1,282 research outputs found

    Engage D2.2 Final Communication and Dissemination Report

    Get PDF
    This deliverable reports on the communication and dissemination activities carried out by the Engage consortium over the duration of the network. Planned activities have been adapted due to the Covid-19 pandemic, however a full programme of workshops and summer schools has been organised. Support has been given to the annual SESAR Innovation Days conference and there has been an Engage presence at many other events. The Engage website launched in the first month of the network. This was later joined by the Engage ‘knowledge hub’, known as the EngageWiki, which hosts ATM research and knowledge. The wiki provides a platform and consolidated repository with novel user functionality, as well as an additional channel for the dissemination of SESAR results. Engage has also supported and publicised numerous research outputs produced by PhD candidates and catalyst fund projects

    Teaching Classics in the Digital Age

    Get PDF
    The papers and videos presented here are the result of the international conference 'Teaching Classics in the Digital Age' held online on the 15 and 16 June 2020. As digital media provide new possibilities for teaching and outreach in Classics, the conference 'Teaching Classics in the Digital Age' aimed at presenting current approaches to digital teaching and sharing best practices by bringing together different projects and practitioners from all fields of Classics (including Classical Archaeology, Greek and Latin Studies and Ancient History). Furthermore, it aimed at starting a discussion about principles, problems and the future of teaching Classics in the 21st century within and beyond its single fields

    Citizen science on twitter: Using data analytics to understand conversations and networks

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This paper presents a long-term study on how the public engage with discussions around citizen science and crowdsourcing topics. With progress in sensor technologies and IoT,our cities and neighbourhoods are increasingly sensed, measured and observed. While such data are often used to inform citizen science projects, it is still difficult to understand how citizens and communities discuss citizen science activities and engage with citizen science projects. Understanding these engagements in greater depth will provide citizen scientists, project owners, practitioners and the generic public with insights around how social media can be used to share citizen science related topics, particularly to help increase visibility, influence change and in general and raise awareness on topics. To the knowledge of the authors, this is the first large-scale study on understanding how such information is discussed on Twitter, particularly outside the scope of individual projects. The paper reports on the wide variety of topics (e.g., politics, news, ecological observations) being discussed on social media and a wide variety of network types and the varied roles played by users in sharing information in Twitter. Based on these findings, the paper highlights recommendations for stakeholders for engaging with citizen science topics

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit prĂ€sentiert AnsĂ€tze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlĂ€sslicher und klarer verstĂ€ndlich zu machen. Zuerst werden zwei Algorithmen fĂŒr heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte fĂŒr Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fĂŒr Kosten und beschrĂ€nkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprĂŒnglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und OptimalitĂ€tsbeweise fĂŒr die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfĂ€hig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen ZustandsrĂ€umen sogar ĂŒbertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) fĂŒr die QualitĂ€tsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingefĂŒhrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die KomplexitĂ€t der NN-Analyse in Kombination mit dem State Space Explosion Problem bewĂ€ltigt

    Reflections on Visualization in Motion for Fitness Trackers

    Get PDF
    International audienceIn this paper, we reflect on our past work towards understanding how to design visualizations for fitness trackers that are used in motion. We have coined the term "visualization in motion" for visualizations that are used in the presence of relative motion between a viewer and the visualization. Here, we describe how visualization in motion is relevant to sports scenarios. We also provide new data on current smartwatch visualizations for sports and discuss future challenges for visualizations in motion for fitness trackers
    • 

    corecore