64 research outputs found

    Novelty detection based condition monitoring scheme applied to electromechanical systems

    Get PDF
    This study is focused on the current challenges dealing with electromechanical system monitoring applied in industrial frameworks, that is, the presence of unknown events and the limitation to the nominal healthy condition as starting knowledge. Thus, an industrial machinery condition monitoring methodology based on novelty detection and classification is proposed in this study. The methodology is divided in three main stages. First, a dedicated feature calculation and reduction over each available physical magnitude. Second, an ensemble structure of novelty detection models based on one-class support vector machines to identify not previously considered events. Third, a diagnosis model supported by a feature fusion scheme in order to reach high fault classification capabilities. The effectiveness of the fault detection and identification methodology has been compared with classical single model approach, and verified by experimental results obtained from an electromechanical machine. © 2018 IEEE.Postprint (author's final draft

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Wireless Sensor Networks and TSCH: a compromise between Reliability, Power Consumption and Latency

    Get PDF
    7siReliability, power consumption, and latency are the three main performance indicators of wireless sensor networks. Time slotted channel hopping (TSCH) is a promising technique introduced in the IEEE 802.15.4 standard that performs some steps ahead in the direction of the final dream to meet all the previous requirements at the same time. In this article, a simple and effective mathematical model is presented for TSCH that, starting from measurements performed on a real testbed, permits to characterize both the network and the surrounding environment. To better characterize power consumption, an experimental measurement campaign was purposely performed on OpenMote B devices. The model, which was checked against a real 6TiSCH implementation, can be employed to predict network behaviour when configuration parameters are varied, in such a way to satisfy different application contexts. Results show that, when one of the three above indices is privileged, unavoidably there is a worsening of the others.openopenScanzio, Stefano; Vakili, Mohammad Ghazi; Cena, Gianluca; Demartini, Claudio Giovanni; Montrucchio, Bartolomeo; Valenzano, Adriano; Zunino, ClaudioScanzio, Stefano; Vakili, Mohammad Ghazi; Cena, Gianluca; Demartini, Claudio Giovanni; Montrucchio, Bartolomeo; Valenzano, Adriano; Zunino, Claudi

    Sen3Bot Net: a meta-sensors network to enable smart factories implementation

    Get PDF
    In the near future, an increasing number of mobile agents working closely with human operators is envisaged in smart factories. In industrial human-shared environments that employ traditional Automated Guided Vehicles, safety can be ensured thanks to the support provided by Autonomous Mobile Robots, acting as a net of meta-sensors. The localization and perception information of each meta-sensor is shared among all mobile platforms. In particular, the information about the dynamic detection of human presence is combined and uploaded in a shared map, increasing the awareness of the mobile robots about their surroundings in a specific working area. This paper proposes an architecture that integrates the meta-sensors with an existing net of Automated Guided Vehicles, with the aim of enhancing systems based on outdated mobile agents that seek for Industry 4.0 solutions without the necessity of a complete renewal. Simulations of test scenarios are provided in order to confirm the validity of the proposed architecture model

    Incremental learning framework-based condition monitoring for novelty fault identification applied to electromechanical systems

    Get PDF
    A great deal of investigations are being carried out towards the effective implementation of the 4.0 Industry new paradigm. Indeed, most of the machinery involved in industrial processes are intended to be digitalized aiming to obtain enhanced information to be used for an optimized operation of the whole manufacturing process. In this regard, condition monitoring strategies are being also reconsidered to include improved performances and functionalities. Thus, the contribution of this research work lies in the proposal of an incremental learning framework approach applied to the condition monitoring of electromechanical systems. The proposed strategy is divided in three main steps, first, different available physical magnitudes are characterized through the calculation of a set of statistical-time based features. Second, a modelling of the considered conditions is performed by means of self-organizing maps in order to preserve the topology of the data; and finally, a novelty detection is carried out by a comparison among the quantization error value achieved in the data modelling for each of the considered conditions. The effectiveness of the proposed novelty fault identification condition monitoring methodology is proved by means of the evaluation of a complete experimental database acquired during the continuous working conditions of an electromechanical system. © 2018 IEEE.Peer ReviewedPostprint (author's final draft

    Toward Future Automatic Warehouses: An Autonomous Depalletizing System Based on Mobile Manipulation and 3D Perception

    Get PDF
    This paper presents a mobile manipulation platform designed for autonomous depalletizing tasks. The proposed solution integrates machine vision, control and mechanical components to increase flexibility and ease of deployment in industrial environments such as warehouses. A collaborative robot mounted on a mobile base is proposed, equipped with a simple manipulation tool and a 3D in-hand vision system that detects parcel boxes on a pallet, and that pulls them one by one on the mobile base for transportation. The robot setup allows to avoid the cumbersome implementation of pick-and-place operations, since it does not require lifting the boxes. The 3D vision system is used to provide an initial estimation of the pose of the boxes on the top layer of the pallet, and to accurately detect the separation between the boxes for manipulation. Force measurement provided by the robot together with admittance control are exploited to verify the correct execution of the manipulation task. The proposed system was implemented and tested in a simplified laboratory scenario and the results of experimental trials are reported

    Human-Robot Perception in Industrial Environments: A Survey

    Get PDF
    Perception capability assumes significant importance for human–robot interaction. The forthcoming industrial environments will require a high level of automation to be flexible and adaptive enough to comply with the increasingly faster and low-cost market demands. Autonomous and collaborative robots able to adapt to varying and dynamic conditions of the environment, including the presence of human beings, will have an ever-greater role in this context. However, if the robot is not aware of the human position and intention, a shared workspace between robots and humans may decrease productivity and lead to human safety issues. This paper presents a survey on sensory equipment useful for human detection and action recognition in industrial environments. An overview of different sensors and perception techniques is presented. Various types of robotic systems commonly used in industry, such as fixed-base manipulators, collaborative robots, mobile robots and mobile manipulators, are considered, analyzing the most useful sensors and methods to perceive and react to the presence of human operators in industrial cooperative and collaborative applications. The paper also introduces two proofs of concept, developed by the authors for future collaborative robotic applications that benefit from enhanced capabilities of human perception and interaction. The first one concerns fixed-base collaborative robots, and proposes a solution for human safety in tasks requiring human collision avoidance or moving obstacles detection. The second one proposes a collaborative behavior implementable upon autonomous mobile robots, pursuing assigned tasks within an industrial space shared with human operators

    COOCK project Smart Port 2025 D3.1: "To Twin Or Not To Twin"

    Full text link
    This document is a result of the COOCK project "Smart Port 2025: improving and accelerating the operational efficiency of a harbour eco-system through the application of intelligent technologies". It reports on the needs of companies for modelling and simulation and AI-based techniques, with twinning systems in particular. This document categorizes the purposes and Properties of Interest for the use of Digital Twins. It further illustrates some of the twinning usages, and touches on some of the potential architectural compositions for twins. This last topic will be further elaborated in a followup report

    Compensating Adaptive Mixed Criticality Scheduling

    Get PDF
    The majority of prior academic research into mixed criticality systems assumes that if high-criticality tasks continue to execute beyond the execution time limits at which they would normally finish, then further workload due to low-criticality tasks may be dropped in order to ensure that the high-criticality tasks can still meet their deadlines. Industry, however, takes a different view of the importance of low-criticality tasks, with many practical systems unable to tolerate the abandonment of such tasks. In this paper, we address the challenge of supporting genuinely graceful degradation in mixed criticality systems, thus avoiding the abandonment problem. We explore the Compensating Adaptive Mixed Criticality (C-AMC) scheduling scheme. C-AMC ensures that both high- and low-criticality tasks meet their deadlines in both normal and degraded modes. Under C-AMC, jobs of low-criticality tasks, released in degraded mode, execute imprecise versions that provide essential functionality and outputs of sufficient quality, while also reducing the overall workload. This compensates, at least in part, for the overload due to the abnormal behavior of high-criticality tasks. C-AMC is based on fixed-priority preemptive scheduling and hence provides a viable migration path along which industry can make an evolutionary transition from current practice

    Time-Sensitive Networking for Industrial Automation: Challenges, Opportunities, and Directions

    Full text link
    With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) into industrial applications, industrial automation is undergoing tremendous change, especially with regard to improving efficiency and reducing the cost of products. Industrial automation applications are often required to transmit time- and safety-critical data to monitor and control industrial processes, especially for critical control systems. There are a number of solutions to meet these requirements (e.g., priority-based real-time schedules and closed-loop feedback control systems). However, due to their different processing capabilities (e.g., in the end devices and network switches), different vendors may come out with distinct solutions, and this makes the large-scale integration of devices from different vendors difficult or impossible. IEEE 802.1 Time-Sensitive Networking (TSN) is a standardization group formed to enhance and optimize the IEEE 802.1 network standards, especially for Ethernet-based networks. These solutions can be evolved and adapted into a cross-industry scenario, such as a large-scale distributed industrial plant, which requires multiple industrial entities working collaboratively. This paper provides a comprehensive review on the current advances in TSN standards for industrial automation. We present the state-of-the-art IEEE TSN standards and discuss the opportunities and challenges when integrating each protocol into the industry domains. Finally, we discuss some promising research about applying the TSN technology to industrial automation applications
    • …
    corecore