49 research outputs found

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Utility of High Resolution Human Settlement Data for Assessment of Electricity Usage Patterns

    Get PDF
    Electricity is vital for modern human civilization, and its demands are expected to significantly rise due to urban growth, transportation modernization, and increasing industrialization and energy accessibility. Meeting the present and future demands while minimizing the environmental degradation from electricity generation pathways presents a significant sustainability challenge. Urban areas consume around 75% of global energy supply yet urban energy statistics are scarce all over the world, creating a severe hindrance for the much-needed energy sustainability studies. This work explores the scope of geospatial data-driven analysis and modeling to address this challenge. Identification and measurements of human habitats, a key measure, is severely misconceived. A multi-scale analysis of high, medium, and coarse resolution datasets in Egypt and Taiwan illustrates the increasing discrepancies from global to local scales. Analysis of urban morphology revealed that high-resolution datasets could perform much better at all scales in diverse geographies while the power of other datasets rapidly diminishes from the urban core to peripheries. A functional inventory of urban settlements was developed for three cities in the developing world using very high-resolution images and texture analysis. Analysis of correspondence between nighttime lights emission, a proxy of electricity consumption, and the settlement inventory was the conducted. The results highlight the statistically significant relationship between functional settlement types and corresponding light emission, and underline the potential of remote sensing data-driven methods in urban energy usage assessment. Lastly, the lack of urban electricity data was addressed by a geospatial modeling approach in the United States. The estimated urban electricity consumption was externally validated and subsequently used to quantify the effects of urbanization on electricity consumption. The results indicate a 23% lowering of electricity consumption corresponding to a 100% increase in urban population. The results highlight the potential of urbanization in lowering per-capita energy usage. The opportunity and limits to such energy efficiency were identified with regards to urban population density. The findings from this work validate the applicability of geospatial data in urban energy studies and provide unique insights into the relationship between urbanization and electricity demands. The insights from this work could be useful for other sustainability studies

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that

    Annual Report, 2014-2015

    Get PDF

    Sustainable Smart Cities and Smart Villages Research

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [There is ever more research on smart cities and new interdisciplinary approaches proposed on the study of smart cities. At the same time, problems pertinent to communities inhabiting rural areas are being addressed, as part of discussions in contigious fields of research, be it environmental studies, sociology, or agriculture. Even if rural areas and countryside communities have previously been a subject of concern for robust policy frameworks, such as the European Union’s Cohesion Policy and Common Agricultural Policy Arguably, the concept of ‘the village’ has been largely absent in the debate. As a result, when advances in sophisticated information and communication technology (ICT) led to the emergence of a rich body of research on smart cities, the application and usability of ICT in the context of a village has remained underdiscussed in the literature. Against this backdrop, this volume delivers on four objectives. It delineates the conceptual boundaries of the concept of ‘smart village’. It highlights in which ways ‘smart village’ is distinct from ‘smart city’. It examines in which ways smart cities research can enrich smart villages research. It sheds light on the smart village research agenda as it unfolds in European and global contexts.

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore