuples [(y, 5), (x, 1)] requires
row y to be inserted into the cache at least 5 − 1 = 4 clock cycles after row x.

rw rw-1 r1
(Row)

Priority
Encoder

=

i1

i2

iw-1

+ 1
collisionco

llis
io

n
id

Index

Select+ w

Mux

(Hash)(Hash)
(Row)

(Release Index)

=

Collision Detector

Figure 9.8: Architecture of the Collision Detector used as a preprocessing stage in the cache
system, as shown in Figure 9.6. The module computes the minimum number of stalls
required for each row in order to eliminate all window collisions.

9.4 Cache System Architecture 123

The architecture of the Collision Detector is shown in Figure 9.8. Rows, along with the
hash of their key are inserted into a shift register of depth w. The last row’s (rw) hash is
compared to the hash of all the other rows in the pipeline (as they all belong to the same
window). The results of the comparisons are fed into a Priority Encoder which produces
two information: (1) collision = true if rw collides with any of the other rows in the win-
dow, (2) collision id = the register id of the closest colliding neighbor, if one exists. As
both key collisions and hash collisions imply rows producing the same hash, the mod-
ule detects both types of collisions. The output of the Priority Encoder is shifted along its
corresponding row.

The release indices are computed as follows. A shift register of depth w − 1, storing the
previous release indices is initialized at reset to all 0’s. When a row arrives at the front
of the main shift register (r1), Index Select calculates its release index iw as follows. If the
row causes no collisions iw = iw−1 + 1. If a collision was detected, iw = max(icollision id +
w, iw−1 + 1). Once iw is calculated, it is pushed to the back of the release index shift
register, becoming the next iw−1.

Finally, let us explain the reason behind the usage of the Compressor after the Win-
dow Aggregator, via an example. Assume w = 3 and consider an input stream
of keys [a, a, a, b, b, b, a, a, a]. After the Window Aggregator, the stream becomes
[_, _, a, _, _, b, _, _, a] with "_" representing an empty row (stall). After compression, it
transforms into [a, b, a]. The Collision Detector then recommends converting it into:
[a, _, b, a]. All the key collisions are resolved, and the stream is even shorter than its orig-
inal length. The role of the Window Aggregator and the Compressor is to ensure that the
stalls imposed by the Collision Detector due to key collisions do not increase the length of
the stream beyond its original value. In the absence of these modules, the Collision Detec-
tor would have imposed a conversion into [a, _, _, a, _, _, a, b, _, _, b, _, _, b, a, _, _, a, _, _, a],
a much larger stream violating Spec 2.

9.4.4 Collision Resolver

The Collision Resolver is simply composed of an index counter and a comparator. It feeds
an incoming (row, hash, release index) tuple to the cache when release index
equals the value of the index counter. The index counter is incremented every clock
cycle.

9.4.5 Cache

The architecture of the Cache, greatly simplified thanks to the preprocessing stages, is
shown in Figure 9.9. The hash of a row is the address of its corresponding set in the cache
memory. Once the set is fetched, the Multi Comparator Accumulator tries to find a group
matching the new row. If one is found (hit = true), the new row is accumulated into that
group and returned as the result. The select signals specify the index of the matching entry
in the set. The Replacement module returns the index of an invalid (i.e., currently empty)
entry or, if all entries are valid, one chosen for eviction according to the LIRS-512 replace-
ment policy (defined below). The Update module gathers and processes these information
in order to update the cache memory (both the cache set and replacement information)
accordingly. It also forwards evicted or overflowed rows to the next stage in the aggre-
gation pipeline. The depth of the cache pipeline, w, can be trivially increased allowing
us to use synchronous memories and multi-cycle ALUs in the design. The preprocessing
stages must then be updated to support the larger w.

124 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

Cache Memory

(Row)

(Hash) read address
Multi

Comparator
Accumulator

hit

Replacement

read data

Update

write address
write data

(Row)

Pipeline

select
result

select

Cache

Figure 9.9: Architecture of the cache used for early aggregation in the cache system, as
shown in Figure 9.6. The cache expects its input to be free of window key/hash collisions,
which is a property ensured by the preprocessing stages described in this section.

The Cache also includes control mechanisms for invalidating all of its entries before any
row is inserted, and for outputting all of its valid entries after the entire input is pro-
cessed. Both mechanisms are trivial and, for the sake of clarity, excluded from our
schematics.

Let us now briefly discuss our implementation of the LIRS replacement policy. LIRS
requires two counters per cache entry to store the times of the last two accesses (insertion
or hit) to that entry. The counters must be able to count up to the number of rows in
the input. For large tables, this results in a lot of memory overhead. We devised a low-
overhead LIRS approximation using reverse aging and saturating counters. The idea is
as follows: The counters may be smaller than required by the algorithm. When a cache
set is accessed, we emulate the passing of time by decrementing both counters of all of its
entries by 1. If a counter holds 0, it may remain at 0. If a particular entry is accessed, we
simply set its last access counter to the maximum value it can hold. LIRS-512 is an LIRS
approximation using 9-bit counters. The results of our simulations shown in Figure 9.5
demonstrate that it performs almost similarly to the accurate LIRS algorithm, on an 8-
way set-associative cache with 216 entries.

9.5 EXPERIMENTS

In this section, we present and benchmark an implementation of our novel cache system.
We use MSMK as a basis for both implementing and benchmarking our design. Our
modifications to the MSMK architecture are shown in Figure 9.10.

In the Sorters module, instead of the 32 treap sorters, we now use 8 heap sorters. Treap
sorters were proposed in Chapter 7 for their simplicity and the ability to perform fixed-
length sorting along with early aggregation. Heap sorters were proposed in Chapter 6
because of their great sorting performance and low resource utilization. The heapsort
implementation used in this section is capable of traversing a heap two levels at a time
without stalls, thus resulting in even higher performance. This is made possible through
the use of simple quad-port BRAMs and the lookahead optimization (introduced in Sec-
tion 6.3.2) eliminating control hazards while traversing the heap. Our implementation
of the heap sorter is on average 4 times faster than that of the treap sorter, yet unable to
perform early aggregation. Both types of sorters are configured to produce fixed-length
runs of 2048 rows.

The task of performing early aggregation is of course now delegated to the Cache System.
The latter is implemented as a stage in the sort phase, (early-)aggregating rows just before

9.5 Experiments 125

Sorters

Multi-Buffer Store

Pump

Mergers

Sequential Store

Pump
So

rt
-N
et
w
or
k

M
er
ge

-N
et
w
or
k

FP
G

A
D

D
R

 R
AM

JoinMat

FPGA

FPGA Card

Sequential Load

Cache System

Exhaust

Multi-Buffer Load

Streaming Aggregator

Exhaust & Rexhaust

Figure 9.10: Architecture of CbMSMK. The new (Cache System and Streaming Aggregator)
and upgraded (Sorters) modules compared to the architecture of MSMK are highlighted
in green.

they are distributed to the 8 heap sorters. The cache has enough capacity to hold 32 ×
2048 = 65536 groups, equivalent to the buffering capacity of the treap sorters in the
original MSMK architecture.

Since the heap sorters are not capable of performing early aggregation, they might pro-
duce sorted runs with duplicate keys. Given the implementation of the Mergers described
in Section 7.3.3, they can merge these sorted runs, but may not be able to fully aggre-
gate them on their own. We have therefore inserted a Streaming Aggregator module in
the Merge-Network pipeline. It performs streaming aggregation on the sorted rows as
explained in Section 4.3.2. The design of this module is straightforward: it compares
neighboring rows and accumulates those with matching keys.

We call our new implementation "Cache-based MSMK " or CbMSMK for short. Our
benchmarks in this section compare the performance of CbMSMK with both MSMK and
MonetDB [Mon21].

9.5.1 Experimental Setup

We implement CbMSMK in Chisel 3.5.0 [BVR+12, Chi22]. The benchmarks run on
our PCIe-attached Intel® D5005 FPGA acceleration card with an Intel® Stratix® 10
FPGA [Cor19a]. Similar to MSMK, the design is configured with a data path wide enough
to natively support rows with up to six 32-bit columns (without help from KeRRaS), and
uses 2-cycle ALUs for processing these rows at our target 182 MHz frequency. The soft-
ware competitor, MonetDB v11.39.5, runs on an Intel® Xeon® Platinum 8180 CPU with
376 GB of DDR4 RAM [Int17].

126 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

9.5.2 Resource Utilization and Parameter Tuning

Table 9.1 compares the resource utilization of multiple implementations of early aggre-
gation. For sort-based early aggregation, it is hard to distinguish the resource utilization
of pure sorting from that of early aggregation. Therefore, we consider sorting as part of
early aggregation for both cache-based and sort-based algorithms. Frequency in MHz is
the frequency that can be achieved by each implementation of early aggregation, alone.
The frequency of the entire (acceleration) platform is discussed below.

Impl. n Logic Utilization [ALM] BRAM Utilization [M20K] Frequency
MSMK N/A 86279 (9.25%) 1120 (9.56%) 264

CbMSMK 1 40239 (4.31%) 1063 (9.07%) 289
CbMSMK 2 40903 (4.38%) 1078 (9.20%) 262
CbMSMK 4 41526 (4.45%) 1078 (9.20%) 241
CbMSMK 8 43211 (4.63%) 1074 (9.16%) 223
CbMSMK 16 46657 (5.00%) 1070 (9.13%) 204
AltCache 8 40223 (4.31%) 1052 (8.98%) 149

Table 9.1: FPGA resource utilization of various implementations of early aggregation. n
is the degree of associativity in cache-based implementations. The percentage resource
utilizations are calculated over the total amount of resources provided by the FPGA.

The BRAM utilizations of all the implementations are fairly similar. However, MSMK
uses almost double the logic resources compared to any of the CbMSMK implementa-
tions, due to its use of the 32 treap sorters. The logic utilization of the CbMSMK imple-
mentations increases with n. The AltCache implementation also performs cache-based
early aggregation. It has a stall-free cache that uses typical forwarding schemes to deal
with collisions, instead of our preprocessing mechanisms. Compared to the CbMSMK
implementations, AltCache uses slightly less FPGA resources, but reaches a considerably
lower frequency due to its complexity.

We shall follow the methodology described in Section 9.3.7 to select an adequate
CbMSMK implementation. The target frequency of our platform (constrained by vari-
ous modules) is 182 MHz. The synthesis tools are able to reach that frequency for n ≤ 8.
Any further increase in n results in a negative slack, imposing lower frequencies for only
slightly better reduction performance. We have therefore decided to use the implemen-
tation with n = 8 in our benchmarks.

To showcase the scalability of our cache system architecture, we generated one more
FPGA build with a cache 8 times larger (in capacity) than the one used in our benchmarks,
occupying more than half of the BRAMs on our FPGA. The new build could only run at
159 MHz. By increasing the depth of the cache pipeline from 4 to 6, the achievable fre-
quency rose to 247 MHz. This modification cost us only 0.2% more FPGA logic resources,
and a decrease in performance from 99.89% to 99.69% line-rate processing speeds.

9.5.3 Datasets

In addition to the synthetic datasets introduced in Section 9.3.1, we also use the following
real data in our benchmarks:

9.5 Experiments 127

0.5 1.0 1.5 5.0 50.0250.0
Memory Factor

0

1

2

3
E

xe
cu

tio
n

Ti
m

e
[s

]
merge
sort

(a) CbMSMK Sort and Merge
Times

0.5 1.0 1.5 5.0 50.0250.0
Memory Factor

0

1

2

3

E
xe

cu
tio

n
Ti

m
e

[s
]

merge
sort

(b) MSMK Sort and Merge
Times

0.5 1.0 1.5 5.0 50.0250.0
Memory Factor

0.00

0.25

0.50

0.75

1.00

R
ed

uc
tio

n
Fa

ct
or

CbMSMK
MSMK

(c) Reduction Factors of
CbMSMK and MSMK

Figure 9.11: The results of the benchmarks comparing the sort times, merge times, and
reduction factors of CbMSMK and MSMK on the Zipf dataset.

• ICE: A table providing information on the WiFi system onboard the ICE trains in
Germany [Deu17]. It holds 22, 266, 745 rows. We aggregate the table using either the
latency, upload speed, or download speed column as the group key. The resulting
queries are called ice_lat, ice_tptx, and ice_tprx, respectively.

• Political: A table containing the contributions of individuals to federal committees
in the US from 2015 to 2016. It holds 20, 459, 430 rows. We aggregate the table
using either the city or the zip code column as the group key. The resulting queries
are called pol_city and pol_zip, respectively. A fairly similar set of queries is used
in [Lar02].

9.5.4 Benchmarks on Synthetic Data

The benchmarks presented in this section compare the execution times of CbMSMK and
MSMK performing aggregation on different datasets. The execution times include both
early aggregation and complete aggregation. Let us first study the key factors contribut-
ing to these execution times. Figures 9.11(a) and 9.11(b) show the execution times of both
implementations decomposed into sort time and merge time, on the Zipf dataset. Sort
times include early aggregation. First note that the sort times across all memory factors
and implementations are approximately the same. This is due to the fact that both sort
pipelines are built to process data at near line-rate speeds and that they need to read
their input table once (all tables have the same number of rows). The merge times, how-
ever, depend on the amount of data there is to merge, which is directly proportional to
the reduction factors of the early aggregation algorithms. Moreover, the Merge-Network
is implemented with optimizations (e.g., aggregation while merging) that affect merge
times as well. The reduction factor also determines the decrease in the memory footprint
of the merge phase. An early aggregation algorithm with better reduction performance
allows an FPGA (with a limited amount of RAM) to process larger tables. The reduction
factors on the Zipf dataset are shown in Figure 9.11(c).

The total execution times of our implementations are shown in Figure 9.12. On the uni-
form dataset, CbMSMK runs more than 3× faster than MSMK for small memory factors.
The difference in execution times almost disappears for larger memory factors. The op-
posite is true on the moving cluster dataset, where the two platforms have similar per-
formance for small memory factors, while the performance of CbMSMK surpasses that
of MSMK as the memory factor increases. The Zipf dataset presents a scenario where
CbMSMK keeps a steady lead in performance across all memory factors. These behav-
iors can be explained through our analysis of the reduction performance in Section 9.3.3.

128 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

0.5 1.0 1.5 5.0 50.0250.0
Memory Factor

0

4

8

12
E

xe
cu

tio
n

Ti
m

e
[s

]
CbMSMK
MSMK

MDB

(a) Uniform

0.5 1.0 1.5 5.0 50.0250.0
Memory Factor

0

4

8

12

E
xe

cu
tio

n
Ti

m
e

[s
]

CbMSMK
MSMK

MDB

(b) Moving Cluster

0.5 1.0 1.5 5.0 50.0250.0
Memory Factor

0

4

8

12

E
xe

cu
tio

n
Ti

m
e

[s
]

CbMSMK
MSMK

MDB

(c) Zipf

Figure 9.12: The results of the benchmarks comparing the performance of CbMSMK,
MSMK, and MonetDB (MDB) on synthetic data.

ice_lat
0.1

ice_tptx
9.8

ice_tprx
26.0

pol_city
0.6

pol_zip
22.1

Query/Memory Factor

0.00

0.25

0.50

0.75

R
ed

uc
tio

n
Fa

ct
or

CbMSMK MSMK

(a) Reduction

ice_lat
0.1

ice_tptx
9.8

ice_tprx
26.0

pol_city
0.6

pol_zip
22.1

Query/Memory Factor

0.0

0.5

1.0

E
xe

cu
tio

n
Ti

m
e

[s
]

CbMSMK MSMK MDB

(b) Execution Times

Figure 9.13: The results of the benchmarks comparing the performance of CbMSMK,
MSMK, and MonetDB (MDB) on real data.

MonetDB performance numbers are also included on our plots as a reference point for
comparison. In all of our benchmarks, CbMSMK is significantly faster than MonetDB.

It is worth noting that although the cache system reduces the execution time of the ag-
gregation operator, it does not improve the overall system throughput (in million rows
per second). Indeed, the throughput of a system is limited by the slowest element in its
processing pipeline. In our case, the Sort-Network is the slowest element, and has un-
changed running times for the reasons mentioned above. This is why our benchmarks in
this chapter focus on execution time rather than throughput like in Chapters 7 and 8.

9.5.5 Benchmarks on Real Data

The results of our benchmarks on real data are shown in Figure 9.13. CbMSMK achieves
much better reduction factors compared to MSMK across all datasets. With respect to
execution times, both platforms perform well on data with small memory factors, while
CbMSMK runs up to 2× faster on data with larger memory factors. Finally, observe that
CbMSMK runs on average 5× faster than MonetDB.

9.6 SUMMARY

The objective of this part of our work was to study early aggregation in the context of
database system acceleration on FPGAs. We started the chapter with a guided survey

9.6 Summary 129

on different early aggregation algorithms, suitable for an efficient FPGA-based imple-
mentation. We then performed software simulations comparing the most promising of
these algorithms in terms of their reduction performance. Set-associative caches with the
LIRS replacement policy demonstrated great performance with modest implementation
complexity. We then proposed a novel architecture for implementing these caches. The
architecture can achieve near line-rate throughputs despite data dependencies typically
caused by collisions. We also presented a low-overhead approximation of the LIRS al-
gorithm. Benchmarks revealed that CbMSMK, our new accelerator equipped with our
novel cache-based early aggregation architecture, performs at least as well as MSMK,
with great speedups (of up to 3×) achieved in many scenarios for the aggregation opera-
tor.

130 Chapter 9 A Study of Early Aggregation in Database Query Processing on FPGAs

10
THE FULL PICTURE

10.1 System Architecture

10.2 Benchmarks

10.3 Meeting the Objectives

In this chapter, we present an overview of the final version of our acceleration architec-
ture, CbMSMK. We then provide some single-operator and system-level TPC-H bench-
marks, showcasing the ability of our platform to process simple and complex queries. Fi-
nally, we revisit the objectives and goals outlined in Chapter 5 and discuss how CbMSMK
effectively meets these goals.

10.1 SYSTEM ARCHITECTURE

A high-level depiction of our acceleration platform is shown in Figure 10.1. The FPGA
card is connected to the host computer via PCIe, as an accelerator type platform described
in Section 4.2. Since we target the acceleration of in-memory database systems (see Sec-
tion 2.1.2), the host has the initial database stored in its RAM, which must be transferred
to the FPGA for processing. The FPGA hosts multiple CbMSMK Cores, each containing at
least one instance of both the Sort- and Merge-Networks. This allows each core to be able
to independently process all of the operators supported by our accelerator. The networks
are configured and launched by the scheduling algorithms running on the host CPU.

FPGA
FPGA Card

CPU

Merge-Network

Sort-Network

Merge-Network

FPGA RAM Channel

MSM Core

CPU RAM

Host

PCIeMerge-Network

Sort-Network

Merge-Network

FPGA RAM Channel

MSM Core

Merge-Network

Sort-Network

Merge-Network

FPGA RAM Channel

MSM Core

Merge-Network

Sort-Network

Merge-Network

FPGA RAM Channel

MSM Core

Figure 10.1: Architecture of the CbMSMK acceleration platform.

The block diagrams of the Sort- and Merge-Networks are presented in Figure 10.2. They
can together run the sort-merge algorithm, in order to process the sort, aggregation, and
join database operators. By using column-oriented load and store techniques, they can
also execute the projection operator. Let us briefly describe the flow of data through the
networks.

The input data, in the form of a database table, is initially stored column by column on the
FPGA RAM. Indeed, CbMSMK is a column-oriented database accelerator. The Pump and
Exhaust modules convert row accesses (reads/writes) made by the remaining modules in
the networks into column accesses before forwarding them to the FPGA RAM. They also
perform projections by filtering out the columns that are not part of the input or result of
the query.

The Sort-Network is principally responsible for executing the sort phase of the sort-merge
algorithm. The Sequential Load module reads the input table, row by row (thanks to the
Pump), streaming each row into the accelerator’s processing pipeline. The Cache System
is only activated for the aggregation operator. It partially aggregates the input, hoping
to reduce its size and thus the runtime of the entire aggregation operator, as described in
Chapter 9. The (potentially partially aggregated) rows are then forwarded to the Sorters.
The latter is composed of a set of 8 parallel heap sorters, proposed in Chapters 6 and 9.

132 Chapter 10 The Full Picture

Sorters

Multi-Buffer Store

Pump
So

rt
-N
et
w
or
k

Sequential Load

Cache System

Exhaust

FPGA RAM

FPGA RAM

(a) Sort-Network

Mergers

Sequential Store

Pump

M
er
ge

-N
et
w
or
k

JoinMat

Multi-Buffer Load

Streaming Aggregator

Exhaust & Rexhaust

FPGA RAM

FPGA RAM

(b) Merge-Network

Figure 10.2: Architecture of the Sort- and Merge-Networks used in CbMSMK for executing
the sort-merge algorithm. The latter is used as a basis for running our target pipeline-
breaking database operators.

They then transform the stream into runs of sorted rows. The sorted runs are stored in
the FPGA RAM by the Multi-Buffer Store module.

The Merge-Network is principally responsible for executing the merge phase of the sort-
merge algorithm. The Multi-Buffer Load module provides the Mergers access to the sorted
runs stored on the FPGA RAM. The (128-way) Mergers merge the sorted runs, which after
potentially multiple passes turn into the sorted table. During the intermediate passes,
the newly produced (larger) sorted runs are directly stored on the FPGA RAM by the
Sequential Store module, bypassing both the JoinMat and Streaming Aggregator. During the
final merge pass, the JoinMat can be activated to materialize the result of a join operator,
as described in Section 7.3.5. The Streaming Aggregator, introduced in Section 9.5, can also
be activated to aggregate the sorted table.

Note that CbMSMK is built for flexibility. The configuration presented in this section
(with 4 MSM Cores each with 1 Sort- and 2 Merge-Networks, 8 heap sorters per Sort-
Network, etc.) is the one we commonly used in the previous chapters and should not
be considered as the final product of our work. The flexibility of our architecture has
been thoroughly examined in Sections 7.4.2, 8.5.6, and 9.5.2. We briefly touch upon this
subject again in Section 10.3.

10.2 BENCHMARKS

In this section, we present the results of a set of summary benchmarks for our final ac-
celeration platform, CbMSMK. The experimental setup consists of a PCIe-attached Intel®

10.2 Benchmarks 133

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
Table Size [Rows]

0

1

2

3

4

5

6
S

pe
ed

up
 (C

bM
S

M
K

/M
on

et
D

B
)

U-Random U-Sorted Single Point

(a) Sort Operator

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
Domain Size of the Grouping Key

0

5

10

15

20

25

S
pe

ed
up

 (C
bM

S
M

K
/M

on
et

D
B

)

Uniform Zipf Moving Cluster

(b) Aggregation Operator

20 21 22 23 24 25 26 27
N

0

2

4

6

8

10

12

14

S
pe

ed
up

 (C
bM

S
M

K
/M

on
et

D
B

)

M = 1 M = 8 M = 64

(c) M:N Join Operator

Figure 10.3: The results of the benchmarks comparing the performance of CbMSMK
and MonetDB on the sort, aggregation, and join operators with various datasets. These
datasets are generated similarly to the ones in Chapter 7.

D5005 FPGA acceleration card with an Intel® Stratix® 10 FPGA [Cor19a] and 4 × 8GB
of DDR4 RAM for the CbMSMK benchmarks, and an Intel® Xeon® Platinum 8180 CPU
with 376 GB of DDR4 RAM [Int17] for the MonetDB v11.39.5 benchmarks.

The results of our single-operator benchmarks are shown in Figure 10.3. The datasets
used in these benchmarks are similar to the ones described in Chapter 7. CbMSMK
achieves up to approximately 6, 23, and 13 times higher performance compared to the
state-of-the-art MonetDB on the sort, aggregation, and join operators; respectively. We
refer the interested reader to Section 7.4 for a detailed analysis on the behavior of these
benchmarks.

The results of our benchmarks on four TPC-H queries are shown in Figure 10.4. The
datasets were generated using 3 separate scale factors. In TPC-H, a scale factor of x in-
dicates that the size of the underlying database is approximately x GB. The datasets are
preprocessed before executing the TPC-H queries:

• All date values were converted into their corresponding Unix time integer val-
ues [Wik23].

• All decimal values were converted into integers. Care was taken to ensure that this
loss of precision did not affect the overall computational flow or the size of the final
result.

134 Chapter 10 The Full Picture

Q1 Q4 Q6 Q14
TPC-H Query

0

2

4

6

8

10

12

14

16

S
pe

ed
up

 (C
bM

S
M

K
/M

on
et

D
B

)

13.34

1.23 1.72
0.94

13.98

1.42 1.73
1.02

14.01

1.5 1.9
1.07

Scale Factor 1 Scale Factor 5 Scale Factor 10

Figure 10.4: The results of the benchmarks comparing the performance of CbMSMK and
MonetDB on the TPC-H dataset with various scale factors.

As many of these queries contain basic filter and arithmetic operators, we added a few
static filter stages in the CbMSMK processing pipeline. With this, the FPGA is capable of
executing all 4 of our TPC-H queries on its own. Indeed, the queries contain a mix of the
projection, filtering, sort, aggregation and join operators on multiple tables with various
sizes and layouts, all of which are supported by our accelerator.

There are two primary reasons for the relatively small speedups of CbMSMK compared
to MonetDB on the TPC-H benchmarks. First, TPC-H queries are composed of chains
of pipeline-breaking database operators that must be executed one after another. Our
accelerator currently stores the results of each operator in the FPGA RAM, before passing
them to the next one. This increases the overall runtime required to execute the queries.
Second, the aggregation and join operators in the TPC-H queries are not particularly
well-suited for acceleration by CbMSMK. For instance, aggregation is often performed
on tables with only a few grouping keys and joins are typically 1:1 or 1:N equi-joins,
both of which result in lower speedups as shown by our single-operator benchmarks in
Figure 10.3.

Another notable observation is that the speedups tend to increase for larger scale factors.
Indeed, increasing the size of the data reduces the overhead of launching the operators
on the FPGA, compared to the execution time of the operators themselves.

Although further research and development will be necessary to optimize CbMSMK for
processing chains of pipeline-breaking operators (e.g., by forwarding the result of one
operator to another) and different operator configurations, our platform managed to per-
form as well as, or even significantly better than the state-of-the-art MonetDB on the
TPC-H benchmarks. More importantly, thanks to its wide array of capabilities, CbMSMK
demonstrated the ability to process these complex queries independently, without the
need for external support from the host. Indeed, we managed to tackle one of the greatest
challenges of using accelerators: data movement. Thanks to the capabilities of CbMSMK,
the FPGA can now own, keep, and process the data locally, only transferring the results
of the queries back to the host. With some additional development (e.g., adding sup-
port for the filter operator and more data types), it would be possible for the host system
to almost completely offload the processing of intensive analytical queries to the FPGA,
freeing itself from this computational burden.

10.3 MEETING THE OBJECTIVES

The objectives of our work were defined in Section 5.1. Below is a categorized list of these
objectives, and how CbMSMK has been successful in meeting them:

10.3 Meeting the Objectives 135

• Operator support: CbMSMK is capable of accelerating all three of our target
pipeline-breaking database operators, namely sort, aggregation, and join. Addi-
tionally, it supports the projection operator. All operators can process arbitrarily
deep and wide tables. CbMSMK currently supports the processing of integers and
strings, but has the potential to support additional data types by extending the
ALUs.

• Resource efficiency: All pipeline-breaking database operators share the sort-merge
pipeline, achieving resource efficiency through reuse. Moreover, CbMSMK takes
advantage of the columnar storage of data to execute the projection operator, with-
out incurring additional resource utilization.

• Modularity and extensibility: All the processing modules in the CbMSMK pipeline
have a data interface based on the standard handshaking protocol [ARM20], which
allows them to transfer one database row per clock cycle and exert backpressure as
needed. This makes it easy to add or remove modules to or from the pipeline.

• Flexibility: CbMSMK is both designed and implemented (in Chisel) with flexi-
bility in mind. Indeed, the architecture can be configured to fit various resource
constraints and workloads. The number of MSM Cores, the number and type
of networks within each MSM Core, the capacity and structure of the Cache Sys-
tem, the number and capacity of the sorters in the Sort-Network, the number of
ways supported by the Mergers, and the capacity of the JoinMat are a few of the
highly impactful, yet configurable parameters of the architecture. Even the storage
model (i.e., row storage and column storage) of the accelerator can be modified by
adding/removing the interface adapters (i.e. Pumps/Exhausts).

• Support for multiple clients: The multi-core design of CbMSMK allows it to sup-
port multiple clients at the same time. Moreover, each MSM Core is capable of exe-
cuting all of the operators supported by our accelerator. This facilitates the schedul-
ing and assignment of client queries to the MSM Cores on the FPGA.

• Support for FPGA accelerator card platforms: CbMSMK is optimized to run on
accelerator card platforms. Indeed, our implementation on the Intel® D5005 FPGA
acceleration card receives its data from the host memory, processes it, and returns
the result back to the host. The architecture also takes advantage of the multiple
RAM channels provided by the accelerator card.

In summary, although CbMSMK still has room for improvement, it currently satisfies
our objectives and goals and conforms to our requirements. In Chapter 11, we list and
discuss further directions for our research.

136 Chapter 10 The Full Picture

Part III

Conclusion

137

11
SUMMARY AND OUTLOOK ON FUTURE

RESEARCH

11.1 Summary

11.2 Future Work

With the growing prevalence of hardware acceleration platforms (e.g., GPUs, FPGAs) in
both on-premise and cloud setups, the development of custom architectures for database
system acceleration has gained significant traction. Database system acceleration is a
vast area of research that involves both hardware and software innovations and opti-
mizations. Our work attempts to push the boundaries in this domain. In this chapter, we
reiterate the important milestones and contribution of our work. We then discuss a few
directions for future research.

11.1 SUMMARY

In Chapter 1, we explained the motivation for our research by highlighting the signif-
icance of performance in database query processing. We also discussed how the slow-
ing down of Moore’s law makes it increasingly challenging to meet the performance de-
mands of modern database systems. We then outlined a set of requirements, based on
industry needs, for a database system accelerator with practical applications. Essentially,
the accelerator must support multiple operators, with priority given to the ones whose
acceleration results in greater end-to-end system performance improvements. The ar-
chitecture of the accelerator must be extensible, flexible, and optimized for in-memory
database system acceleration. Finally, the design must provide opportunities to support
multiple simultaneous clients.

In Chapters 2 and 3, we gave a brief introduction on the topics of database query pro-
cessing and FPGA development. The goal of these chapters was to familiarize the reader
with both domains and present the advantages and challenges of integrating the two.
Past research on the incorporation of FPGAs into query processing pipelines were dis-
cussed in Chapter 4. There, we observed that there is a lack of acceleration platforms that
align with the requirements defined in Chapter 1.

Chapter 5 marks the start of our contributions. There, we leveraged our knowledge of
past research in order to convert the requirements defined in Chapter 1 into concrete ob-
jectives and goals for the architecture of our database system accelerator. The architecture
was then defined in broad terms, left to be further refined and detailed in the subsequent
chapters.

Database systems are typically implemented by software engineers using traditional lan-
guages such as C/C++. Therefore, the first objective of our research was to determine
whether HLS tools can be leveraged to continue this trend on FPGAs. In Chapter 6, we
compared Intel® FPGA SDK for OpenCL, which is a fairly mature HLS tool, with hand-
crafted RTL code in VHDL. The results of our study showed that while an OpenCL im-
plementation may provide comparable performance to an RTL implementation in some
situations, complex designs generally perform significantly better when implemented in
RTL. Moreover, the FPGA resource utilization of OpenCL designs is almost always cru-
cially worse than that of those written in RTL. Based on these results, we decided to use
RTL rather than OpenCL for implementing our accelerator.

In Chapter 7, we introduced MSM, the first version of our database system accelerator.
MSM uses the sort-merge algorithm to execute all three of the sort, aggregation, and
join operators. These operators are particularly relevant to our work as they are both
popular and computationally demanding. By accelerating them, we can significantly
improve the overall performance of analytical queries, which is essential for meeting
our requirements. The sort-merge pipeline is shared by all three operators, resulting in a
resource-efficient design. This allowed us to instantiate multiple acceleration cores (MSM
Cores), enabling the FPGA to process multiple queries at the same time; which helped us

140 Chapter 11 Summary and Outlook on Future Research

meet another important part of our requirements. MSM is shown to have on average
5× higher throughput (in million processed rows per second) than the state-of-the-art
MonetDB for the sort, join, and aggregation operators.

A crucial requirement for our accelerator is that it must be able to support multiple, high-
impact operators. This not only pertains to the number of operators supported, but also
the size and layout of the tables they can accept as input. MSM is capable of processing
tables with different data types and an arbitrary number of rows. However, it has a lim-
itation on the width, or number of columns, of tables it can support. This is a limitation
commonly found in past research. In Chapter 8, we proposed KeRRaS, an abstract sort
algorithm that enables existing sort-based accelerators to support arbitrarily wide tables.
MSMK is the result of integrating KeRRaS into MSM. The performance of the new archi-
tecture is similar to MSM on narrow tables and scales well as the table width increases.
Furthermore, MSMK is a column-oriented accelerator (as opposed to the row-oriented
MSM), which allows it to support the projection operator and a broader range of queries
in general.

Having already met our requirements from Chapter 1, we decided to further investigate
the FPGA-accelerated aggregation operator with the aim of improving its performance.
In Chapter 9, we conducted a comparative analysis of various early aggregation algo-
rithms for an FPGA-based implementation. An early aggregation algorithm is a low-
complexity algorithm that can help reduce the size of the input to an aggregation op-
erator, with the aim of decreasing its overall running time. Our study concluded that
set-associative caches with the LIRS replacement policy perform very well and have a
reasonable level of implementation complexity when used for early aggregation on FP-
GAs. Consequently, they were integrated into MSMK, resulting in a new architecture
called CbMSMK. In our benchmarks, CbMSMK was able to run the aggregation operator
up to 3× faster than MSMK.

Finally, in Chapter 10, we provided an overview of the complete CbMSMK architecture.
We then presented the results of some single-operator and TPC-H query benchmarks
evaluating the accelerator in its final form. In the end, we revisited the objectives of our
thesis, and discussed how they were met by CbMSMK.

11.2 FUTURE WORK

In this section, we briefly outline some potential directions for future research that could
enhance our work in terms of both performance and applicability.

The first category of improvements relates to the capabilities of the platform. Indeed, by
expanding these capabilities, the FPGA can accelerate a broader range of queries and a
greater portion of each query. This makes the FPGA even more independent of the host
system, further freeing up the CPU and reducing the need for host-FPGA data transfers.
Below are a few suggestions in this direction:

• Filtering: Filtering is typically a computationally-inexpensive, yet very commonly
used operator in database workloads. The main benefit of integrating filtering
into our architecture would be to avoid round trips between the FPGA and its
host. Given the size (e.g., large Boolean expressions) and complexity (e.g., arith-
metic operations, regular expression matching, etc.) of many filter predicates, a

11.2 Future Work 141

practical filter implementation must have a high degree of runtime configurabil-
ity. Many FPGA-based architectures for filtering have been proposed in the liter-
ature [DZT13, SJT+12, SMT+14, SMT+12, WIA14]. We are currently integrating a
tiny-CPU-based implementation of filtering into our platform. It is composed of
multiple domain-specific CPUs with small instruction and data memories stored in
BRAMs. They can be programmed to evaluate a wide range of predicates.

• Other operators: Support for additional streaming and pipeline-breaking database
operators would help alleviate some more of the limitations of our database system
accelerator. The challenge in this direction is that generality can come at the cost of
performance. Therefore, it is incredibly important to strike a balance between the
two. Thankfully, our architecture allows for many more operators to be supported
without compromise. For instance, different types of anti-joins can be implemented
by simply tweaking the JoinMat module in the Merge-Network.

• Data types: Currently, CbMSMK can process tables with integer and string
columns. Additional data types can be supported by extending the ALUs used
in the design. Fortunately, many database-specific data types, such as the Decimal
data type defined in TPC-H, can be implemented on FPGAs very efficiently.

Another category of improvements concerns the performance of the system, based on
its architecture. This has been a major theme of the thesis, and will likely remain so in
future work. Below are a few suggestions for improving the operator- and query-level
performance of CbMSMK:

• General optimizations: Further studies and investigations into various architec-
tures for processing database operators are necessary. They can help improve the
performance of our existing modules (e.g., improving the pipeline-efficiency of our
heap sorters) or result in more efficient alternatives.

• Partitioning: Using table partitioning techniques, we can offload a single operator
to multiple MSM Cores. This allows the accelerator to have higher single-operator
performance in case the number of concurrently executing operators is smaller than
that of the MSM Cores. Partitioning, even within a single core, can lead to better
performance as it can break the problem down into smaller pieces. For instance, if
the number of unique keys in each of the partitions of a table is smaller than the
capacity of the Cache System in CbMSMK, a single pass of the Sort-Network may be
able to fully aggregate the input.

• Advanced interconnects: Improved on-chip interconnects can help reduce the num-
ber of memory accesses and lower memory bandwidth requirements by moving
data between the modules within the FPGA, instead of using the FPGA RAM as a
buffer. For example, consider a chain of two pipeline-breaking database operators
O1 and O2. To execute the chain, CbMSMK must store the result of O1 in the FPGA
RAM before it is loaded back up for executing O2. A significant optimization would
be to forward the result of O1, obtained after the last pass of the Merge-Network, di-
rectly to the Sort-Network executing O2. This can greatly improve the query-level
performance of CbMSMK.

The features and characteristics of an FPGA platform have significant implications on the
types of architectures that it can support, as well as the performance of an implementa-
tion of those architectures on the platform. Some areas that have yet to be explored in
this field include:

142 Chapter 11 Summary and Outlook on Future Research

• Memory system: Analytical database processing is inherently a relatively memory-
intensive task. Fortunately, new and upcoming FPGA platforms offer increasingly
better memory systems. For instance, FPGAs with larger and faster BRAMs and
external memories such as high bandwidth memory (HBM) are becoming increas-
ingly prevalent [WZTD19]. A promising area of research is to update and adapt
CbMSMK to take advantage of these new memory technologies.

• Scaling: Similar to traditional database systems, FPGA-based database processing
also has the potential to be scaled out and executed by a network of interconnected
FPGAs. Microsoft is using this type of infrastructure to speed up web search and
convolutional neural networks [CCP+16, PCC+15, ORK+15]. Farview is another
platform using a similar setup for database system acceleration [KKK+22].

• Support for additional platform types: Accelerator card platforms are particularly
well-suited for accelerating in-memory database systems, which has been the focus
of our work. However, our architecture can be easily adapted to other types of
platforms (e.g., network processors and smart storage platforms), thus increasing
the applicability and scope of our research.

A number of unexplored feature- and performance-related areas of research pertain to
end-to-end query execution. Indeed, despite all of its features, CbMSMK remains a query
engine accelerator that can only execute the operators scheduled by the host. However,
the other tasks typically performed by a DBMS (e.g., query parsing, query execution plan
generation and optimization, etc.) are currently done manually with the architecture of
the accelerator in mind. Further research is needed to both improve and automate these
tasks:

• DBMS integration: A crucial next step for our research would be to integrate
CbMSMK into a DBMS. This would involve a thorough examination to identify
which components of the DBMS will be affected by the integration, and how they
should be modified to accommodate it. As CbMSMK gains new capabilities and
becomes increasingly independent from its host, it is likely that more extensive up-
dates to the underlying DBMS will be necessary. Eventually, it may become more
beneficial to research and develop an FPGA-specific DBMS from the ground up.
Related works in this area are discussed in [BGB+18].

• Near-FPGA scheduling: In the current state of our platform, the host is respon-
sible for scheduling and synchronizing the execution of the operators in a query
execution plan on the FPGA. All the commands necessary for configuring and
launching the FPGA must be transmitted through the PCIe bus, resulting in per-
formance penalties. An alternative approach would be to transfer the query execu-
tion plan to a processing unit, such as a hard processor system (HPS), on the FPGA,
which would then orchestrate the execution of its operators on the Sort- and Merge-
Networks. This would reduce the scheduling and synchronization overheads as the
HPS would be closer (in latency) than the host to the networks on the FPGA.

Finally, we would like to propose more extensive benchmarking as a requirement for
the future development of our acceleration platform. Indeed, as this thesis primarily
focused on accelerating various pipeline-breaking database operators, our benchmarks
were specifically tailored to measure the performance of those operators. Although we
did provide some TPC-H benchmarks to demonstrate the capabilities of our platform, a
deeper analysis of the performance of our accelerator on complete queries is necessary to
guide further development.

11.2 Future Work 143

144 Chapter 11 Summary and Outlook on Future Research

BIBLIOGRAPHY

[AAA+22] Daniel Abadi, Anastasia Ailamaki, David G. Andersen, Peter Bailis, Mag-
dalena Balazinska, Philip A. Bernstein, Peter A. Boncz, Surajit Chaudhuri,
Alvin Cheung, AnHai Doan, Luna Dong, Michael J. Franklin, Juliana Freire,
Alon Y. Halevy, Joseph M. Hellerstein, Stratos Idreos, Donald Kossmann,
Tim Kraska, Sailesh Krishnamurthy, Volker Markl, Sergey Melnik, Tova Milo,
C. Mohan, Thomas Neumann, Beng Chin Ooi, Fatma Ozcan, Jignesh M. Pa-
tel, Andrew Pavlo, Raluca A. Popa, Raghu Ramakrishnan, Christopher Ré,
Michael Stonebraker, and Dan Suciu. The seattle report on database research.
Commun. ACM, 65(8):72–79, 2022.

[ABW+16] Ildar Absalyamov, Prerna Budhkar, Skyler Windh, Robert J. Halstead,
Walid A. Najjar, and Vassilis J. Tsotras. FPGA-accelerated group-by aggrega-
tion using synchronizing caches. In Proceedings of the 12th International Work-
shop on Data Management on New Hardware, DaMoN 2016, San Francisco, CA,
USA, June 27, 2016, pages 11:1–11:9. ACM, 2016.

[AG12] Indu Arora and Anu Gupta. Cloud databases: a paradigm shift in databases.
International Journal of Computer Science Issues (IJCSI), 9(4):77, 2012.

[AKN12] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively
parallel sort-merge joins in main memory multi-core database systems. Proc.
VLDB Endow., 5(10):1064–1075, 2012.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In American Federation of Information Processing So-
cieties: Proceedings of the AFIPS ’67 Spring Joint Computer Conference, April 18-20,
1967, Atlantic City, New Jersey, USA, volume 30 of AFIPS Conference Proceedings,
pages 483–485. AFIPS / ACM / Thomson Book Company, Washington D.C.,
1967.

[AMH08] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-stores vs. row-
stores: how different are they really? In Jason Tsong-Li Wang, editor, Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 967–980. ACM,
2008.

[AN94] Arne Andersson and Stefan Nilsson. A new efficient radix sort. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994, pages 714–721. IEEE Computer Society, 1994.

[ANA10] Abhinav Agarwal, Man Cheuk Ng, and Arvind. A comparative evaluation of
high-level hardware synthesis using Reed-Solomon decoder. IEEE Embed. Syst.
Lett., 2(3):72–76, 2010.

145

[ANS+14] Oriol Arcas-Abella, Geoffrey Ndu, Nehir Sönmez, Mohsen Ghasempour,
Adrià Armejach, Javier Navaridas, Wei Song, John Mawer, Adrián Cristal, and
Mikel Luján. An empirical evaluation of high-level synthesis languages and
tools for database acceleration. In 24th International Conference on Field Pro-
grammable Logic and Applications, FPL 2014, Munich, Germany, 2-4 September,
2014, pages 1–8. IEEE, 2014.

[App16] Austin Appleby. MurmurHash3. https://github.com/aappleby/smhasher/
blob/master/src/MurmurHash3.cpp, 2016.

[ARM20] ARM. AMBA AXI and ACE protocol specification version D: Handshake pro-
cess. https://developer.arm.com/documentation/ihi0022/d/AMBA-AXI3-
and-AXI4-Protocol-Specification/Single-Interface-Requirements/
Basic-read-and-write-transactions/Handshake-process?lang=en, 2020.
(Accessed on 12/04/2022).

[AWS17] Inc. Amazon Web Services. Amazon EC2 F1 instances, customizable FPGAs for
hardware acceleration are now generally available. https://aws.amazon.com/
about-aws/whats-new/2017/04/amazon-ec2-f1-instances-customizable-
fpgas-for-hardware-acceleration-are-now-generally-available/, 04
2017. (Accessed on 11/11/2022).

[Azu22] Microsoft Azure. NP-series - Azure virtual machines. https://
learn.microsoft.com/en-us/azure/virtual-machines/np-series, 09 2022.
(Accessed on 11/11/2022).

[Bar21] Jeff Barr. AQUA (advanced query accelerator) – A speed boost for your
Amazon Redshift queries. https://aws.amazon.com/blogs/aws/new-aqua-
advanced-query-accelerator-for-amazon-redshift/, 04 2021. (Accessed
on 11/11/2022).

[BAS04] Ravi Budruk, Don Anderson, and Tom Shanley. PCI express system architecture.
Addison-Wesley Professional, 2004.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In American Fed-
eration of Information Processing Societies: AFIPS Conference Proceedings: 1968
Spring Joint Computer Conference, Atlantic City, NJ, USA, 30 April - 2 May 1968,
volume 32 of AFIPS Conference Proceedings, pages 307–314. Thomson Book
Company, Washington D.C., 1968.

[BATÖ13] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-
core, main-memory joins: Sort vs. hash revisited. Proc. VLDB Endow., 7(1):85–
96, 2013.

[BBC+12] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick Ho,
Namik Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil Lee, Tian-
chao Tim Li, Guy M. Lohman, Konstantinos Morfonios, René Müller, Keshava
Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Raman, Richard Sidle, Knut
Stolze, and Sandor Szabo. Business analytics in (a) blink. IEEE Data Eng. Bull.,
35(1):9–14, 2012.

[BDD+10] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura M. Haas, Renée J.
Miller, and Nesime Tatbul. SECRET: A model for analysis of the execution se-
mantics of stream processing systems. Proc. VLDB Endow., 3(1):232–243, 2010.

[BGB+18] Andreas Becher, Lekshmi B. G., David Broneske, Tobias Drewes, Bala Guru-
murthy, Klaus Meyer-Wegener, Thilo Pionteck, Gunter Saake, Jürgen Teich,
and Stefan Wildermann. Integration of FPGAs in database management sys-
tems: Challenges and opportunities. Datenbank-Spektrum, 18(3):145–156, 2018.

146 BIBLIOGRAPHY

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://developer.arm.com/documentation/ihi0022/d/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://developer.arm.com/documentation/ihi0022/d/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://developer.arm.com/documentation/ihi0022/d/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://aws.amazon.com/about-aws/whats-new/2017/04/amazon-ec2-f1-instances-customizable-fpgas-for-hardware-acceleration-are-now-generally-available/
https://aws.amazon.com/about-aws/whats-new/2017/04/amazon-ec2-f1-instances-customizable-fpgas-for-hardware-acceleration-are-now-generally-available/
https://aws.amazon.com/about-aws/whats-new/2017/04/amazon-ec2-f1-instances-customizable-fpgas-for-hardware-acceleration-are-now-generally-available/
https://learn.microsoft.com/en-us/azure/virtual-machines/np-series
https://learn.microsoft.com/en-us/azure/virtual-machines/np-series
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

[BHS+14] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and
Gunter Saake. GPU-accelerated database systems: Survey and open chal-
lenges. Trans. Large Scale Data Knowl. Centered Syst., 15:1–35, 2014.

[Bit22] BittWare. Agilex FPGA card with QSFP-DD and MCIO. https://
www.bittware.com/files/IA-840Fdatasheet.pdf, 7 2022. (Accessed on
12/25/2022).

[BK90] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In David S.
Johnson, editor, Proceedings of the First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 22-24 January 1990, San Francisco, California, USA, pages 43–53.
SIAM, 1990.

[Bla10] Vladimir Blagojevic. Infinispan eviction, batching updates and LIRS.
https://infinispan.org/blog/2010/03/30/infinispan-eviction-
batching-updates, 2010. (Accessed on 08/15/2022).

[BLP11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation of main
memory hash join algorithms for multi-core CPUs. In Timos K. Sellis, Renée J.
Miller, Anastasios Kementsietsidis, and Yannis Velegrakis, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011, pages 37–48. ACM, 2011.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database architec-
ture optimized for the new bottleneck: Memory access. In Malcolm P. Atkin-
son, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L.
Brodie, editors, VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 54–65.
Morgan Kaufmann, 1999.

[Bro96] Stephen Brown. FPGA architectural research: a survey. IEEE Design & Test of
Computers, 13(4):9–15, 1996.

[Bru09] Jake Brutlag. Speed matters for Google web search. https://
services.google.com/fh/files/blogs/googledelayexp.pdf, 06 2009. (Ac-
cessed on 11/10/2022).

[BVR+12] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Water-
man, Rimas Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: con-
structing hardware in a Scala embedded language. In Patrick Groeneveld, Do-
natella Sciuto, and Soha Hassoun, editors, The 49th Annual Design Automation
Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, pages 1216–
1225. ACM, 2012.

[CCP06] Deming Chen, Jason Cong, and Peichen Pan. FPGA design automation: A
survey. Found. Trends Electron. Des. Autom., 1(3), 2006.

[CCP+16] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur,
Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Pa-
pamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A
cloud-scale acceleration architecture. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19,
2016, pages 7:1–7:13. IEEE Computer Society, 2016.

BIBLIOGRAPHY 147

https://www.bittware.com/files/IA-840F_datasheet.pdf
https://www.bittware.com/files/IA-840F_datasheet.pdf
https://infinispan.org/blog/2010/03/30/infinispan-eviction-batching-updates
https://infinispan.org/blog/2010/03/30/infinispan-eviction-batching-updates
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf

[CDL11] Alexandre Cornu, Steven Derrien, and Dominique Lavenier. HLS tools for
FPGA: faster development with better performance. In Andreas Koch, Ram
Krishnamurthy, John McAllister, Roger F. Woods, and Tarek A. El-Ghazawi,
editors, Reconfigurable Computing: Architectures, Tools and Applications - 7th In-
ternational Symposium, ARC 2011, Belfast, UK, March 23-25, 2011. Proceedings,
volume 6578 of Lecture Notes in Computer Science, pages 67–78. Springer, 2011.

[CDN11] Surajit Chaudhuri, Umeshwar Dayal, and Vivek R. Narasayya. An overview
of business intelligence technology. Commun. ACM, 54(8):88–98, 2011.

[CER18] CERN. Key facts and figures – CERN data centre. https:
//information-technology.web.cern.ch/sites/default/files/
CERNDataCentreKeyInformation01June2018V1.pdf, 06 2018. (Accessed
on 11/10/2022).

[CG11] Alain Crolotte and Ahmad Ghazal. Introducing skew into the TPC-H bench-
mark. In Raghunath Othayoth Nambiar and Meikel Poess, editors, Topics in
Performance Evaluation, Measurement and Characterization - Third TPC Technology
Conference, TPCTC 2011, Seattle, WA, USA, August 29-September 3, 2011, Revised
Selected Papers, volume 7144 of Lecture Notes in Computer Science, pages 137–145.
Springer, 2011.

[Chi21a] Chisel development team. Chisel release 3.4.2.
https://github.com/chipsalliance/chisel3/tree/
e84a934e753738cc7472e1f94e38523d8ec172ff, 02 2021. (Accessed on
12/14/2022).

[Chi21b] Chisel development team. Chisel release 3.4.3.
https://github.com/chipsalliance/chisel3/tree/
2554adfdae7933e7b0cf62ca71a6cb6b0c576f46, 4 2021. (Accessed on
12/08/2021).

[Chi22] Chisel development team. Chisel release 3.5.0. https://github.com/
chipsalliance/chisel3/tree/v3.5.0, 1 2022. (Accessed on 08/21/2022).

[Chu08] Pong P. Chu. FPGA Prototyping by VHDL Examples. John Wiley & Sons, Ltd,
2008.

[Clo21] Huawei Cloud. FPGA-accelerated ECSs. https://support.huaweicloud.com/
en-us/productdesc-ecs/en-ustopic0069206563.html, 11 2021. (Accessed on
11/11/2022).

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[CO14] Jared Casper and Kunle Olukotun. Hardware acceleration of database op-
erations. In Vaughn Betz and George A. Constantinides, editors, The 2014
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’14, Monterey, CA, USA - February 26 - 28, 2014, pages 151–160. ACM, 2014.

[Cod69] E. F. Codd. Derivability, redundancy and consistency of relations stored in
large data banks. Research Report / RJ / IBM / San Jose, California, RJ599, 1969.

[Com22] Scala Development Community. The Scala programming language. https:
//scala-lang.org/, 2022. (Accessed on 11/18/2022).

[Con12] EuroBen Contributors. Convey systems. https://www.euroben.nl/reports/
web13/convey.php, 2012. (Accessed on 11/25/2022).

148 BIBLIOGRAPHY

https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://github.com/chipsalliance/chisel3/tree/e84a934e753738cc7472e1f94e38523d8ec172ff
https://github.com/chipsalliance/chisel3/tree/e84a934e753738cc7472e1f94e38523d8ec172ff
https://github.com/chipsalliance/chisel3/tree/2554adfdae7933e7b0cf62ca71a6cb6b0c576f46
https://github.com/chipsalliance/chisel3/tree/2554adfdae7933e7b0cf62ca71a6cb6b0c576f46
https://github.com/chipsalliance/chisel3/tree/v3.5.0
https://github.com/chipsalliance/chisel3/tree/v3.5.0
https://support.huaweicloud.com/en-us/productdesc-ecs/en-us_topic_0069206563.html
https://support.huaweicloud.com/en-us/productdesc-ecs/en-us_topic_0069206563.html
https://scala-lang.org/
https://scala-lang.org/
https://www.euroben.nl/reports/web13/convey.php
https://www.euroben.nl/reports/web13/convey.php

[Cor10] Intel Corporation. Stratix IV GX FPGA development board reference man-
ual. https://www.intel.com/programmable/technical-pdfs/654380.pdf, 11
2010. (Accessed on 11/25/2022).

[Cor14] Intel Corporation. OpenCL™ 2.0 shared virtual memory overview.
https://www.intel.com/content/www/us/en/developer/articles/
technical/opencl-20-shared-virtual-memory-overview.html, 09 2014.
(Accessed on 11/24/2022).

[Cor17] Intel Corporation. Fitter resource usage summary report. https:
//www.intel.com/content/www/us/en/programmable/quartushelp/17.0/
mapIdTopics/mwh1465496451103.htm, 2017. (Accessed on 11/11/2022).

[Cor18a] Intel Corporation. Intel® Stratix® 10 GX/SX product table. https:
//cdrdv2.intel.com/v1/dl/getContent/652463, 2018. (Accessed on
11/17/2022).

[Cor18b] Oracle Corporation. In-memory column store architecture. https:
//docs.oracle.com/en/database/oracle/oracle-database/21/inmem/
in-memory-column-store-architecture.html#GUID-EEA265EE-8FBA-4457-
8C3F-315B9EEA2224, 2018. (Accessed on 11/13/2022).

[Cor19a] Intel Corporation. Intel FPGA programmable acceleration card D5005
data sheet. https://www.intel.com/content/www/us/en/programmable/
documentation/cvl1520030638800.html, 11 2019. (Accessed on 11/11/2022).

[Cor19b] Intel Corporation. Intel® FPGA programmable acceleration card D5005 data
sheet: DDR4 SDRAM. https://www.intel.com/content/www/us/en/docs/
programmable/683568/current/ddr4-sdram.html, 11 2019. (Accessed on
11/11/2022).

[Cor20] Intel Corporation. Intel programmable acceleration card (PAC) with intel Arria
10 GX FPGA data sheet. https://www.intel.com/content/www/us/en/docs/
programmable/683226/current/introduction-rush-creek.html, 10 2020.
(Accessed on 12/25/2022).

[Cor21a] Intel Corporation. Intel® Optane™ persistent memory (Pmem).
https://www.intel.com/content/www/us/en/products/details/memory-
storage/optane-dc-persistent-memory.html, 2021. (Accessed on
11/19/2022).

[Cor21b] Intel Corporation. Intel® Stratix® 10 DX FPGA overview. https:
//www.intel.com/content/www/us/en/products/details/fpga/stratix/
10/dx.html, 2021. (Accessed on 11/11/2022).

[Cor21c] Intel Corporation. Supported operational modes in Intel® Stratix® 10 devices.
https://www.intel.com/content/www/us/en/docs/programmable/683832/
21-2/supported-operational-modes-in-devices.html, 08 2021. (Accessed
on 11/17/2022).

[Cor22a] Intel Corporation. ALM. https://www.intel.com/content/www/us/en/
docs/programmable/683699/current/alm.html, 03 2022. (Accessed on
11/17/2022).

[Cor22b] Intel Corporation. Intel® Stratix® 10 embedded memory configura-
tions. https://www.intel.com/content/www/us/en/docs/programmable/
683423/21-4/embedded-memory-configurations.html, 04 2022. (Accessed on
11/17/2022).

BIBLIOGRAPHY 149

https://www.intel.com/programmable/technical-pdfs/654380.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/mapIdTopics/mwh1465496451103.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/mapIdTopics/mwh1465496451103.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/mapIdTopics/mwh1465496451103.htm
https://cdrdv2.intel.com/v1/dl/getContent/652463
https://cdrdv2.intel.com/v1/dl/getContent/652463
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-EEA265EE-8FBA-4457-8C3F-315B9EEA2224
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-EEA265EE-8FBA-4457-8C3F-315B9EEA2224
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-EEA265EE-8FBA-4457-8C3F-315B9EEA2224
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-EEA265EE-8FBA-4457-8C3F-315B9EEA2224
https://www.intel.com/content/www/us/en/programmable/documentation/cvl1520030638800.html
https://www.intel.com/content/www/us/en/programmable/documentation/cvl1520030638800.html
https://www.intel.com/content/www/us/en/docs/programmable/683568/current/ddr4-sdram.html
https://www.intel.com/content/www/us/en/docs/programmable/683568/current/ddr4-sdram.html
https://www.intel.com/content/www/us/en/docs/programmable/683226/current/introduction-rush-creek.html
https://www.intel.com/content/www/us/en/docs/programmable/683226/current/introduction-rush-creek.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://www.intel.com/content/www/us/en/docs/programmable/683832/21-2/supported-operational-modes-in-devices.html
https://www.intel.com/content/www/us/en/docs/programmable/683832/21-2/supported-operational-modes-in-devices.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/alm.html
https://www.intel.com/content/www/us/en/docs/programmable/683699/current/alm.html
https://www.intel.com/content/www/us/en/docs/programmable/683423/21-4/embedded-memory-configurations.html
https://www.intel.com/content/www/us/en/docs/programmable/683423/21-4/embedded-memory-configurations.html

[Cor22c] Intel Corporation. Intel® Stratix® 10 embedded memory features.
https://www.intel.com/content/www/us/en/docs/programmable/683423/
21-4/embedded-memory-features.html, 04 2022. (Accessed on 11/17/2022).

[Cor22d] Intel Corporation. Logic elements. https://www.intel.com/content/www/
us/en/docs/programmable/683777/current/logic-elements.html, 09 2022.
(Accessed on 11/16/2022).

[Cou22] Transaction Processing Performance Council. TPC-H homepage. https://
www.tpc.org/tpch/, 2022. (Accessed on 11/30/2022).

[CP16] Ren Chen and Viktor K. Prasanna. Accelerating equi-join on a CPU-FPGA
heterogeneous platform. In 24th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2016, Washington, DC, USA,
May 1-3, 2016, pages 212–219. IEEE Computer Society, 2016.

[CR07] John Cieslewicz and Kenneth A. Ross. Adaptive aggregation on chip multi-
processors. In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Di-
vesh Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong
Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J.
Neuhold, editors, Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, September 23-27, 2007, pages 339–350.
ACM, 2007.

[CSPJ03] Seonil Choi, Ronald Scrofano, Viktor K. Prasanna, and Ju-wook Jang. Energy-
efficient signal processing using FPGAs. In Steve Trimberger and Russell
Tessier, editors, Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA 2003, Monterey, CA, USA, February 23-25, 2003,
pages 225–234. ACM, 2003.

[Dat03] C. J. Date. An introduction to database systems (8. ed.). Addison-Wesley-
Longman, 2003.

[DBRU20] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker.
Quantifying TPC-H choke points and their optimizations. Proc. VLDB Endow.,
13(8):1206–1220, 2020.

[Deu17] Deutsche Bahn Fernverkehr AG. WIFI on ICE. https://
data.deutschebahn.com/dataset/wifi-on-ice.html, 12 2017. (Accessed
on 12/30/2022).

[DG20] Thanh Do and Goetz Graefe. Sort-based grouping and aggregation. CoRR,
abs/2010.00152, 2020.

[DGN23] Thanh Do, Goetz Graefe, and Jeffrey Naughton. Efficient sorting, duplicate
removal, grouping, and aggregation. ACM Trans. Database Syst., 47(4), 01 2023.

[DKM+12] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark
Horowitz. CPU DB: recording microprocessor history. Commun. ACM,
55(4):55–63, 2012.

[DSB19] Manish Deo, Jeffrey Schulz, and Lance Brown. Intel® Stratix® 10
MX devices with samsung* HBM2 solve the memory bandwidth chal-
lenge. https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-
bandwidth-challenge.pdf, 2019. (Accessed on 11/11/2022).

150 BIBLIOGRAPHY

https://www.intel.com/content/www/us/en/docs/programmable/683423/21-4/embedded-memory-features.html
https://www.intel.com/content/www/us/en/docs/programmable/683423/21-4/embedded-memory-features.html
https://www.intel.com/content/www/us/en/docs/programmable/683777/current/logic-elements.html
https://www.intel.com/content/www/us/en/docs/programmable/683777/current/logic-elements.html
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/
https://data.deutschebahn.com/dataset/wifi-on-ice.html
https://data.deutschebahn.com/dataset/wifi-on-ice.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf

[DZS13] Luka Daoud, Dawid Zydek, and Henry Selvaraj. A survey of high level syn-
thesis languages, tools, and compilers for reconfigurable high performance
computing. In Jerzy Swiatek, Adam Grzech, Pawel Swiatek, and Jakub M.
Tomczak, editors, Advances in Systems Science - Proceedings of the International
Conference on Systems Science 2013, ICSS 2013, Wroclaw, Poland, September 10-
12, 2013, volume 240 of Advances in Intelligent Systems and Computing, pages
483–492. Springer, 2013.

[DZT12] Christopher Dennl, Daniel Ziener, and Jürgen Teich. On-the-fly composition of
FPGA-Based SQL query accelerators using a partially reconfigurable module
library. In 2012 IEEE 20th Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM 2012, 29 April - 1 May 2012, Toronto, Ontario,
Canada, pages 45–52. IEEE Computer Society, 2012.

[DZT13] Christopher Dennl, Daniel Ziener, and Jürgen Teich. Acceleration of SQL re-
strictions and aggregations through FPGA-Based dynamic partial reconfigura-
tion. In 21st IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines, FCCM 2013, Seattle, WA, USA, April 28-30, 2013, pages 25–
28. IEEE Computer Society, 2013.

[EH84] Wolfgang Effelsberg and Theo Härder. Principles of database buffer manage-
ment. ACM Trans. Database Syst., 9(4):560–595, 1984.

[Epr18] Eproav. Cubix Xpander Fiber 8. https://eproav.com/cubix-xpander-fiber-
8-xf8-4u-rp, 2018. (Accessed on 11/25/2022).

[Fae17] Christian Faerber. Acceleration of Cherenkov angle reconstruction with the
new Intel Xeon/FPGA compute platform for the particle identification in the
LHCb upgrade. In Journal of Physics: Conference Series, volume 898, page
032044. IOP Publishing, 2017.

[FCP+11] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. SAP HANA database: data management for modern
business applications. SIGMOD Rec., 40(4):45–51, 2011.

[FdSJ19] Gabriel Fornari and Valdivino Alexandre de Santiago Júnior. Dynamically re-
configurable systems: A systematic literature review. J. Intell. Robotic Syst.,
95(3-4):829–849, 2019.

[FfI22] Technische Universität München Fakultät für Informatik, Lehrstuhl III: Daten-
banksysteme. HyPer: Hybrid OLTP & OLAP high-performance database sys-
tem. https://hyper-db.de/, 2022. (Accessed on 10/18/2022).

[FMH+20] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee.
In-memory database acceleration on FPGAs: a survey. VLDB J., 29(1):33–59,
2020.

[FML+12] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller,
Hannes Rauhe, and Jonathan Dees. The SAP HANA database – An architecture
overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[FMM12] Umer Farooq, Zied Marrakchi, and Habib Mehrez. FPGA Architectures: An
Overview, pages 7–48. Springer New York, New York, NY, 2012.

[Fra14] Phil Francisco. IBM PureData system for analytics architecture. IBM Redbooks,
2014:1–16, 2014.

BIBLIOGRAPHY 151

https://eproav.com/cubix-xpander-fiber-8-xf8-4u-rp
https://eproav.com/cubix-xpander-fiber-8-xf8-4u-rp
https://hyper-db.de/

[GAT+15] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak,
Stefano Stefani, and Vidhya Srinivasan. Amazon Redshift and the case for sim-
pler data warehouses. In Timos K. Sellis, Susan B. Davidson, and Zachary G.
Ives, editors, Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages
1917–1923. ACM, 2015.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Re-
ichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and sub to-
tals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[Gil04] William F. Gilreath. Hash sort: A linear time complexity multiple-dimensional
sort algorithm. CoRR, cs.DS/0408040, 2004.

[GK19] Shubham Gandhare and B. Karthikeyan. Survey on FPGA architecture and
recent applications. In 2019 International Conference on Vision Towards Emerging
Trends in Communication and Networking (ViTECoN), pages 1–4, 2019.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–170, 1993.

[Gra06] Goetz Graefe. Implementing sorting in database systems. ACM Comput. Surv.,
38(3):10, 2006.

[Gro16] Stanford University’s VLSI Research Group. CPU DB: - looking at 40 years of
processor improvements | a complete database of processors for researchers
and hobbyists alike. http://cpudb.stanford.edu/download, 06 2016. (Ac-
cessed on 11/10/2022).

[GS92] Hector Garcia-Molina and Kenneth Salem. Main memory database systems:
An overview. IEEE Trans. Knowl. Data Eng., 4(6):509–516, 1992.

[GS21] Prajith Ramakrishnan Geethakumari and Ioannis Sourdis. A specialized mem-
ory hierarchy for stream aggregation. In 31st International Conference on Field-
Programmable Logic and Applications, FPL 2021, Dresden, Germany, August 30 -
Sept. 3, 2021, pages 204–210. IEEE, 2021.

[GSDB12] Ravindra Guravannavar, S. Sudarshan, Ajit A. Diwan, and Ch. Sobhan Babu.
Which sort orders are interesting? VLDB J., 21(1):145–165, 2012.

[GUW09] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database sys-
tems - the complete book (2. ed.). Pearson Education, 2009.

[HAMS08] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. OLTP through the looking glass, and what we found there. In Ja-
son Tsong-Li Wang, editor, Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008, pages 981–992. ACM, 2008.

[HANT15] Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, and Vassilis J. Tso-
tras. FPGA-based multithreading for in-memory hash joins. In Seventh Biennial
Conference on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

[HCGL15] Kenneth Hill, Stefan Craciun, Alan D. George, and Herman Lam. Compar-
ative analysis of OpenCL vs. HDL with image-processing kernels on Stratix-
V FPGA. In 26th IEEE International Conference on Application-specific Systems,
Architectures and Processors, ASAP 2015, Toronto, ON, Canada, July 27-29, 2015,
pages 189–193. IEEE Computer Society, 2015.

152 BIBLIOGRAPHY

http://cpudb.stanford.edu/download

[HH21] Sarah Harris and David Harris. Digital Design and Computer Architecture: RISC-
V Edition. Morgan Kaufmann, 2021.

[HNM02] Sven Helmer, Thomas Neumann, and Guido Moerkotte. Early grouping gets
the skew. Technical reports, 2, 2002.

[HNM03] Sven Helmer, Thomas Neumann, and Guido Moerkotte. Estimating the out-
put cardinality of partial preaggregation with a measure of clusteredness. In
Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J.
Carey, Patricia G. Selinger, and Andreas Heuer, editors, Proceedings of 29th
International Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany,
September 9-12, 2003, pages 656–667. Morgan Kaufmann, 2003.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantita-
tive Approach, 6th Edition. Morgan Kaufmann, 2017.

[HS76] Ellis Horowitz and Sartaj Sahni. Fundamentals of data structures. Computer
Science Press, 1976.

[HSM+13] Robert J. Halstead, Bharat Sukhwani, Hong Min, Mathew Thoennes, Pari-
jat Dube, Sameh W. Asaad, and Balakrishna Iyer. Accelerating join operation
for relational databases with FPGAs. In 21st IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines, FCCM 2013, Seattle,
WA, USA, April 28-30, 2013, pages 17–20. IEEE Computer Society, 2013.

[HWFH08] Omar Hammami, Zhoukun Wang, Virginie Fresse, and Dominique Houzet.
A case study: Quantitative evaluation of C-based high-level synthesis systems.
EURASIP J. Embed. Syst., 2008, 2008.

[IEE18] IEEE Computer Society and the IEEE Standards Association Corporate Advi-
sory Group. IEEE standard for SystemVerilog–unified hardware design, spec-
ification, and verification language. IEEE Std 1800-2017 (Revision of IEEE Std
1800-2012), pages 1–1315, 2018.

[IEE19] IEEE Design Automation Standards Committee. IEEE standard for VHDL lan-
guage reference manual. IEEE Std 1076-2019, pages 1–673, 2019.

[IGN+12] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullen-
der, and Martin L. Kersten. MonetDB: Two decades of research in column-
oriented database architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[Inc18] Terasic Inc. DE5-Net FPGA development kit: User manual. https:
//www.terasic.com.tw/cgi-bin/page/archivedownload.pl?Language=
English&No=526&FID=49e768f77939a23529c519ae385dde6a, 06 2018. (Ac-
cessed on 11/25/2022).

[Inc19] Terasic Inc. Intel® Stratix® 10 DX FPGA development kit.
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=
English&CategoryNo=248&No=1258&PartNo=1#contents, 2019. (Accessed on
11/19/2022).

[Inc20] Khronos® Group Inc. OpenCL overview. https://www.khronos.org/opencl/,
2020. (Accessed on 11/11/2022).

[Inc22] Amazon Inc. Columnar storage - Amazon Red-
shift. https://docs.aws.amazon.com/redshift/latest/dg/
ccolumnarstoragediskmemmgmnt.html, 2022. (Accessed on 10/18/2022).

BIBLIOGRAPHY 153

https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=526&FID=49e768f77939a23529c519ae385dde6a
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=526&FID=49e768f77939a23529c519ae385dde6a
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=526&FID=49e768f77939a23529c519ae385dde6a
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=248&No=1258&PartNo=1#contents
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=248&No=1258&PartNo=1#contents
https://www.khronos.org/opencl/
https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html
https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

[Ins22] Hasso Plattner Institut. Hyrise: The open-source in-memory research
DBMS. https://hpi.de/plattner/projects/hyrise.html, 2022. (Accessed
on 11/11/2022).

[Int13] Intel Corporation. Implementing FPGA design with the OpenCL
standard. https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/wp/wp-01173-opencl.pdf, 11 2013. (Accessed on
11/11/2022).

[Int17] Intel Corporation. Intel® Xeon® Platinum 8180 processor. https:
//www.intel.com/content/www/us/en/products/sku/120496/intel-xeon-
platinum-8180-processor-38-5m-cache-2-50-ghz/specifications.html,
2017. (Accessed on 12/27/2022).

[Int18a] Intel Corporation. Intel® FPGA SDK for OpenCL™ standard edition
getting started guide. https://www.intel.com/content/www/us/en/
docs/programmable/683678/18-1/standard-edition-getting-started-
guide.html, 09 2018. (Accessed on 11/11/2022).

[Int18b] Intel Corporation. Swarm64’s S64DA* delivers fast, innovative data analytics
solution with Intel® FPGAs. https://www.intel.com/content/dam/www/
public/us/en/documents/partner-alliance/solution-briefs/swarm64-
fpga-solution-brief.pdf, 2018. (Accessed on 11/21/2022).

[Int19] Intel Corporation. Intel® FPGA SDK for OpenCL™ pro edition: Program-
ming guide. https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/hb/opencl-sdk/aoclprogrammingguide.pdf, 12 2019.
(Accessed on 02/23/2020).

[Int22] Intel Corporation. FPGA architecture overview. https://www.intel.com/
content/www/us/en/develop/documentation/oneapi-fpga-optimization-
guide/top/introduction-to-fpga-design-concepts/fpga-architecture-
overview.html, 09 2022. (Accessed on 11/16/2022).

[Int23] Intel Corporation. Intel® FPGA add-on for oneAPI base toolkit: Program FP-
GAs faster. https://www.intel.com/content/www/us/en/developer/tools/
oneapi/fpga.html#gs.mvt6sd, 2023. (Accessed on 01/17/2023).

[Jen09] Bob Jenkins. Order-preserving minimal perfect hashing. in Dic-
tionary of Algorithms and Data Structures [online], Paul E. Black, ed.,
April 2009. Available from: https://www.nist.gov/dads/HTML/
orderPreservMinPerfectHash.html (accessed 25 December 2022).

[JMS+08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer
Widom, Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack, Richard Tib-
betts, and Stanley B. Zdonik. Towards a streaming SQL standard. Proc. VLDB
Endow., 1(2):1379–1390, 2008.

[JZ02] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference recency
set replacement policy to improve buffer cache performance. In Richard R.
Muntz, Margaret Martonosi, and Edmundo de Souza e Silva, editors, Proceed-
ings of the International Conference on Measurements and Modeling of Computer
Systems, SIGMETRICS 2002, June 15-19, 2002, Marina Del Rey, California, USA,
pages 31–42. ACM, 2002.

[KA16] Kaan Kara and Gustavo Alonso. Fast and robust hashing for database oper-
ators. In Paolo Ienne, Walid A. Najjar, Jason Helge Anderson, Philip Brisk,
and Walter Stechele, editors, 26th International Conference on Field Programmable
Logic and Applications, FPL 2016, Lausanne, Switzerland, August 29 - September 2,
2016, pages 1–4. IEEE, 2016.

154 BIBLIOGRAPHY

https://hpi.de/plattner/projects/hyrise.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.intel.com/content/www/us/en/products/sku/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683678/18-1/standard-edition-getting-started-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683678/18-1/standard-edition-getting-started-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683678/18-1/standard-edition-getting-started-guide.html
https://www.intel.com/content/dam/www/public/us/en/documents/partner-alliance/solution-briefs/swarm64-fpga-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/partner-alliance/solution-briefs/swarm64-fpga-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/partner-alliance/solution-briefs/swarm64-fpga-solution-brief.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/introduction-to-fpga-design-concepts/fpga-architecture-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/introduction-to-fpga-design-concepts/fpga-architecture-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/introduction-to-fpga-design-concepts/fpga-architecture-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/introduction-to-fpga-design-concepts/fpga-architecture-overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html#gs.mvt6sd
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html#gs.mvt6sd
https://www.nist.gov/dads/HTML/orderPreservMinPerfectHash.html
https://www.nist.gov/dads/HTML/orderPreservMinPerfectHash.html

[KBB+15] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Ja-
cobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ip-
pokratis Pandis, Henry Robinson, David Rorke, Silvius Rus, John Russell,
Dimitris Tsirogiannis, Skye Wanderman-Milne, and Michael Yoder. Impala:
A modern, open-source SQL engine for hadoop. In Seventh Biennial Conference
on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA, January 4-7,
2015, Online Proceedings. www.cidrdb.org, 2015.

[KGA17] Kaan Kara, Jana Giceva, and Gustavo Alonso. Fpga-based data partitioning.
In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu,
editors, Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 433–
445. ACM, 2017.

[KHD+20] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syriv-
elis, and Gustavo Alonso. High bandwidth memory on FPGAs: A data ana-
lytics perspective. In Nele Mentens, Leonel Sousa, Pedro Trancoso, Miquel
Pericàs, and Ioannis Sourdis, editors, 30th International Conference on Field-
Programmable Logic and Applications, FPL 2020, Gothenburg, Sweden, August 31
- September 4, 2020, pages 1–8. IEEE, 2020.

[KKK+22] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov,
Dejan S. Milojicic, and Gustavo Alonso. Farview: Disaggregated memory
with operator off-loading for database engines. In 12th Conference on Innova-
tive Data Systems Research, CIDR 2022, Chaminade, CA, USA, January 9-12, 2022.
www.cidrdb.org, 2022.

[KM10] Adam Kirsch and Michael Mitzenmacher. The power of one move: Hashing
schemes for hardware. IEEE/ACM Trans. Netw., 18(6):1752–1765, 2010.

[KMK+19] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon
Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt,
Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Howard
Katz, Jonathan Bachrach, and Krste Asanovic. FireSim: FPGA-accelerated
cycle-exact scale-out system simulation in the public cloud. IEEE Micro,
39(3):56–65, 2019.

[Knu73] Donald E. Knuth. The art of computer programming, Vol. 3: sorting and searching.
Addison-Wesley, 1973.

[KS16] Christoforos Kachris and Dimitrios Soudris. A survey on reconfigurable accel-
erators for cloud computing. In Paolo Ienne, Walid A. Najjar, Jason Helge An-
derson, Philip Brisk, and Walter Stechele, editors, 26th International Conference
on Field Programmable Logic and Applications, FPL 2016, Lausanne, Switzerland,
August 29 - September 2, 2016, pages 1–10. IEEE, 2016.

[KSC+09] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, Anthony D.
Nguyen, Andrea Di Blas, Victor W. Lee, Nadathur Satish, and Pradeep Dubey.
Sort vs. hash revisited: Fast join implementation on modern multi-core CPUs.
Proc. VLDB Endow., 2(2):1378–1389, 2009.

[KT11] Dirk Koch and Jim Tørresen. FPGASort: a high performance sorting archi-
tecture exploiting run-time reconfiguration on FPGAs for large problem sort-
ing. In John Wawrzynek and Katherine Compton, editors, Proceedings of the
ACM/SIGDA 19th International Symposium on Field Programmable Gate Arrays,
FPGA 2011, Monterey, California, USA, February 27, March 1, 2011, pages 45–54.
ACM, 2011.

BIBLIOGRAPHY 155

[KTB+12] Dirk Koch, Jim Tørresen, Christian Beckhoff, Daniel Ziener, Christopher
Dennl, Volker Breuer, Jürgen Teich, Michael Feilen, and Walter Stechele. Par-
tial reconfiguration on FPGAs in practice - tools and applications. In Gero
Mühl, Jan Richling, and Andreas Herkersdorf, editors, ARCS 2012 Workshops,
28. Februar - 2. März 2012, München, Germany, volume P-200 of LNI, pages 297–
319. GI, 2012.

[Lar02] Per-Åke Larson. Data reduction by partial preaggregation. In Rakesh Agrawal
and Klaus R. Dittrich, editors, Proceedings of the 18th International Conference on
Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002, pages 706–715.
IEEE Computer Society, 2002.

[Lim08] S. S. Limaye. VHDL: A Design Oriented Approach. McGraw-Hill Publ., 2008.

[LMM+22] Robert Lasch, Mehdi Moghaddamfar, Norman May, Süleyman Sirri Demir-
soy, Christian Färber, and Kai-Uwe Sattler. Bandwidth-optimal relational
joins on FPGAs. In Julia Stoyanovich, Jens Teubner, Paolo Guagliardo, Mi-
los Nikolic, Andreas Pieris, Jan Mühlig, Fatma Özcan, Sebastian Schelter, H. V.
Jagadish, and Meihui Zhang, editors, Proceedings of the 25th International Con-
ference on Extending Database Technology, EDBT 2022, Edinburgh, UK, March 29 -
April 1, 2022, pages 1:27–1:39. OpenProceedings.org, 2022.

[MA18] Noor Mohammedali and Michael Opoku Agyeman. A study of reconfigurable
accelerators for cloud computing. In Proceedings of the 2nd International Sym-
posium on Computer Science and Intelligent Control, ISCSIC ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[MCK17] Susumu Mashimo, Thiem Van Chu, and Kenji Kise. High-performance hard-
ware merge sorter. In 25th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2017, Napa, CA, USA, April
30 - May 2, 2017, pages 1–8. IEEE Computer Society, 2017.

[MFL+21] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, Norman May, and
Akash Kumar. Resource-efficient database query processing on FPGAs. In
Danica Porobic and Spyros Blanas, editors, Proceedings of the 17th International
Workshop on Data Management on New Hardware, DaMoN 2021, 21 June 2021,
Virtual Event, China, pages 4:1–4:8. ACM, 2021.

[MFLM20] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, and Norman
May. Comparative analysis of OpenCL and RTL for sort-merge primitives on
FPGA. In Danica Porobic and Thomas Neumann, editors, 16th International
Workshop on Data Management on New Hardware, DaMoN 2020, Portland, Ore-
gon, USA, June 15, 2020, pages 11:1–11:7. ACM, 2020.

[MFM+22] Mehdi Moghaddamfar, Christian Färber, Norman May, Wolfgang Lehner,
and Akash Kumar. FPGA-based database query processing on arbitrarily wide
tables. In 30th IEEE Annual International Symposium on Field-Programmable Cus-
tom Computing Machines, FCCM 2022, New York City, NY, USA, May 15-18, 2022,
page 1. IEEE, 2022.

[Mic22] Microsoft Learn contributors. Columnstore indexes: Overview - sql
server. https://learn.microsoft.com/en-us/sql/relational-databases/
indexes/columnstore-indexes-overview?view=sql-server-ver16, 11
2022. (Accessed on 01/23/2023).

[Miy16] Takefumi Miyoshi. Synthesijer. http://synthesijer.github.io/web/, 2016.
(Accessed on 11/18/2022).

156 BIBLIOGRAPHY

https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver16
http://synthesijer.github.io/web/

[MK19] Onisimo Mutanga and Lalit Kumar. Google earth engine applications. Remote.
Sens., 11(5):591, 2019.

[MMF+23] Mehdi Moghaddamfar, Norman May, Christian Färber, Wolfgang Lehner,
and Akash Kumar. A study of early aggregation in database query process-
ing on FPGAs. In Paolo Ienne and Zhiru Zhang, editors, Proceedings of the 2023
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA
2023, Monterey, CA, USA, February 12-14, 2023, pages 55–65. ACM, 2023.

[MNC09] Rui Marcelino, Horácio C. Neto, and João M. P. Cardoso. Unbalanced FIFO
sorting for FPGA-based systems. In 16th IEEE International Conference on Elec-
tronics, Circuits, and Systems, ICECS 2009, Yasmine Hammamet, Tunisia, 13-19
December, 2009, pages 431–434. IEEE, 2009.

[Mon21] MonetDB B.V. MonetDB. https://www.monetdb.org/, 2021. (Accessed on
12/14/2022).

[Moo98] Gordon E. Moore. Cramming more components onto integrated circuits. Proc.
IEEE, 86(1):82–85, 1998.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[MSC+16] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma B. K. Vrudhula. Scal-
able and modularized RTL compilation of convolutional neural networks onto
FPGA. In Paolo Ienne, Walid A. Najjar, Jason Helge Anderson, Philip Brisk,
and Walter Stechele, editors, 26th International Conference on Field Programmable
Logic and Applications, FPL 2016, Lausanne, Switzerland, August 29 - September 2,
2016, pages 1–8. IEEE, 2016.

[MSL+15] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Fär-
ber. Cache-efficient aggregation: Hashing is sorting. In Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 1123–1136. ACM, 2015.

[MTA09a] René Müller, Jens Teubner, and Gustavo Alonso. Data processing on FPGAs.
Proc. VLDB Endow., 2(1):910–921, 2009.

[MTA09b] René Müller, Jens Teubner, and Gustavo Alonso. Streams on Wires - A query
compiler for FPGAs. Proc. VLDB Endow., 2(1):229–240, 2009.

[MTA10] René Müller, Jens Teubner, and Gustavo Alonso. Glacier: a query-to-hardware
compiler. In Ahmed K. Elmagarmid and Divyakant Agrawal, editors, Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 1159–1162. ACM,
2010.

[MTA12] René Müller, Jens Teubner, and Gustavo Alonso. Sorting networks on FPGAs.
VLDB J., 21(1):1–23, 2012.

[Mul19] David Mulnix. Intel® Xeon® processor scalable family technical overview.
https://www.intel.com/content/www/us/en/developer/articles/
technical/xeon-processor-scalable-family-technical-overview.html,
06 2019. (Accessed on 11/19/2022).

[NMG+15] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, Avesta Sasan,
and Houman Homayoun. Energy-efficient acceleration of big data analytics
applications using FPGAs. In 2015 IEEE International Conference on Big Data
(IEEE BigData 2015), Santa Clara, CA, USA, October 29 - November 1, 2015, pages
115–123. IEEE Computer Society, 2015.

BIBLIOGRAPHY 157

https://www.monetdb.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

[NS22] Chris Nyberg and Mehul Shah. Sort benchmark home page. http://
sortbenchmark.org/, 2022. (Accessed on 12/27/2022).

[NSJ13] Mohammedreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. Flex-
ible query processor on FPGAs. Proc. VLDB Endow., 6(12):1310–1313, 2013.

[NSJ15] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. Con-
figurable hardware-based streaming architecture using online programmable-
blocks. In Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha,
and Guy M. Lohman, editors, 31st IEEE International Conference on Data Engi-
neering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 819–830. IEEE
Computer Society, 2015.

[NSP+16] Razvan Nane, Vlad Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort,
Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Dean Brown, Fabrizio
Ferrandi, Jason Helge Anderson, and Koen Bertels. A survey and evaluation of
FPGA high-level synthesis tools. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 35(10):1591–1604, 2016.

[OLG+05] John D. Owens, David Luebke, Naga K. Govindaraju, Mark J. Harris, Jens H.
Krüger, Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose
computation on graphics hardware. In Yiorgos Chrysanthou and Marcus A.
Magnor, editors, 26th Annual Conference of the European Association for Computer
Graphics, Eurographics 2005 - State of the Art Reports, Dublin, Ireland, August 29 -
September 2, 2005, pages 21–51. Eurographics Association, 2005.

[OOW93] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K page
replacement algorithm for database disk buffering. In Peter Buneman and
Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Washington, DC, USA, May 26-28, 1993, pages
297–306. ACM Press, 1993.

[ORK+15] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin
Strauss, and Eric S. Chung. Accelerating deep convolutional neural networks
using specialized hardware. Microsoft Research Whitepaper, 2(11):1–4, 2015.

[OSC+11] Neal Oliver, Rahul R. Sharma, Stephen Chang, Bhushan Chitlur, Elkin Gar-
cia, Joseph Grecco, Aaron Grier, Nelson Ijih, Yaping Liu, Pratik Marolia, Henry
Mitchel, Suchit Subhaschandra, Arthur Sheiman, Tim Whisonant, and Prabhat
Gupta. A reconfigurable computing system based on a cache-coherent fab-
ric. In Peter M. Athanas, Jürgen Becker, and René Cumplido, editors, 2011
International Conference on Reconfigurable Computing and FPGAs, ReConFig 2011,
Cancun, Mexico, November 30 - December 2, 2011, pages 80–85. IEEE Computer
Society, 2011.

[OSKA17] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur:
A framework for hybrid CPU-FPGA databases. In 25th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines, FCCM
2017, Napa, CA, USA, April 30 - May 2, 2017, pages 211–218. IEEE Computer
Society, 2017.

[Pan92] Sethuraman Panchanathan. Universal architecture for matrix transposition.
IEEE Proceedings: Computers and Digital Techniques, 139(5):387–392, January
1992.

158 BIBLIOGRAPHY

http://sortbenchmark.org/
http://sortbenchmark.org/

[PCC+15] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen
Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Pe-
terson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug
Burger. A reconfigurable fabric for accelerating large-scale datacenter services.
IEEE Micro, 35(3):10–22, 2015.

[Pet19] Alex Petrov. Database Internals: A Deep Dive into How Distributed Data Systems
Work. " O’Reilly Media, Inc.", 2019.

[PHL18] Johns Paul, Bingsheng He, and Chiew Tong Lau. Query processing on
OpenCL-Based FPGAs: Challenges and opportunities. In 24th IEEE Interna-
tional Conference on Parallel and Distributed Systems, ICPADS 2018, Singapore, De-
cember 11-13, 2018, pages 937–945. IEEE, 2018.

[PRE21] SAP PRESS. What is SAP HANA? a guide to in-memory computing with SAP
| SAP PRESS. https://learning.sap-press.com/sap-hana, 2021. (Accessed
on 11/24/2022).

[Red11] Martin Reddy. Chapter 7 - performance. In Martin Reddy, editor, API Design
for C++, pages 209–240. Morgan Kaufmann, Boston, 2011.

[Rei15] John H. Reif. Forward radix sort. https://users.cs.duke.edu/~reif/
courses/alglectures/littman.lectures/lect05/node37.html, 2015. (Ac-
cessed on 12/25/2022).

[RG03] Raghu Ramakrishnan and Johannes Gehrke. Database management systems (3.
ed.). McGraw-Hill, 2003.

[RK13] Margy Ross and Ralph Kimball. The data warehouse toolkit: the definitive guide to
dimensional modeling. John Wiley & Sons, 2013.

[SAB+05] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Eliz-
abeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik.
C-Store: A column-oriented DBMS. In Klemens Böhm, Christian S. Jensen,
Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi, ed-
itors, Proceedings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30 - September 2, 2005, pages 553–564. ACM, 2005.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. Access path selection in a relational database
management system. In Philip A. Bernstein, editor, Proceedings of the 1979 ACM
SIGMOD International Conference on Management of Data, Boston, Massachusetts,
USA, May 30 - June 1, pages 23–34. ACM, 1979.

[Sak14] Sherif Sakr. Cloud-hosted databases: technologies, challenges and opportuni-
ties. Clust. Comput., 17(2):487–502, 2014.

[SAS+16] Behzad Salami, Oriol Arcas-Abella, Nehir Sönmez, Osman S. Unsal, and
Adrián Cristal Kestelman. Accelerating hash-based query processing opera-
tions on FPGAs by a hash table caching technique. In Carlos Jaime Barrios
Hernández, Isidoro Gitler, and Jaime Klapp, editors, High Performance Comput-
ing - Third Latin American Conference, CARLA 2016, Mexico City, Mexico, August
29 - September 2, 2016, Revised Selected Papers, volume 697 of Communications in
Computer and Information Science, pages 131–145, 2016.

BIBLIOGRAPHY 159

https://learning.sap-press.com/sap-hana
https://users.cs.duke.edu/~reif/courses/alglectures/littman.lectures/lect05/node37.html
https://users.cs.duke.edu/~reif/courses/alglectures/littman.lectures/lect05/node37.html

[SB09] Eric Schurman and Jake Brutlag. The user and business impact of server de-
lays, additional bytes, and http chunking in web search. In Velocity Web Perfor-
mance and Operations Conference. oreilly, 2009.

[SBJS15] Jeffrey Stuecheli, Bart Blaner, C. R. Johns, and M. S. Siegel. CAPI: A coherent
accelerator processor interface. IBM J. Res. Dev., 59(1), 2015.

[Sch09] Nicole Schweikardt. One-pass algorithm. In Ling Liu and M. Tamer Özsu,
editors, Encyclopedia of Database Systems, pages 1948–1949. Springer US, 2009.

[Sch22] Thomas Schulte. Need PCI Express 5.0 for your next FPGA design? check out
Intel® Agilex™ I-series and M-series FPGAs. https://community.intel.com/
t5/Blogs/Products-and-Solutions/FPGA/Need-PCI-Express-5-0-for-
your-next-FPGA-design-Check-out-Intel/post/1385046, 05 2022. (Ac-
cessed on 11/24/2022).

[SCPC15] Ajitesh Srivastava, Ren Chen, Viktor K. Prasanna, and Charalampos Chelmis.
A hybrid design for high performance large-scale sorting on FPGA. In Michael
Hübner, Maya B. Gokhale, and René Cumplido, editors, International Confer-
ence on ReConFigurable Computing and FPGAs, ReConFig 2015, Riviera Maya,
Mexico, December 7-9, 2015, pages 1–6. IEEE, 2015.

[SE17] SAP SE. Columnar and row-based data storage. https://help.sap.com/
docs/SAPHANAPLATFORM/6b94445c94ae495c83a19646e7c3fd56/
bd2e9b88bb571014b5b7a628fca2a132.html?version=2.0.01, 2017. (Accessed
on 11/11/2022).

[SE22] SAP SE. What is SAP HANA? https://www.sap.com/uk/products/
technology-platform/hana/what-is-sap-hana.html, 2022. (Accessed on
11/11/2022).

[SFJ+19] Rym Skhiri, Virginie Fresse, Jean-Paul Jamont, Benoît Suffran, and Jihene
Malek. From FPGA to support cloud to cloud of FPGA: State of the art. Int. J.
Reconfigurable Comput., 2019:8085461:1–8085461:17, 2019.

[Sie21] Siemens AG. C++/systemc synthesis. https://eda.sw.siemens.com/en-US/
ic/catapult-high-level-synthesis/hls/c-cplus/, 02 2021. (Accessed on
01/17/2023).

[SIOA17] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. Acceler-
ating pattern matching queries in hybrid CPU-FPGA architectures. In Semih
Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors,
Proceedings of the 2017 ACM International Conference on Management of Data, SIG-
MOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 403–415. ACM,
2017.

[SJT+12] Mohammad Sadoghi, Rija Javed, Naif Tarafdar, Harsh Singh, Rohan Palaniap-
pan, and Hans-Arno Jacobsen. Multi-query stream processing on FPGAs. In
Anastasios Kementsietsidis and Marcos Antonio Vaz Salles, editors, IEEE 28th
International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, pages 1229–1232. IEEE Computer Society,
2012.

[Ski08] Steven Skiena. The Algorithm Design Manual, Second Edition. Springer, 2008.

[SKLG16] Wei Song, Dirk Koch, Mikel Luján, and Jim D. Garside. Parallel hard-
ware merge sorter. In 24th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2016, Washington, DC, USA,
May 1-3, 2016, pages 95–102. IEEE Computer Society, 2016.

160 BIBLIOGRAPHY

https://community.intel.com/t5/Blogs/Products-and-Solutions/FPGA/Need-PCI-Express-5-0-for-your-next-FPGA-design-Check-out-Intel/post/1385046
https://community.intel.com/t5/Blogs/Products-and-Solutions/FPGA/Need-PCI-Express-5-0-for-your-next-FPGA-design-Check-out-Intel/post/1385046
https://community.intel.com/t5/Blogs/Products-and-Solutions/FPGA/Need-PCI-Express-5-0-for-your-next-FPGA-design-Check-out-Intel/post/1385046
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/bd2e9b88bb571014b5b7a628fca2a132.html?version=2.0.01
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/bd2e9b88bb571014b5b7a628fca2a132.html?version=2.0.01
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/bd2e9b88bb571014b5b7a628fca2a132.html?version=2.0.01
https://www.sap.com/uk/products/technology-platform/hana/what-is-sap-hana.html
https://www.sap.com/uk/products/technology-platform/hana/what-is-sap-hana.html
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/

[SMT+12] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna
Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh W. Asaad. Database
analytics acceleration using FPGAs. In Pen-Chung Yew, Sangyeun Cho, Luiz
DeRose, and David J. Lilja, editors, International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’12, Minneapolis, MN, USA - September
19 - 23, 2012, pages 411–420. ACM, 2012.

[SMT+14] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Bernard
Brezzo, Sameh W. Asaad, and Donna Dillenberger. Database analytics: A
reconfigurable-computing approach. IEEE Micro, 34(1):19–29, 2014.

[STM+13] Bharat Sukhwani, Mathew Thoennes, Hong Min, Parijat Dube, Bernard
Brezzo, Sameh W. Asaad, and Donna Dillenberger. Large payload streaming
database sort and projection on FPGAs. In 25th International Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD 2013, Porto
de Galinhas, Pernambuco, Brazil, October 23-26, 2013, pages 25–32. IEEE Com-
puter Society, 2013.

[STM+15] Bharat Sukhwani, Mathew Thoennes, Hong Min, Parijat Dube, Bernard
Brezzo, Sameh W. Asaad, and Donna Dillenberger. A hardware/software ap-
proach for database query acceleration with FPGAs. Int. J. Parallel Program.,
43(6):1129–1159, 2015.

[Syn21] SynaptiCAD. Testbencher pro and reactive test bench – golden ref-
erence models. https://www.syncad.com/webmanualtestbencher/
testbenchgeneratormainindex.html?goldenreferencemodels.htm, 2021.
(Accessed on 11/18/2022).

[Tea19] MonetDB Team. Memory footprint | MonetDB docs. https:
//www.monetdb.org/documentation-Sep2022/admin-guide/system-
resources/memory-footprint/, 2019. (Accessed on 11/24/2022).

[Tea22a] MonetDB Team. Products | MonetDB solutions. https://
www.monetdbsolutions.com/products, 2022. (Accessed on 11/24/2022).

[Tea22b] PostgreSQL Development Team. PostgreSQL: Database file layout. https://
www.postgresql.org/docs/current/storage-file-layout.html, 2022. (Ac-
cessed on 11/24/2022).

[The08] The Khronos Group Inc. Khronos launches heterogeneous computing initia-
tive. https://khr.io/b1, 6 2008. (Accessed on 11/11/2022).

[THSW15] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu.
General incremental sliding-window aggregation. Proc. VLDB Endow.,
8(7):702–713, 2015.

[TMA11] Jens Teubner, René Müller, and Gustavo Alonso. Frequent item computation
on a chip. IEEE Trans. Knowl. Data Eng., 23(8):1169–1181, 2011.

[Tri15] Stephen Trimberger. Three ages of FPGAs: A retrospective on the first thirty
years of FPGA technology. Proc. IEEE, 103(3):318–331, 2015.

[TSJ+10] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In Feifei Li, Mirella M. Moro,
Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard Weikum, Michael J.
Carey, Fabio Casati, Edward Y. Chang, Ioana Manolescu, Sharad Mehrotra,
Umeshwar Dayal, and Vassilis J. Tsotras, editors, Proceedings of the 26th Inter-
national Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach,
California, USA, pages 996–1005. IEEE Computer Society, 2010.

BIBLIOGRAPHY 161

https://www.syncad.com/web_manual_testbencher/test_bench_generator_main_index.html?golden_reference_models.htm
https://www.syncad.com/web_manual_testbencher/test_bench_generator_main_index.html?golden_reference_models.htm
https://www.monetdb.org/documentation-Sep2022/admin-guide/system-resources/memory-footprint/
https://www.monetdb.org/documentation-Sep2022/admin-guide/system-resources/memory-footprint/
https://www.monetdb.org/documentation-Sep2022/admin-guide/system-resources/memory-footprint/
https://www.monetdbsolutions.com/products
https://www.monetdbsolutions.com/products
https://www.postgresql.org/docs/current/storage-file-layout.html
https://www.postgresql.org/docs/current/storage-file-layout.html
https://khr.io/b1

[TW13] Jens Teubner and Louis Woods. Data Processing on FPGAs. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2013.

[TWN12] Jens Teubner, Louis Woods, and Chongling Nie. Skeleton automata for FP-
GAs: reconfiguring without reconstructing. In K. Selçuk Candan, Yi Chen,
Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 229–240. ACM, 2012.

[UIO15] Takanori Ueda, Megumi Ito, and Moriyoshi Ohara. A dynamically reconfig-
urable equi-joiner on FPGA. IBM Tehnical Report RT0969, 2015.

[Vah10] Frank Vahid. Digital Design with RTL Design, Verilog and VHDL. Wiley Publish-
ing, 2nd edition, 2010.

[VF18] Kizheppatt Vipin and Suhaib A. Fahmy. FPGA dynamic and partial reconfig-
uration: A survey of architectures, methods, and applications. ACM Comput.
Surv., 51(4):72:1–72:39, 2018.

[VMB19] Pirmin Vogel, Andrea Marongiu, and Luca Benini. Exploring shared virtual
memory for FPGA accelerators with a configurable IOMMU. IEEE Trans. Com-
puters, 68(4):510–525, 2019.

[Wak21] John F. Wakerly. Digital Design: Principles and Practices, 5th edition. Pearson,
2021.

[WFS+19] Satoru Watanabe, Kazuhisa Fujimoto, Yuji Saeki, Yoshifumi Fujikawa, and
Hiroshi Yoshino. Column-oriented database acceleration using FPGAs. In
35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China,
April 8-11, 2019, pages 686–697. IEEE, 2019.

[WIA14] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex - an intelligent stor-
age engine with support for advanced SQL off-loading. Proc. VLDB Endow.,
7(11):963–974, 2014.

[Wik22a] Wikipedia contributors. Bijection. https://en.wikipedia.org/w/
index.php?title=Bijection&oldid=1128043142, 2022. [Online; accessed
25-December-2022].

[Wik22b] Wikipedia contributors. Cloud database. https://en.wikipedia.org/w/
index.php?title=Clouddatabase&oldid=1120962476, 2022. [Online; accessed
11-November-2022].

[Wik22c] Wikipedia contributors. In-memory database. https://en.wikipedia.org/w/
index.php?title=In-memorydatabase&oldid=1123276502, 2022. [Online; ac-
cessed 24-November-2022].

[Wik22d] Wikipedia contributors. Interleaved memory. https://en.wikipedia.org/w/
index.php?title=Interleavedmemory&oldid=1119679344, 2022. [Online; ac-
cessed 19-November-2022].

[Wik22e] Wikipedia contributors. Lirs caching algorithm. https://en.wikipedia.org/
w/index.php?title=LIRScachingalgorithm&oldid=1119087145, 2022. [On-
line; accessed 29-December-2022].

[Wik22f] Wikipedia contributors. List of social platforms with at least 100 mil-
lion active users. https://en.wikipedia.org/w/index.php?title=
Listofsocialplatformswithatleast100millionactiveusers&oldid=
1120940377, 2022. [Online; accessed 10-November-2022].

162 BIBLIOGRAPHY

https://en.wikipedia.org/w/index.php?title=Bijection&oldid=1128043142
https://en.wikipedia.org/w/index.php?title=Bijection&oldid=1128043142
https://en.wikipedia.org/w/index.php?title=Cloud_database&oldid=1120962476
https://en.wikipedia.org/w/index.php?title=Cloud_database&oldid=1120962476
https://en.wikipedia.org/w/index.php?title=In-memory_database&oldid=1123276502
https://en.wikipedia.org/w/index.php?title=In-memory_database&oldid=1123276502
https://en.wikipedia.org/w/index.php?title=Interleaved_memory&oldid=1119679344
https://en.wikipedia.org/w/index.php?title=Interleaved_memory&oldid=1119679344
https://en.wikipedia.org/w/index.php?title=LIRS_caching_algorithm&oldid=1119087145
https://en.wikipedia.org/w/index.php?title=LIRS_caching_algorithm&oldid=1119087145
https://en.wikipedia.org/w/index.php?title=List_of_social_platforms_with_at_least_100_million_active_users&oldid=1120940377
https://en.wikipedia.org/w/index.php?title=List_of_social_platforms_with_at_least_100_million_active_users&oldid=1120940377
https://en.wikipedia.org/w/index.php?title=List_of_social_platforms_with_at_least_100_million_active_users&oldid=1120940377

[Wik22g] Wikipedia contributors. Pareto distribution. https://en.wikipedia.org/
w/index.php?title=Paretodistribution&oldid=1125821066, 2022. [Online;
accessed 29-December-2022].

[Wik22h] Wikipedia contributors. Strategy pattern. https://en.wikipedia.org/w/
index.php?title=Strategypattern&oldid=1106787350, 2022. [Online; ac-
cessed 29-December-2022].

[Wik22i] Wikipedia contributors. Transpose. https://en.wikipedia.org/w/
index.php?title=Transpose&oldid=1126080877, 2022. [Online; accessed
26-December-2022].

[Wik23] Wikipedia contributors. Unix time. https://en.wikipedia.org/w/
index.php?title=Unixtime&oldid=1131996869, 2023. [Online; accessed 7-
January-2023].

[WPC+16] Ze-ke Wang, Johns Paul, Hui Yan Cheah, Bingsheng He, and Wei Zhang. Re-
lational query processing on OpenCL-based FPGAs. In Paolo Ienne, Walid A.
Najjar, Jason Helge Anderson, Philip Brisk, and Walter Stechele, editors, 26th
International Conference on Field Programmable Logic and Applications, FPL 2016,
Lausanne, Switzerland, August 29 - September 2, 2016, pages 1–10. IEEE, 2016.

[WTA13] Louis Woods, Jens Teubner, and Gustavo Alonso. Less watts, more perfor-
mance: An intelligent storage engine for data appliances. In Kenneth A. Ross,
Divesh Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, pages 1073–1076. ACM, 2013.

[WZTD19] Mike Wissolik, Darren Zacher, Anthony Torza, and Brandon Day. Vir-
tex UltraScale+ HBM FPGA: A revolutionary increase in memory per-
formance. https://www.xilinx.com/support/documentation/whitepapers/
wp485-hbm.pdf, 07 2019. (Accessed on 11/11/2022).

[Xil11a] Xilinx, Inc. ML505/ML506/ML507 evaluation platform: User guide. https:
//docs.xilinx.com/v/u/en-US/ug347, 05 2011. (Accessed on 11/25/2022).

[Xil11b] Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete data
sheet. https://docs.xilinx.com/v/u/en-US/ds083, 06 2011. (Accessed on
11/25/2022).

[Xil19] Xilinx, Inc. Swarm64 PostgreSQL accelerator: The easiest path to faster per-
formance & scalability. https://www.xilinx.com/publications/solution-
briefs/swarm64solutionbrief.pdf, 2019. (Accessed on 11/21/2022).

[Xil21] Xilinx, Inc. Vivado design suite user guide: High-level synthesis. https:
//www.xilinx.com/content/dam/xilinx/support/documents/swmanuals/
xilinx20202/ug902-vivado-high-level-synthesis.pdf#nameddest=
xApplyingOptimizationDirectives, 05 2021. (Accessed on 11/11/2022).

[Xil22a] Xilinx, Inc. Vitis high-level synthesis user guide. https://docs.xilinx.com/
r/en-US/ug1399-vitis-hls/Introduction, 2022. (Accessed on 01/17/2023).

[Xil22b] Xilinx, Inc. Vitis libraries. https://docs.xilinx.com/r/en-US/
VitisLibraries, 2022. (Accessed on 11/21/2022).

[Xil22c] Xilinx, Inc. Vitis_Libraries/database at main on Xilinx/Vitis_Libraries GitHub.
https://github.com/Xilinx/VitisLibraries/tree/main/database, 2022.
(Accessed on 11/21/2022).

BIBLIOGRAPHY 163

https://en.wikipedia.org/w/index.php?title=Pareto_distribution&oldid=1125821066
https://en.wikipedia.org/w/index.php?title=Pareto_distribution&oldid=1125821066
https://en.wikipedia.org/w/index.php?title=Strategy_pattern&oldid=1106787350
https://en.wikipedia.org/w/index.php?title=Strategy_pattern&oldid=1106787350
https://en.wikipedia.org/w/index.php?title=Transpose&oldid=1126080877
https://en.wikipedia.org/w/index.php?title=Transpose&oldid=1126080877
https://en.wikipedia.org/w/index.php?title=Unix_time&oldid=1131996869
https://en.wikipedia.org/w/index.php?title=Unix_time&oldid=1131996869
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://docs.xilinx.com/v/u/en-US/ug347
https://docs.xilinx.com/v/u/en-US/ug347
https://docs.xilinx.com/v/u/en-US/ds083
https://www.xilinx.com/publications/solution-briefs/swarm64_solutionbrief.pdf
https://www.xilinx.com/publications/solution-briefs/swarm64_solutionbrief.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://docs.xilinx.com/r/en-US/Vitis_Libraries
https://docs.xilinx.com/r/en-US/Vitis_Libraries
https://github.com/Xilinx/Vitis_Libraries/tree/main/database

[YKO+14] Masato Yoshimi, Ryu Kudo, Yasin Oge, Yuta Terada, Hidetsugu Irie, and Tsu-
tomu Yoshinaga. Accelerating OLAP workload on interconnected FPGAs with
flash storage. In Second International Symposium on Computing and Network-
ing, CANDAR 2014, Shizuoka, Japan, December 10-12, 2014, pages 440–446. IEEE
Computer Society, 2014.

[YL94] Weipeng P. Yan and Per-Åke Larson. Data reduction through early group-
ing. In John E. Botsford, Ann Gawman, W. Morven Gentleman, Evelyn Kidd,
Kelly A. Lyons, Jacob Slonim, and J. Howard Johnson, editors, Proceedings of
the 1994 Conference of the Centre for Advanced Studies on Collaborative Research,
October 31 - November 3, 1994, Toronto, Ontario, Canada, page 74. IBM, 1994.

[Zab11] Wojciech M. Zabolotny. Dual port memory based heapsort implementation for
FPGA. In Symposium on Photonics Applications in Astronomy, Communications,
Industry, and High-Energy Physics Experiments (WILGA), 2011.

[ZZZ00] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and exploit data locality. In
Andrew Wolfe and Michael S. Schlansker, editors, Proceedings of the 33rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 33, Monterey,
California, USA, December 10-13, 2000, pages 32–41. ACM/IEEE Computer So-
ciety, 2000.

164 BIBLIOGRAPHY

LIST OF FIGURES

1.1 The frequency of Intel CPUs as a function of their release year. The data in
this graph is sourced from the Stanford CPU DB platform [DKM+12, Gro16]. 17

2.1 Tables R and S and examples of database operators applied to them: (a)
Table R, (b) Table S, (c) Projection operator, (d) Filter/Selection operator,
(e) Sort operator, (f) Grouping step used in the aggregation operator, (g)
Aggregation operator, (h) Join operator. 24
(a) Table R . 24
(b) Table S . 24
(c) Projectk1,k2

(R) . 24
(d) Filterk2>40&v1<10(S) . 24
(e) Sortk1,k2(S) . 24
(f) Grouping R based on k1 and k2 . 24
(g) Aggrk1,k2,sum(v1),max(v2)(R) . 24
(h) Joink1,k2(R, S) . 24

2.2 Example SQL Query on tables R and S from Figure 2.1. 27
2.3 Logical query plan of the SQL query in Figure 2.2. 27

3.1 Simplified Structure of an FPGA. 30
3.2 Simplified structure of a logic element. 31
3.3 Alternative representations and the FPGA implementation of a single-bit

half adder y = a+ b: (a) Truth table, (b) XOR gate representation which can
be implemented on ASICs using CMOS transistors, (c) FPGA implementa-
tion using a logic element. 31
(a) Truth table . 31
(b) Gate representation . 31
(c) Logic element implementation . 31

3.4 Simplified structure of an FPGA’s programmable interconnect. Connection
boxes provide configurable routing between the logic elements and the pro-
grammable interconnect. Switch boxes define the topology of the intercon-
nect. 33

3.5 The steps in the design process for a digital system on an FPGA. 34
3.6 Example FPGA card, based on the Intel® Stratix® 10 DX FPGA develop-

ment kit [Inc19]. 38

4.1 Various types of FPGA acceleration platforms used for database query pro-
cessing. The CPU and its RAM together form the host (see Section 3.4).
The FPGA and its RAM are placed on an FPGA card. Storage refers to per-
manent storage, such as hard disk drive (HDD) or solid-state drive (SSD),
commonly referred to as the disk in database system literature. 44
(a) Accelerator Card . 44
(b) Coprocessor . 44
(c) Smart Storage . 44
(d) Network Processor . 44

165

4.2 Examples of sort-based and hash-based aggregation and join operator ex-
ecution: (a)Table R, (b)Table S, (c)Sorted table R, (d)Sorted table S, (e)5-
entry hash table using hash function h(x) = x%5 and containing all rows
of R, (f)Aggregation of R, (g)Join of R and S. 47
(a) Table R . 47
(b) Table S . 47
(c) Sortk(R) . 47
(d) Sortk(S) . 47
(e) Hash Table of R . 47
(f) Aggrk,sum(v)(R) . 47
(g) Joink(R, S) . 47

5.1 Overview of the architecture of our accelerator. The Sort- and the Merge-
Network implemented on the FPGA execute the sort and the merge phases
of the sort-merge algorithm, respectively. They are both pipelined, and read
and write their data from/to the FPGA RAM. 58

6.1 Sort-merge architecture used for comparing RTL (VHDL) and HLS
(OpenCL) methodologies in the context of database system acceleration. . 64

6.2 An example of the memory model used by our heapsort algorithm. Left
memory (LM) and right memory (RM) are used to store the left and
right siblings in the heap, respectively. The left smaller-than right mem-
ory (LSRM) indicates, for each pair of siblings, whether the left sibling is
smaller than the right one. 66

6.3 Merger Architecture . 67

7.1 Architecture of our database system accelerator MSM 77
7.2 Setup of our benchmarking platform. Multiple Sort- and Merge-Networks

are instantiated to improve the performance the system, and to benefit from
the four DDR RAM channels provided by the accelerator card. 82

7.3 The results of our benchmarks of the sort operator comparing the perfor-
mance of MSM and MonetDB (MDB) on the random uniform (U-Random),
sorted uniform (U-Sorted), and single-key (Single Point) datasets. 85

7.4 The results of our benchmarks of the aggregation operator comparing the
performance of MSM and MonetDB (MDB) on the uniform, Zipf, and mov-
ing cluster datasets, with keys chosen randomly from the corresponding
distributions. 85

7.5 The results of our benchmarks of the M : N join operator comparing the
performance of MSM and MonetDB (MDB) on uniform datasets with vari-
ous values for M and N . 86

8.1 Example run of the KeRRaS algorithm with nkc = 4 and nbsc = 2. 93
(a) Table U . 93
(b) Iteration 1: Reduce k1k2 into κ1−2 . 93
(c) Iteration 2: Reduce κ1−2k3 into κ1−3 . 93
(d) Iteration 3: Reduce κ1−3k4 into κ1−4 . 93

8.2 Overview of the MSM architecture proposed in Chapter 7. 97
8.3 Architectural extensions to MSM’s Merge-Network for implementing the

KeRRaS algorithm. The Pump, Exhaust and Rexhaust interface adapters are
the only components needed to implement KeRRaS. 98

8.4 Architecture of the Pump interface adapter used by MSMK for converting
row burst accesses into column burst accesses, as shown in Figure 8.3. . . . 99

8.5 Architecture of the Transposer used by the Pump interface adapter to trans-
pose database columns into rows, as shown in Figure 8.4. 100

8.6 Architecture of the Rexhaust interface adapter used by MSMK to produce
and store the ω and κ columns, as shown in Figure 8.3. 101

166 LIST OF FIGURES

8.7 The results of the sort and aggregation benchmarks comparing the perfor-
mance of MSMK and MSM on narrow tables with nkc+nvc ≤ 4. The bench-
mark datasets have nr = 224 and rkc = 256. 104

8.8 The results of the payload-less performance and scalability benchmarks
comparing the performance of MSMK and MonetDB (MDB), as the number
of rows (nr) or key columns (nkc) varies. 105
(a) Throughput of the sort operator as a function of nr, with rkc = 2 and

nvc = 0 . 105
(b) Throughput of the sort operator as a function of nkc, with nr = 224

and nvc = 0 . 105
8.9 The results of the standalone sort operator benchmarks of 4 TPC-H queries

with various key lengths (noted below each query) on MSMK and Mon-
etDB (MDB). 106

8.10 The results of the payload-based sort, aggregation, and join operator bench-
marks comparing the performance of MSMK and MonetDB (MDB), and the
parameters of the datasets used in these benchmarks. 106
(a) Sort and Aggregation Benchmarks . 106
(b) Join Benchmarks . 106
(c) Sort and Aggregation Dataset Parameters 106
(d) Join Dataset Parameters . 106

9.1 Example run of the aggregation operator T = AggrK,SUM(V)(R), using
early aggregation as an intermediate step. Table R is the input of the oper-
ator. Table S is the result of early aggregation, and contains duplicate keys
that need further processing. Table T is the final result of the aggregation
operator. 111
(a) Table R . 111
(b) Table S . 111
(c) Table T . 111

9.2 The results of the simulations comparing sort-based and cache-based early
aggregation on various datasets. 116
(a) Uniform . 116
(b) Moving Cluster . 116
(c) Self-Similar . 116

9.3 The results of the simulations comparing set-associative caches for early
aggregation on various datasets. All the caches used in these benchmarks
employ the optimal replacement policy. 117
(a) Sorted . 117
(b) Normal . 117
(c) Heavy-Hitter . 117

9.4 The results of the simulations comparing different cache structures for early
aggregation on various datasets. All the caches used in these benchmarks
employ the optimal replacement policy. 118
(a) Moving Cluster . 118
(b) Uniform . 118
(c) Zipf . 118

9.5 The results of the simulations comparing different replacement policies for
an 8-way set-associative cache performing early aggregation on various
datasets. 120
(a) Sorted . 120
(b) Moving Cluster . 120
(c) Self-Similar . 120

9.6 Overview of the architecture of the cache system. The pipeline consists
of a few preprocessing stages that deal with window key/hash collisions,
before the rows are processed by the cache itself. 122

LIST OF FIGURES 167

9.7 Architecture of the Window Aggregator used as a preprocessing stage in the
cache system, as shown in Figure 9.6. The module is responsible for elimi-
nating window key collisions. 122
(a) Window Aggregator with window size w 122
(b) s-Distance Aggregator . 122

9.8 Architecture of the Collision Detector used as a preprocessing stage in the
cache system, as shown in Figure 9.6. The module computes the minimum
number of stalls required for each row in order to eliminate all window
collisions. 123

9.9 Architecture of the cache used for early aggregation in the cache system,
as shown in Figure 9.6. The cache expects its input to be free of win-
dow key/hash collisions, which is a property ensured by the preprocessing
stages described in this section. 125

9.10 Architecture of CbMSMK. The new (Cache System and Streaming Aggregator)
and upgraded (Sorters) modules compared to the architecture of MSMK are
highlighted in green. 126

9.11 The results of the benchmarks comparing the sort times, merge times, and
reduction factors of CbMSMK and MSMK on the Zipf dataset. 128
(a) CbMSMK Sort and Merge Times . 128
(b) MSMK Sort and Merge Times . 128
(c) Reduction Factors of CbMSMK and MSMK 128

9.12 The results of the benchmarks comparing the performance of CbMSMK,
MSMK, and MonetDB (MDB) on synthetic data. 129
(a) Uniform . 129
(b) Moving Cluster . 129
(c) Zipf . 129

9.13 The results of the benchmarks comparing the performance of CbMSMK,
MSMK, and MonetDB (MDB) on real data. 129
(a) Reduction . 129
(b) Execution Times . 129

10.1 Architecture of the CbMSMK acceleration platform. 132
10.2 Architecture of the Sort- and Merge-Networks used in CbMSMK for execut-

ing the sort-merge algorithm. The latter is used as a basis for running our
target pipeline-breaking database operators. 133
(a) Sort-Network . 133
(b) Merge-Network . 133

10.3 The results of the benchmarks comparing the performance of CbMSMK
and MonetDB on the sort, aggregation, and join operators with various
datasets. These datasets are generated similarly to the ones in Chapter 7. . 134
(a) Sort Operator . 134
(b) Aggregation Operator . 134
(c) M:N Join Operator . 134

10.4 The results of the benchmarks comparing the performance of CbMSMK
and MonetDB on the TPC-H dataset with various scale factors. 135

168 LIST OF FIGURES

LIST OF TABLES

2.1 An example of a table in a relational database. 22

4.1 Past academic and industrial work on database system acceleration on FP-
GAs, with a focus on pipeline-breaking database operators. Cells contain-
ing n.d. indicate that the corresponding attribute has not been disclosed. . 43

6.1 Characteristics of the OpenCL implementation of the sort-merge algorithm
with 16 Sorters and 4 Mergers. Execution time (ET) and throughput (Thr.)
values are for sorting the Basic Workload. 68

6.2 Comparison between the OpenCL and RTL implementations of the Sorter.
Throughput (Thr.) is for sorting random 512-bit keys producing runs of
1022 numbers. 69

6.3 Comparison between the OpenCL and RTL implementations of the Merger.
Throughput (Thr.) is for merging 2 sorted lists of 16.5 million 512-bit keys. 70

6.4 Comparison between the OpenCL and hybrid OpenCL-RTL implementa-
tions of the sort-merge algorithm. Both implementations boast 16 Sorter
and 4 Merger units. Execution time (ET) and throughput (Thr.) are for sort-
ing the Basic Workload. 71

7.1 FPGA resource utilization of our implementation of MSM (with a 128-bit
wide data path) and some of its major components. Replication factor (R)
is the number of instantiations of a module within its level in the hierarchy
(e.g., there are 32 Sorters in a Sort-Network). The percentage resource uti-
lizations are calculated over the total amount of resources provided by the
FPGA. 83

7.2 Sorter resource utilization as a function of capacity (cS) and data path width. 84

8.1 Parameters of the KeRRaS algorithm. 92
8.2 Formal definitions of ω and κ produced by the KeRRaS algorithm. They

can both be generated using single-pass algorithms. While ω does not need
to be stored in memory, κ must be stored in memory and preserved across
KeRRaS iterations. 94

8.3 FPGA resource utilization of our implementation of MSMK (with a 192-bit
wide data path) and some of its major components. Replication factor (R)
is the number of instantiations of a module within its level in the hierarchy.
The percentage resource utilizations are calculated over the total amount of
resources provided by the FPGA. 103

8.4 Experiments illustrating the impact of the architectural parameter wr on the
performance and resource utilization of MSMK. 107

9.1 FPGA resource utilization of various implementations of early aggrega-
tion. n is the degree of associativity in cache-based implementations. The
percentage resource utilizations are calculated over the total amount of re-
sources provided by the FPGA. 127

169

170 LIST OF TABLES

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, April 28, 2023

171

	I Database Systems & FPGAs
	Introduction
	Databases & the Importance of Performance
	Accelerators & FPGAs
	Requirements
	Outline & Summary of Contributions

	Background on Database Systems
	Databases
	Storage Model
	Storage Medium

	Database Operators
	Projection
	Filter
	Sort
	Aggregation
	Join
	Operator Classification

	Database Queries
	Impact of Acceleration

	Background on FPGAs
	FPGA
	Logic Element
	Block RAM (BRAM)
	Digital Signal Processor (DSP)
	IO Element
	Programmable Interconnect

	FPGA Design Flow
	Specifications
	RTL Description
	Verification
	Synthesis, Mapping, Placement, and Routing
	Timing Analysis
	Bitstream Generation and FPGA Programming

	Implementation Quality Metrics
	FPGA Cards
	Benefits of Using FPGAs
	Challenges of Using FPGAs

	Related Work
	Summary of Related Work
	Platform Type
	Accelerator Card
	Coprocessor
	Smart Storage
	Network Processor

	Implementation
	Loop-based implementation
	Sort-based Implementation
	Hash-based Implementation
	Mixed Implementation

	A Note on Quantitative Performance Comparisons

	II Cache-Based Morphing Sort-Merge with KeRRaS (CbMSMK)
	Objectives and Architecture Overview
	From Requirements to Objectives
	Architecture Overview
	Outline of Part II

	Comparative Analysis of OpenCL and RTL for Sort-Merge Primitives on FPGAs
	Programming FPGAs
	Related Work
	Architecture
	Global Architecture
	Sorter Architecture
	Merger Architecture
	Scalability and Resource Adaptability

	Experiments
	OpenCL Sort-Merge Implementation
	RTL Sorters
	RTL Mergers
	Hybrid OpenCL-RTL Sort-Merge Implementation

	Summary & Discussion

	Resource-Efficient Acceleration of Pipeline-Breaking Database Operators on FPGAs
	The Case for Resource Efficiency
	Related Work
	Architecture
	Sorters
	Sort-Network
	X:Y Mergers
	Merge-Network
	Join Materialiser (JoinMat)

	Experiments
	Experimental Setup
	Implementation Description & Tuning
	Sort Benchmarks
	Aggregation Benchmarks
	Join Benchmarks

	Summary

	KeRRaS: Column-Oriented Wide Table Processing on FPGAs
	The Scope of Database System Accelerators
	Related Work
	Key-Reduce Radix Sort (KeRRaS)
	Time Complexity
	Space Complexity (Memory Utilization)
	Discussion and Optimizations

	Architecture
	MSM
	MSMK: Extending MSM with KeRRaS
	Payload, Aggregation and Join Processing
	Limitations

	Experiments
	Experimental Setup
	Datasets
	MSMK vs. MSM
	Payload-Less Benchmarks
	Payload-Based Benchmarks
	Flexibility

	Summary

	A Study of Early Aggregation in Database Query Processing on FPGAs
	Early Aggregation
	Background & Related Work
	Sort-Based Early Aggregation
	Cache-Based Early Aggregation

	Simulations
	Datasets
	Metrics
	Sort-Based Versus Cache-Based Early Aggregation
	Comparison of Set-Associative Caches
	Comparison of Cache Structures
	Comparison of Replacement Policies
	Cache Selection Methodology

	Cache System Architecture
	Window Aggregator
	Compressor & Hasher
	Collision Detector
	Collision Resolver
	Cache

	Experiments
	Experimental Setup
	Resource Utilization and Parameter Tuning
	Datasets
	Benchmarks on Synthetic Data
	Benchmarks on Real Data

	Summary

	The Full Picture
	System Architecture
	Benchmarks
	Meeting the Objectives

	III Conclusion
	Summary and Outlook on Future Research
	Summary
	Future Work

	Bibliography
	List of Figures
	List of Tables

