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Abstract

Electricity is vital for modern human civilization, and its demands are expected to

significantly rise due to urban growth, transportation modernization, and increasing

industrialization and energy accessibility. Meeting the present and future demands while

minimizing the environmental degradation from electricity generation pathways presents a

significant sustainability challenge. Urban areas consume around 75% of global energy supply

yet urban energy statistics are scarce all over the world, creating a severe hindrance for the

much-needed energy sustainability studies. This work explores the scope of geospatial data-

driven analysis and modeling to address this challenge. Identification and measurements

of human habitats, a key measure, is severely misconceived. A multi-scale analysis of

high, medium, and coarse resolution datasets in Egypt and Taiwan illustrates the increasing

discrepancies from global to local scales. Analysis of urban morphology revealed that high-

resolution datasets could perform much better at all scales in diverse geographies while

the power of other datasets rapidly diminishes from the urban core to peripheries. A

functional inventory of urban settlements was developed for three cities in the developing

world using very high-resolution images and texture analysis. Analysis of correspondence

between nighttime lights emission, a proxy of electricity consumption, and the settlement

inventory was the conducted. The results highlight the statistically significant relationship

between functional settlement types and corresponding light emission, and underline the

potential of remote sensing data-driven methods in urban energy usage assessment. Lastly,

the lack of urban electricity data was addressed by a geospatial modeling approach in the

United States. The estimated urban electricity consumption was externally validated and

subsequently used to quantify the effects of urbanization on electricity consumption. The

results indicate a 23% lowering of electricity consumption corresponding to a 100% increase in
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urban population. The results highlight the potential of urbanization in lowering per-capita

energy usage. The opportunity and limits to such energy efficiency were identified with

regards to urban population density. The findings from this work validate the applicability

of geospatial data in urban energy studies and provide unique insights into the relationship

between urbanization and electricity demands. The insights from this work could be useful

for other sustainability studies.
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Chapter 1

Introduction

Urbanization is a defining signature of human civilization in the post-industrial revolution

era. More than half the world’s population have been living in urban areas since 2007,

reaching to about 55% at present. As per the United Nation’s 2018 World Urbanization

Prospect report, the proportion of urban dwellers will reach around 68% by 2050. This

massive growth will add 2.5 billion new urban dwellers, and almost 90% of this new growth

will take place in Africa and Asia [198]. On the other hand, the global rural population

is expected to peak in 2030 and decline thereafter [73], marking a point from which all

future population growth will be urban. Globally, urban energy consumption accounts

for nearly 75% of the global primary energy supply [196], and this causes around 71%

of energy-related CO2 emissions worldwide [178]. The unprecedented urbanization rates

and a gradual convergence in the global urban landscape pose severe challenges for energy

and environmental sustainability. To reach the current sustainability goals, addressing the

challenges to energy security, environmental compatibility of energy systems, and equitable

access to clean energy at local to global scales have assumed prime importance [73].

Urban areas are characterized by a high concentration of human activities, which fosters

innovation and socio-economic growth, offering pathways to economic prosperity and human

development [166]. Consequently, urban areas act as the economic engines of the modern

society. The cumulative urban economic output covered more than 80% of the global gross

domestic product (GDP) in 2011, the 600 largest cities alone contributed to about 60% of the

global output. It is expected that the contribution of largest cities towards global economy
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will stay at similar levels through the year 2025 [166, 41]. Urbanization has also been found

to have a positive impact on poverty alleviation, a study by the Asian Development Bank

highlighted a 73% reduction in the number of urban poor between 1990 and 2008 in East

Asia and Pacific, while the corresponding reduction in rural poverty was estimated at 69%

[125]. Opportunities of employment in manufacturing, trading, or service jobs, coupled with

the higher quality of life attract increasingly more people from the countryside to urban

centers, contributing to their rapid growth [144], a trend that is expected to continue in the

foreseeable future.

However, with the emergence of urban areas as the hub of human activities, their negative

effects on the environment have exacerbated significantly. While occupying only about 3% to

4% of the World’s available land area, urban areas exhort a disproportionately massive effect

on environmental and human well-being from all around the world [166]. Negative effects of

urbanization have been extensively documented in the existing scientific literature. Crucial

environmental systems such as global bio-geochemical systems [180], land resources [99],

precipitation patterns [103], atmospheric and climatic systems [180], human health [140], and

the well-being of urban dwellers [74] were observed to be severely affected by anthropogenic

activities originating in the cities, often the detrimental effects occurring far beyond the

immediate urban boundaries. Present energy generation pathways negatively affect food,

water, and environmental systems [120, 143, 9]; and the associated emission of greenhouse

gases severely harms the atmosphere and environment at multiple scales [147]. The unceasing

population growth also escalates the demands for goods and services in cities, far exceeding

the limits of existing capacities. Consequently, urban infrastructure and provision of essential

services are experiencing severe stress [127].

Recognizing this overwhelming control of urbanization over the socio-economic landscape,

environment, and human well-being; several recent reports have predicted a shared global

future which is almost entirely determined by urbanization dynamics. This has led several

scholars to point out that we are already living on an “urban planet” [166, 73]. The crucial

role of urbanization as the source and the solution to complex global challenges towards

determining the future of humanity has started to be widely recognized. It is now critical

to ensure that this inevitable transition occurs in an environmentally sustainable, socially

2



and economically equitable manner. Hence, sustainable urbanization has become an active

research area in recent times. Sustainable urbanization mandates that the socio-economic

advancements and physical developments, which are dependent on continuing supply of

natural resources, are designed to last for a long time [194]. The European Environment

Agency recommends five goals of urban sustainability which aims at the minimization of

space and natural resource consumption, efficient management of urban flows, protection

of the health of urban population, provision of equal access to services and resources, and

preserving social and cultural diversity [36]. While energy consumption is necessary for

economic growth and socio-economic equality, the urban energy consumption pathways also

cause irreversible damage to the natural environment and the dependence on non-renewable

energy fuels accelerates the depletion of natural resources. Understanding of the effects of

urban energy usage on environmental systems and socio-economic structures from regional,

national to global levels is critical towards attaining urban energy sustainability. However,

several pieces of key knowledge in this system such as the accurate measure of urban areas and

the trends in urbanization, energy consumption patterns in cities, and effects of urbanization

on energy consumption are still in nascent stages.

1.1 Urban energy dynamics

The International Energy Agency indicates that between 1973 and 2015, the global primary

energy consumption grew by 101.3%, from 4,661 Mtoe (million tonnes of oil equivalent) to

9,384 Mtoe [92]. Urban area-specific estimates indicate that 240 Exajoules of energy was

consumed in 2005 (the equivalent of 5,732 Mtoe). By 2050, global urban energy consumption

is expected to reach 730 Exajoules (equivalent of 17,440 Mtoe) [35]. In the world, electricity

is the second largest energy fuel by consumption, which accounted for 18.5% of total global

usage in 2015. For the OECD (Organization for Economic Co-operation and Development)

countries, electricity holds a slightly larger share of 22.2% in the energy portfolio. Compared

to 1973, when electricity’s share was only 9.4%, this growth is highly significant. It is also

notable that the global share of Oil, the largest energy source, fell from 48.3% to 41.0% during

the same period. The consumption of electricity grew by 296% globally and 149% for the

3



OECD countries in this time frame [92], which is almost three times the growth of total energy

usage. These statistics unambiguously portray the importance of electricity in present times.

Urban areas require significant amounts of electrical energy for operation and maintenance of

the built environments that include buildings and associated infrastructure both indoor and

outdoors, e.g., appliances, machines, transportation, and lighting infrastructure. Increasing

electricity access around the world, especially in rural areas, modernization of existing

infrastructure with electrical systems and machine automation, and the introduction of

electric vehicles in personal as well as mass transportation are expected to further increase

electricity demands in the future.

Urban energy systems are distinct from other energy systems. The high concentration

of population and personal income in urban areas contributes to a high density of energy

demand. Urban energy demands typically ranges between 10-100 W/m2, but can reach

as high as 1000 W/m2 as seen in Tokyo, Japan [73]. The high intensity of energy use

may increase the emission of air pollutants and waste heat from the energy generation

process, contributing to pollution and urban heat island effects. However, the high intensity

and diversity of energy usage in urban areas could also present opportunities for better

energy management practices, energy recycling via exchange of materials and waste between

industries, and clean-energy practices [21, 73]. Along with characteristics such as locational

attributes and population size, urban energy consumption is also shaped by its economic

functions. Urban areas are the hub of trade, service, and manufacturing,. These activities

considerably shape their consumption profiles. For example, urban areas with a significant

presence of manufacturing sector could be expected to consume more energy per capita than

areas primarily engaged in the service sector [154]. Urban growth also plays a vital role

in determining the energy consumption profiles of cities. Prospects of higher employment,

wages, and better life draw more people to urban centers. Due to this population growth,

the built-environment and support services also expand which further increases the energy

demands. In fact, by 2030, the urban infrastructures are projected to expand more than

three times their size in 2000 [35], Concerning the urban size, larger, highly populated cities

offer more jobs, services, and higher life prospects than smaller ones. Thus they attract

people at a much higher rate than their smaller counterparts. This causes the larger cities
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to grow and consume energy at much faster rates than the smaller ones. However, the larger

urban areas could also be benefited from the co-existence of diversely skilled sets of people

in close proximity, leading to heightened socio-cultural interaction which contributes to the

technological and innovative edge of large cities [65]. Urban areas, due to the presence of

co-located diverse sets of activities and people, present unique potential to lower per person

energy demands. The free flow of people, information, capital, and materials also encourage

engagement in transitional change, coupled with high-demands, this may help to achieve the

returns from economies of scale and lower per person energy consumption. Higher wealth

generation in prominent urban areas may also make it feasible to absorb the upfront cost

required to implement energy efficiency measures. Efficient building stock, space heating

and cooling mechanisms, and lighting technologies may be used to lower electricity demand;

while mixed land-use practices, energy-efficient mass transportation may help lower the use

of energy in transportation sector. A past study has indicated that the urban areas in

the industrial nations indeed consume less per capita energy than their respective national

averages [43]. The interplay of social, economic and technological factors determine the

relationship between urbanization and energy consumption, setting the urban energy systems

apart from other energy-related systems and calling for special attention.

1.2 Challenges to sustainability

The challenges to energy sustainability are well embedded within challenges to the social,

economic, and environmental sustainability [73]. The lack of universal energy access poses a

critical challenge to energy sustainability goals. Severe inequality still exists regarding energy

access between developed, developing, and under-developed nations. International Energy

Agency estimates that as of 2016, 1.1 billion people still lacked access to electricity [91].

Africa faces the toughest challenge in terms of energy deficiency, where 16 out of 20 nations

with the largest electricity deficit are situated [199]. In determining energy access, the energy

affordability plays a critical role. The typical energy expenditure in developing countries

often exceeds 10% of the household income, but the household incomes in low and medium

income countries are so low that after provisioning for food and other basic necessities there
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is very little left for spending towards energy. An average household in Kuwait and the

United States respectively consumed 40,142 kWh and 12,305 kWh of electricity in 2014,

while an average Indian households consumed about 1,165 KWh, and the corresponding

consumption in an Ethiopian household was only 534 KWh [94, 213]. The low affordability

of clean energy results in the use of cheap, inefficient fuels among rural and urban poor

households. To keep the energy costs low, solid fuels like wood, coal, charcoal, and animal

waste are often used for heating and cooking purposes. United Nations estimates that around

three billion people around the world are using these cheap yet dirty fuel sources to meet

their energy needs. These practices result in severe indoor pollution and degradation to

human health. United Nations points out that around 4.3 million people perished globally

in 2012 from indoor air pollution-related illness [199]. Existing reports indicate that globally

around 30% urban residents lack access to clean fuel and modern energy technologies. Due

to the lack of affordable energy supply, urban poor change their fuel mix based on fuel

availability, prices and subsidies, season, and cultural beliefs. While these asymmetries are

less pronounced in developed nations, they assume much higher importance in low income,

developing countries. Inequalities also exist between different income groups within nations

or cities regarding energy-related expenditure, physical access to electricity or other energy

sources, and choice of fuels meet the energy needs. The expenditure differences between

urban high and low-income groups were found to vary by a magnitude of 100 or more

[73]. However, lack of appropriate data and monitoring methods hinders analysis of these

challenges to energy access.

Environmental challenges from energy consumption mainly occur in the form of air

pollution, the pressure on water resources, and land-use change arising from the energy

generation process. Within the urban areas, the high energy demand increases the chances

of air pollutant emission. Typical energy use in larger urban areas ranges between 10 100

W/m2, whereas the clean, renewable energy sources can only supply about 0.1-1 W/ m2. This

deficit increases the reliance on fossil fuels that has significantly more detrimental impacts on

air qualities. Electricity generated through fossil fuel, biomass, and waste burning results in

the emission of oxides of carbon, sulfur, and nitrogen; particulate matters; and heavy metals

such as Mercury into the atmosphere. EIA estimates that around 67% of the total electricity
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generation in the US in 2016 came from these non-renewable fuels. In the United States,

power plants were found to contribute to 64% of economy-wide SO2, 50% of Mercury, and

75% of acid gas emissions [124]. Exposure to air pollution is not solely an urban problem.

The rural areas face 66% of the global air pollution exposure. According to the global

exposure equivalent [183], the prime cause of this exposure in the developing nations is

indoor air pollution. High intensity of energy use and low air movement in urban areas lead

to the urban heat islands which makes the cities warmer than surrounding countryside by

1-3oC, however temperature differences of upto 12oC have been observed. The high thermal

mass of urban buildings and waste heat from energy generation and space cooling processes

also contribute to this process; consequently the effects of urban heat islands increases with

higher energy consumption [73].

The air pollutants released from energy generation can get into the water resources

through wet deposition, and degrade water quality. The hot and chemical laden wastewater

from steam power plants can have a detrimental impact on the water quality of the

surrounding area upon discharge. Various heavy metals like mercury, selenium, cadmium,

and chromium have been found in the power plant discharges. These hazardous materials

may enter the food chain and in turn affect the human population in addition to other

ecosystem losses. The steam turbine enabled electric power plants account for 30% of toxic

waste discharge from all industries in the US [124]. As vast amount of water is needed in

mining energy resources, refining processes, and in the energy generation process itself; the

energy sector was estimated to be the largest user of water in the US [90]. The power plants

also have large footprints in addition to that required for resource mining, transportation,

pipelines, transportation systems. Many of these land requirement occur outside the urban

boundaries, but the impact of these land-use changes can be felt in the ecosystem and wildlife

around the world.
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1.3 Lack of energy data and opportunities for geospa-

tial data-driven methods

Notwithstanding the clear urban centric nature of the global energy systems, the current

methods of energy statistics are predominantly focused on national or regional scales. The

lack of appropriate data severely hinders the studies of urban energy systems [65, 73]. The

dearth of standardized data collection and reporting system also renders the available urban

datasets useless for comparative analysis [65]. A 2012 meta-analysis [104] of 219 studies

related to urban energy modeling revealed that the resolution and reliability of these models

were negatively impacted by the data availability in addition to computational constraints.

Around 58% of these studies used datasets with a temporal granularity of a year or more,

while 44% studies modeled energy systems at a district or a coarser spatial scale. The data

scarcity is even worse in the developing world, where urban scale datasets mostly do not

exist. Urban authorities in developed countries have deployed intelligent systems such as

smart grids and smart meters in place. Such equipment is capable of recording customer

behavior and consumption patterns [5, 55]. However, neither all the cities in the developed

world nor the cities in developing countries possess such infrastructure or the capital needed

to acquire these technologies [83]. As discussed earlier, almost all the new urbanization in

next few decades are expected in these data starved regions of the world, this makes the task

of developing efficient and generalizable urban level energy data gathering methods extremely

critical for studying the present energy dynamics and predicting the future scenarios. On

the other hand, the cities in the developed and industrialized nations still consume most

of the global energy supply. Past studies focused on such areas have mostly dealt with

energy usage and emissions in the transportation sector, but very less has been reported on

electricity consumption.

In the absence of statistical data on electricity consumption, proxy-based estimates have

been used by researchers. Building energy end-use intensity arising from domestic hot water

usage, space cooling, and electricity consumption was estimated and mapped at block level

in New York [89]. An interactive interface for this project can be viewed at https://qsel.

columbia.edu/nycenergy/. The distribution of electricity consumption in three counties in
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the state of Tennessee, US was estimated using a hybrid dasymetric mapping and machine

learning approach [141]. However, both studies utilized detailed electricity consumption

data, obtained from local administrative offices or utilities. While such studies prove that

electricity and broader energy consumption can be modeled at high resolution with the

appropriate data, a more generalizable approach is needed for understanding energy usage

patterns in data starved regions, or for a large system of cities where detailed data may not

be available for all entities.

In the context of developing an effective urban energy data collection and assessment

mechanism, the 2012 Global Energy Assessment report by International Institute for Applied

Systems Analysis highlights two key areas that need immediate attention: (1) A unified

approach to urban boundary and definition of energy systems, and (2) availability of energy

data, its quality assurance, and detailed documentation of data generation methods. Under

the circumstances where the development of a global urban energy statistics system is still

uncertain, geospatial and remote sensing data-driven approaches could be used to study

extents and patterns of urbanization and define proxies of urban electricity consumption.

Over past three decades, satellite recorded nighttime lights emission from human activities

have been at the forefront of such applications. However, a few known caveats have kept these

datasets from being reliably applied at urban scales. A detailed overview of the present state-

of-art has been provided in the literature review section. With newer high-resolution datasets

and increasing computational power, which enables complex analysis of large volumes of

data, the boundaries of remote sensing image analysis can now be pushed further. By

extracting information on urban configurations, objects and their characteristics, deeper

understanding of urban energy dynamics may be generated. Due to its scale dependency,

the geospatial analysis is possible at different scales, where at each level the amount of

available information determines the scope of such analyses. This has been illustrated in

figure 1.1 (adopted from Netzband & Jürgens, 2010). The strength of geospatial data-driven

analysis lies in its flexibility to focus on and connect between different spatial scales. With

present capabilities, data extraction from satellite images can help the detection of urban

structure types [145, 72, 8]. The current challenges remain on how to meaningfully utilize

the information on urban configuration and form to predict its function.
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Figure 1.1: Relationship between spatial scale and urban analysis (adopted from Netzband
& Jürgens, 2010 ).

For understanding urban electricity consumption patterns in a spatially explicit manner,

accurate detection of urban areas is a critical first step. The consistency issues with global

human settlement and land cover datasets is a potential challenge for reaching a consensus

regarding a generally acceptable measurement of the urban areas in the world. However, the

high resolution image analysis could provide a way forward in this regard by enabling minute

detection of urban patterns with unprecedented details. The United Nation’s sustainable

development goals in clean and affordable energy focuses on universal access to sustainable,

modern, and clean energy supply, including the least-developed countries by 2030. As many

of the low income countries lack reliable statistical data, remote sensing based identification

and assessment of urban energy consumption patterns may prove to be crucial in achieving

such goals. The advancements reached in the domains of remote sensing and geospatial data

analysis provide an opportunity to fill these data voids till a more efficient data collection

system can be put in place. After the necessary identification of urban areas and proxies of

energy consumption, geospatial data driven modeling of urban energy systems is also needed

to analyze the present dynamics and identify the probable future trends. Such efforts can
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fulfill the urgent data needs and immensely benefit not only the developing countries but

even many developed countries as well.

1.4 Data driven analysis in Geography

The philosophical foundation of the data-driven analysis paradigm can be found in Abductive

Reasoning. Other inference approaches in scientific knowledge discovery, such as the

deductive approach develops a hypothesis based on the exiting theory; it then tests the

hypothesis to either accept or reject it. Thus, such inference mechanisms thereby assume

that something must be true. The inductive reasoning on the other hand is more flexible that

allows the possibility that the conclusion may even be false and the strength of argument

rests on the probability of the conclusion being true. In comparison to other inference

approaches, abductive reasoning is a much softer method which assumes that something

may be true. Abductive reasoning approach begins with the data, through observation

and exploration of such data a direction is obtained. The process ends with a hypothesis

which in turn explains the data [134, 135]. Researchers [134] have argued that this approach

holds critical importance in scientific discovery especially before one reaches the stage of

deductive or inductive methods of knowledge building. Miller & Goodchild [135] points out

that for the success of abductive reasoning, various sub-components such as the capabilities

of being able to propose fragments of theory, availability of a large knowledge set from which

information can be drawn, the ability to search the knowledge base for correlation, patterns,

and explanations; and strategies for complex problem solving including analogy, guesses, and

approximation are necessary. The importance of geographic visualization could also serve

as a core framework upon which different inferential strategies could be applied, leading to

a synergy among different knowledge building approaches in Geography [69, 135]. Figure

1.2, adopted from Gahegan 2009 [69], illustrates the relative positions of different inferential

approaches in geographic knowledge discovery process.

In the context of geospatial data driven analysis in urban studies, availability of remotely

sensed imageries has shaped much of the manner in which the derived datasets and

applications have evolved. The availability of high resolution remotely sensed datasets
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Figure 1.2: Overview of the inference approaches in geographic knowledge discovery process
(adopted from Gahegan, 2009).

along with efficient computing resources and algorithms in recent times can efficiently

process massive datasets to extract information at high spatial resolution. This enables the

identification of urban patterns and objects with high detail, which can lead to identification

of patterns in urban areas and development of correlations that have not been discovered

so far. In the absence of statistical data, new urban metrics could be generated that

satisfactorily describe the socio-economic patterns in cities, and thereby lead to hypothesis

generation. The subjective background is of high importance in this stage to rule out spurious

correlations in the hypothesis building process. The principle of data driven analysis and

modeling may be used to study human settlement and energy interaction leading to more

efficient and spatially explicit local level electricity usage mapping, especially at data sparse

regions. As [135] points out, the geography has moved into data-rich environment that offers

variety of near real time data. Thus, these multitude of datasets need to be harnessed to
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study urban phenomenas, especially under the scarcity of urban statistical data. Progress in

this approach may ultimately enable the planners and policymakers to base their decisions

on more reliable information.

1.5 Organization and summary

The ongoing discussion elucidates the role of urbanization in shaping the present and future

course of modern human civilization. Given its influence on the world economy and the

control over individual prosperity, urbanization is bound to continue at its current pace in

the foreseeable future. Electricity, which is gaining market share much faster than any other

energy fuel, is mostly utilized in urban areas; which indicates its ever growing importance at

present times and for the future. Electricity consumption pathways are known to have

significant environmental footprints, negatively affecting air, water, and land resources.

Reliance on non-renewable fuel resources aggravates the challenges of their depletion and

energy security. Unlike other energy end usage, electricity has been less studied until now.

The lack of urban scale data is one of the main hindrances that must be overcome in order

to ensure sustainable energy policy development. In the absence of a statistical mechanism

on urban level energy consumption, estimates may be generated using geospatial data-

driven methods. This dissertation work attempts to address this crucial issue by exploring

the application of geospatial data and modeling in understanding electricity consumption

patterns over diverse geographies. After a comprehensive review of the present literature,

three key knowledge gaps were identified, which have been presented in section 2.4. The

current chapter provides an introduction to urbanization, the present trends, and influences

on the global socio-economic and environmental systems. Which is followed by a background

discussion on urban energy consumption and the challenges it presents for sustainability.

The discussion then highlights the issues of data scarcity in urban energy domain, and the

opportunities for geospatial data-driven methods to fill the voids. The organization of the

rest of this work is detailed in the following.

A comprehensive literature review has been presented in the second chapter, which

highlights the present state-of-the-art in three related but key areas pertinent to this study.
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(1) The present status and the issues related to global and regional level mapping of human

settlements. Reliable identification and measurement of the human habitats is a critical step

to address a global level issue like the energy sustainability. Accurate measurements of urban

areas and mapping of intricate urban patterns helps in identification of the changes in urban

landscapes, find vulnerable sections of population without access to energy and services,

and develop correlations between urban configurations and energy indicators. However, the

present state-of-the-art is severely discordant regarding the measurement of global urban

lands. The degree of such discord can be found to vary with scale and regions of the

world. The literature review identifies that despite the development of high-resolution

settlement datasets, their performance assessment against the coarse and low resolution

datasets at multiple scales and over diverse geographies is severely lacking. This obfuscates

the assessment of the benefits obtained from high-resolution mapping compared to the

conventional approaches, and hinders a gradual progression towards a convergence in global

human settlement mapping efforts. (2) Understanding of urban energy consumption patterns

using remote sensing approaches. Studies have noted the capability of high-resolution

satellite images to record various morphological traits of urban settlements, which can be

analyzed to differentiate between settlement types. The literature indicates that there

is a potential of using the functional inventory of human settlement in studying urban

socio-economic functions. However, no attempt has been made to explore the usability of

these inventories in understanding urban energy consumption patterns. (3) The impact

of urbanization on electricity consumption. While there have been many studies that

investigated the relationship between urbanization and energy consumption at national and

regional levels, decidedly less has been reported at urban levels. As mentioned above, the

scarcity of appropriate statistical data severely hinders such endeavors. Even in the United

States, the second largest consumer of electricity in the world, urban level datasets are

very limited. The limited number of studies that studied the effect of urbanization on

electricity at city levels indicate diverging directions of the effect. In some cases, return of

scale has been observed, highlighting a reduction in per capita energy use in bigger urban

areas. But there are other studies that reported a liner effect of urbanization or cases where

urbanization mildy increased per capita electricity consumption in urban dwellers. Thus,
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further exploration of this issue is required to discern the effects of urbanization on electricity

consumption and assess the potential of urbanization in lowering electricity consumption,

which may be crucial for future energy sustainability. Finally, the three research objectives of

this dissertation, reached upon after through consultation of the existing body of knowledge,

has been presented.

The third chapter describes the research done to address the first research objective.

Global and regional estimates of the extents of built-up and urban areas vary severely

among different medium and low-resolution datasets. Such discord poses a severe challenge

for understanding the impacts of urbanization on several global and regional level systems

including energy. Identification of urban patterns at local to global scale allows to develop

correlations with energy dynamics; urban extents can also be used as a proxy of different

socio-economic parameters. This chapter thus presents a study of assessment of the mutual

correspondence between four distinct global and regional level land cover and built-up area

datasets, ranging between 8 and 500 meter in spatial resolution. The key questions asked in

this chapter are:

1. What is the variation in built-up area estimates amongst the datasets at multiple scales

and geographies?

2. Whether the observed discords amongst the datasets are associated with morphological

traits of the urban landscape, and what are the implications of such association?

The study was conducted at multiple scales in Egypt and Taiwan, offering distinct

geographies regarding physiography, economy, and demography that could influence the

mutual correspondence among datasets. This study analyzes the influence of landscape

complexity on the mutual correspondence amongst the datasets in these two diverse

landscapes. Findings from this study indicate that increasing disaggregation and complexity

of urban landscapes are associated with an increasing mutual disagreements; while increasing

contiguity is associated with an increase in the mutual agreements. The study also

calculates the marginal effects of these landscape characteristics on the inter dataset mutual

correspondence to assess the degrees of the association. From core urban areas, the

mutual agreements were seen to decrease over peri-urban areas, where most complex urban
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landscapes are found. Due to lack of spatial resolution in the input data, coarse and medium

resolution datasets are deficient in identifying complex urban patterns. This chapter sheds

light on the causes of the observed discords amongst datasets, and firmly establishes the

potentials of high-resolution urban mapping as a path to convergence in measurements of

urban extents.

The absence of statistical data on urban energy is a major obstacle in understanding

urban energy consumption patterns. This problem is much more severe in developing nations.

Past studies have applied nighttime lights data to study energy consumption patterns at

global and regional scales, but the limitations around spatial and spectral resolutions restrict

its applications at urban scales. The new VIIRS DNB datasets offer much higher radiometric

resolution, which enables the identification of subtle variations in light intensity caused by

different energy consumption levels. However, its 500 meter spatial resolution acts as a

limiting factor for understanding intra-urban energy consumption patterns. Using a high-

resolution metric alongside nighttime lights may help in spatially explicit understanding of

urban energy consumption patterns. In the fourth chapter, the following questions related

to this issue were addressed:

1. Can a generalizable functional inventory of human settlements be developed for cities

in developing nations?

2. Can such inventories be used alongside nighttime lights, used as a surrogate of

electricity consumption, to draw insight on urban electricity consumption patterns?

The study was conducted on the three cities of Johannesburg in South Africa, Sana’a in

Yemen, and Ndola in Zambia. The regression results between the proportion of settlement

types and the corresponding nighttime light emission were found to be statistically significant

in all three cities. It was found that in Johannesburg, the high density, large urban buildings

had the maximum association with nighttime light emission, which can be interpreted as an

indication of high electricity usage in commercial and industrial establishments. In Ndola,

the medium sized, low to medium density urban and suburban residential buildings were

found to have maximum association with nighttime lights. In Sana’a, highest association

with nighttime lights emission was associated with the large buildings as well as the small,
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non-orthogonal settlements, which are most likely representative of industrial, commercial

and administrative establishments and high density, small informal settlements respectively.

The results from this study highlights the applicability of functional settlement inventories

to study intra-urban socio-economic dynamics. Addition of such information to the existing

high-resolution settlement datasets may further enhance their usability in economic and

social studies.

The relationship between levels of urbanization and electricity consumption in an urban

system indicates the effects of urbanization on energy consumption, indicate probable future

scenario with respect to prevailing rates of urban growth, and help in planning and policy

making. Urban scaling is an efficient way of capturing such dynamics. However, due to the

lack of urban level data, such studies are rare. The study presented in the fifth chapter is

focused on the urban areas in the United States, which is the second highest consumer of

electricity after China. To overcome the lack of data, an electricity consumption estimation

model was developed before conducting the scaling analysis. The specific questions addressed

in this chapter are:

1. Can geospatial data based models be used to estimate urban electricity consumption

in the United States?

2. What is the effect of urbanization on electricity consumption in the United States, and

its implications?

3. What are the implications of the return-of-scale in urban energy consumption in the

United States, and where are the limits of such gains?

The urban electricity consumption estimates were validated against the California data,

which is the only available available electricity consumption data at county scales. The

estimates were showed a mean relative error of 12%. Since the electricity data for the

country was only available at the state level, the regression model was used to make county-

level predictions, which was beyond the range of the initial data. This caused some systematic

error in the estimates, which was evident from the distribution of estimation errors relative

to urban size. The larger urban areas showed far less error than the smaller ones. The
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subsequent scaling analysis indicated an increase of 77% in electricity consumption associated

with each doubling of urban population in the US. The gain of 23% less electricity usage

per person corresponding to a 100% urban population growth is indeed an indication that

urbanization can offer energy savings in the US. However, limitlessly expanding urban areas

may not be a practical policy solution for energy sustainability. On the other hand, larger

urban areas are linked to urban heat islands, faster resource depletion, and other associated

sustainability challenges. Thus, the relationship between per capita electricity consumption

and urban population density was assessed in this analysis. The results revealed that urban

areas offer rapid gains in per-capita electricity consumption in the initial stages of growth

till the population densities reach about 800 persons/km2. The gains increasingly slow down

between the population densities of 800 to 2000 persons/km2; however, beyond this point

there is no more in per capita consumption savings. Hence, there is an effective higher limit to

the effectiveness of urbanization with regards to energy savings. The study presented in this

chapter thus not only highlights the applicability of geospatial data modeling to overcome

the scarcity of urban data, but also assesses the potential and limits of urbanization as a

tool for energy efficiency.

The sixth and the final chapter includes a systematically organized conclusion from the

previous chapters, along with a discussion on the uncertainties and the limitations of this

work. The chapter ends with a brief outline on the future research direction.
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Chapter 2

Literature review

This chapter presents a comprehensive review of the existing body of literature pertinent to

this dissertation. The discussion starts with a description of the critical nature of remote

sensing based human settlement mapping. The issues associated with human settlement

mapping at local to global scale has been described next along with a discussion on the past

work done on accuracy assessment. The review then focuses on the existing work related

to the application of remote sensing in urban socio-economic analysis, especially on using

satellite image-based metrics as proxies of urban socio-economic processes. The final part

of this discussion includes the studies related to the application of geospatial data-driven

methods in the analysis of urban sustainability, focusing on electricity consumption. As

mentioned in the introduction, there is a global scarcity of urban electricity consumption

data which hinders researchers from assessing the effects of urbanization on electricity

consumption, consequently the number of studies reporting on urbanization and electricity

consumption is relatively less.Thus, a broad discussion on the effect of urbanization on

general energy consumption and the implications, as noted by past researchers, has been

presented before specifically focusing on electricity consumption. This chapter then identifies

the knowledge gaps in view of the existing literature, which provides the basis of the research

objectives of this dissertation.
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2.1 Global and regional human settlement mapping

Urban areas occupy only between 3% to 4% of the world’s land area [166], yet the

significance of its impacts on global environmental systems and human health are already

well-documented [63, 47, 164]. The current projections estimate that urban growth will add

around 2.5 million additional people to urban areas by 2050, with the majority of such growth

taking place in Asia and Africa. However, the urban areas trajectories of the urban growth

to accommodate these additional population is not yet clear. Similarly, the effects of such

future growth on the environment is also less understood. Such uncertainties around future

urban growth mandate accurate and regular mapping of the urban areas at multiple spatial

scales. Past researchers [163, 164] have strongly recommended that the crucial tasks of

accurate mapping and measurement of urban areas and associated socio-economic processes

must be undertaken in order to identify and understand the influences of urbanization

on global and regional scale anthropogenic and environmental systems. Remotely sensed

images constitute an essential input data to the settlement mapping process [177]. Benefit

analyses of the remote sensing based urban mapping over traditional methods such as

census and ground surveys reveal two key advantages. Firstly, unlike remote sensing data,

conventional survey methods lack the spatial information which renders them unsuitable for

many scientific applications [175]. Secondly, survey-based methods are extremely resource

and time consuming, which is why such undertakings generally occur at decadal intervals

[168, 45]; whereas remote sensing satellites provide continuous coverage at multiple scales and

facilitates regular updates to the human settlement inventories. Recent studies [15, 107, 26]

in the application of novel data extraction methods have established that information on

human settlements can be methodically extracted from these images at different spatial

scales using automated or semi-automated data methods. The efficiency of this process may

be further increased using high-performance computing resources capable of unprecedented

processing speeds [153]. Such advancements helps efficient analysis of very large volume

of data, typically associated with the high and very-high resolution images. The following

subsections provide a detailed overview of coarse and medium resolution land-use land-

cover datasets and studies that investigate their consistency and indicate their strength and
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weaknesses. The new high-resolution datasets are then described along with the current

state of their accuracy assessment.

2.1.1 Coarse and medium resolution datasets:

The Global Land Cover Characteristics Database (GLCC) represents the first instance of

global land cover mapping using satellite images, it was jointly developed by the United

States Geological Survey (USGS) and the European Commission’s Joint Research Center

(JRC) for the 1992-1993 period [121, 164]. Since then, over the past few decades, a wide range

of global and regional land cover and human settlement datasets have been developed. Urban

extent datasets from the Global Rural-Urban Mapping Project (GRUMPv1) were provided

in both polygon vector and gridded raster formats at 30 arc-second (about 1 km) resolution

for the year 1995[30]. The yearly MODIS (Moderate Resolution Imaging Spectroradiometer)

land cover type product [68, 24] was generated using images from MODIS sensors on-board

Terra and Aqua satellites. This 500 meter data describes global land-cover types at yearly

cycles between 2001 and 2013. European Space Agencys Climate Change Initiative released

a 300 meter global land cover data [82] for 2008-2012, 2003-2007, and 1998-2002 time periods.

These datasets were developed using MERIS (Medium Resolution Imaging Spectrometer)

and SPOT (Satellite Pour l’Observation de la Terre) vegetation data as input. The CORINE

(Coordination of Information on The Environment) land cover project by European Space

Agency (ESA) was initiated in 1985 and land cover maps consisting of 44 classes at 250 and

100 meters were produced for 1990, 2000, 2006, and 2012. The CORINE data development

process utilized a suite of datasets from Landsat-5, 7, SPOT 4/5, IRS (Indian Remote

Sensing Satellite) P6 LISS III (Linear Imaging self Scanner) and RapidEye satellites [57,

155]. Coarse and moderate resolution human settlement datasets have previously been used

to study a broad range of scientific areas such as population distribution and modeling,

climate change, resource management, urban planning, disaster response, health planning,

and energy dynamics [42, 158, 177, 211, 130, 80, 136].
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2.1.2 Consistency analysis of low resolution datasets:

Past researchers [173, 163, 164, 80, 174], however, have noted a significant discord among the

low and medium resolution datasets, especially regarding the representation and estimation

of built-up and urban areas. An urban area focused comparative accuracy assessment

[163], involving six global level coarse and medium-resolution datasets around the year 2000,

revealed a large range of global urban area estimates. In this study the smallest estimates

of urban area of 0.27 × 106 was obtained from the Vector Map Level 0 data [38], while

the largest measurement of 3.52 × 106 km2 was obtained from the GRUMP data. At a

regional level, the study found the highest inter-map agreements in North America (r =

0.90), followed by Europe, central and South America, and Sub-Saharan Africa (r = 0.78),

the lowest inter-map agreement (r = 0.63) amongst these datasets was seen in Asia.

A follow-up study [164] involving eight global datasets adopted a two-tier approach,

utilizing a stratified random sample of 10,000 high-resolution Google Earth images and 140

medium resolution Landsat images of urban areas. While assessing the omission of cities

in these datasets using a 247 city sample set, the study noted that most of these datasets

either totally missed or only partially mapped some of the cities included in the sample.

This rate of omission was generally inversely related the city size and economic levels of the

corresponding country. The mean omission rate for European and other developed nations

was 0.2% while the same for Africa, South-Central-West Asia, Southeast, and East Asia were

2.8%, 5.5%, and 5.8% respectively. Similarly, the assessment of estimated city size showed

a wide range of accuracies. Finally, pixel by pixel comparison was carried out using the 140

city sample, the highest mapping accuracy was obtained for Europe and other developed

countries along with Latin America and the Caribbean Islands, while the lowest accuracies

were found in Africa, East and South-East Asia.

It should be noted that the scale of representation, whether global or regional, could

potentially have a bearing on the variation across these estimates [109], which was evident

in these studies. The ambiguity around a universally acceptable definition of urban areas

across the datasets also creates a major drawback for their applicability [174, 109]. Region
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or site-specific variations in urban area mapping accuracy could be another issue, as region-

specific accuracy measures may not necessarily be an indication of a global accuracy. The

spectral and spatial heterogeneity of build-up areas also affects the data accuracies. The

coarse resolution datasets were found deficient in resolving the spatial complexities of urban

settlements [109]. Therefore, such issues could result in unwarranted discrepancies, such as

failure to detect built-up area, inaccuracies in derivative datasets, or potentially erroneous

and unreliable results and conclusions from the subsequent analysis that use these datasets

[58]. As human settlements exhibit complex form and uneven distribution over space,

their precise detection is required to accurately convey the urban dynamics through derived

products [201].

2.1.3 High-resolution urban data:

The precision of built-up area detection is a function of the input remote sensing image

characteristics and methods of information extraction [77]. The spatial resolution of input

images determines the amount of extractable information content present in the data.

The advantage of high-resolution satellite images (<5m) in capturing complex landscape

patterns over medium (80-15m) and low (>100m) resolution datasets have been highlighted

in published literature [156, 16, 109]. Recently, the increasing availability of high (<5

meter) and very high-resolution (<0.5 meter) remote sensing images, high-performance

computing infrastructure, and associated development of efficient algorithms to exploit high-

resolution imageries have paved the way for generating high-resolution human settlement

data [27, 203]. The Global Human Settlement Layer (GHSL) was released in 2014 by

the European Commission’s Joint Research Center as a global data at 38.2 meter (fine)

and 305.8 meter (aggregated) resolutions [157]. The datasets were developed applying a

symbolic machine learning based classification method [34, 160] and a texture extraction

method called PANTEX [109, 159] on cross-platform and multi-sensor image data. Another

dataset called Global Urban Footprint (GUF) was produced by the German Aerospace

Center at 2.8 (aggregated) and 0.4 (fine) arc-seconds (approximately 84 and 12 meters at the

equator) [56]. GUF was developed using local speckle analysis on 3 meter radar data from

TerraSAR-X and TanDEM-X missions [109]. In the United States, the Oak Ridge National

23



Laboratory (ORNL) is using very high resolution (≤ 0.5m) satellite images from WoldView

2 and WoldView 3 satellites to develop a human settlement dataset. This dataset, known as

LandScan Settlement Layer (LandScan SL), is generated at approximately 8 meter spatial

resolution. All the urban and land cover datasets mentioned above, with the exception of the

last three, have been widely used by researchers in the advancement of scientific disciplines

worldwide. However, the new high-resolution datasets have now begun to be used in scientific

analyses [67, 2, 44], and by virtue of their inherent higher information content, these datasets

are expected to provide new insights and push the boundaries of present scientific knowledge.

2.1.4 Evaluation of the advantages of high-resolution datasets:

To assess the true advantages of the high-resolution datasets over their coarse and medium

resolution counterparts, comprehensive performance analysis of high-resolution settlement

datasets against others is needed. These comparative studies could indicate their advantages

in scientific applications, especially regarding the identification and quantification of human

settlements across variegated geographies. Important issues that must be addressed are

the relationship between input data resolution and information gain at various geographic

scales and sites. Given these circumstances, the inconsistencies must be explored to provide

a sound basis for using appropriate datasets in downstream studies in the geospatial data

analysis paradigm. However, scientific studies addressing the accuracies of high-resolution

human settlement and urban area datasets remain scarce. As per a recent analysis [109],

about six and eleven studies were reported on single data product accuracies, respectively

involving high and low-resolution data. While there have been a few studies reported on

multiple data product accuracies on low and medium resolution data, only two were focused

on urban areas, and no study was reported on multi high-resolution data product accuracies.

In their study [109] tested the consistencies of GUF and GHSL datasets, both at 12 meters,

against 500 meters MODIS global urban extent data and 300 meter GlobCover data. The

multi-scale accuracy assessment was carried out over two 100 km by 100 km test sites located

in Cologne, Germany and Tuscany, Italy; that offer a balanced representation of urban and

rural landscapes [109]. The study found that due to the coarse resolution, MODIS and

GlobCover data fails to accurately identify the small-scale built-up areas and consequently

24



show moderate correspondence with GUF and GHSL only in core urban areas. As expected,

the low resolution datasets perform poorly in rural landscapes, but the study found that the

GUF and GFHSL also exhibit marginal weakness over rural regions. This study successfully

highlights the advantages of high resolution datasets in providing precise information on

human settlement extents and patterns. Till date, this remains the only work that examined

the benefits of high resolution datasets against coarse and medium resolution data. However,

as this study was conducted in European settings, the multi-resolution consistency analysis of

high and low resolution datasets over variegated geographies that represent distinct economic,

demographic, and physiographic characteristics remain unanswered.

2.2 Remote sensing of urban energy consumption

Beyond the mapping of built-up areas, satellite images could also be used to extract proxy

measures to understand socio-economic characteristics on the ground. A summary review of

the application of remote sensing in studying urban energy consumption has been presented

in this section. Nighttime lights data has been used extensively by researchers at regional

to global level for this purpose. However, incorporation of information on urban structure,

patterns, and morphology could reveal more insights into urban socio-economic and energy

processes. Hence, this section also includes a summary review of studies using high-resolution

images in characterizing urban landscapes, with special focus on energy and economic

applications.

2.2.1 Estimation of urban energy consumption using nighttime

lights:

Welch, 1980, [209] authored one of the initial work of utilizing nighttime lights data

from Defense Meteorological Satellite Program’s Operational Linescan System sensor

(DMSP/OLS) to urban energy usage patterns in 18 cities the United States in 1975, the

study found a high level of correlation (coefficient of determination (r2) = 0.89) between

total consumed energy and recorded light emissions, measured using microdensitometer from
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analogue media. This work highlighted the significance of using remote sensing data in urban

electricity usage estimation. A similar method was used to study the relationship between

nighttime lights and population (r2=0.88), and electricity utilization (r2=0.96) for 35 cities

in Eastern and Western United States in the same year [210]. Elvidge et al. 1997, found

significant correlation between the natural log of lit area and natural log of population

(R2=0.85), GDP ((R2=0.97)), as well as electricity consumption (R2=0.96) for 21 countries

[49]. These initial studies firmly established the usefulness of nighttime satellite observations

of light emission from anthropogenic activities as efficient means for monitoring national and

regional level urban electricity usage.

Subsequently, Amaral et al., 2005, [4] observed strong linear correlations between

DMSP/OLS nighttime lights foci and population as well as consumed electricity in the

Brazilian Amazonia in 1999. Spatio-temporal characterization of electricity consumption

between 1993-2002 was carried out in India. The authors integrated the observed change

in the recorded light levels with demographic data to characterize the urban development

in Indian states and major cities. The study observed increasing light intensities along

the peripheries of all major cities as well as some extinction of lights in poverty-stricken

areas. Correlation analysis between the growths in population, electricity consumption, and

nighttime lights returned a moderate correlation, r2 = 0.59 and 0.56 respectively [23]. It needs

due mention that several studies have highlighted the known drawbacks of the nighttime

lights data from DMSP/OLS sensor, which prevents applications of these datasets beyond

national and regional level analysis. Some of the well-known issues are: [1] the datasets have

a coarse spatial resolution of 1 km., which negatively affects their scope in smaller urban

areas. [2] the six-bit radiometric resolution, with digital number (DN) values ranging from

0 to 63, causes the data to saturate rapidly over urban cores and miss the subtle differences

between different lighting levels. [3] The lack of on-board calibration. [4] lack of sufficient

spectral channels required for differentiating the thermal sources of observed lights and low

light imaging bands which could have enabled discrimination of lighting types [53, 51, 52].

These known deficiencies in the dataset severely limited it’s urban-centric applications. Xie

& Weng, 2015 [215] analyzed the factors influencing the relationship between electricity
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consumption and nighttime lights emission, and noted that these datasets are not applicable

in less affluent regions due to the inability of this sensor in the detection of low luminosity.

Several researchers have used region specific methods to rectify the saturation and noise

issues. Letu et al., 2010, [114] in a complex series of rectification measures, first used a

noise reduction filter to omit the periodic component (arbitrary noise) and extract stable

lights from DMSP/OLS data. They applied an additional area correction procedure for

the places at higher latitude. A cubic regression model, based on the spatial distribution

of the stable lights, was then developed to rectify the saturation problems in Japan. The

model was used in Japan and 12 other countries in Asia, including China and India. The

results indicated a high correlation between national electricity consumption and cumulative

national level nighttime lights emission (for uncorrected data R2 =0.88, for corrected data R2

= 0.94). Time-series DMSP/OLS datasets also suffered from inconsistencies in DN values,

due to regular change in satellites. Zhao et al. [221] applied a set of inter-calibration

parameters, developed by [54], to rectify 1995, 2000, and 2005 DMSP/OLS datasets and

study the temporal change in electricity consumption in China. More recently, Elvidge

et al. [51] studied the percentage of the population with access to electric power across

229 countries using DMSP/OLS and LandScan population data, they reported a total of

1.62 billion people with access to electricity which is very close to the International Energy

Agency reported estimate (1.58 billion). However, even with the application of these novel

rectification methods, DMSP/OLS datasets fails to satisfy the need of present applications.

With the introduction of Visible Infrared Radiometer Suite (VIIRS) Day/Night Band

(DNB) data, most of the previous issues with DMSP/OLS, except for the lack of multi-

spectral low light imaging capabilities, have been addressed [52]. Compared to DMSP/OLS

data (1 km. pixels), the VIIRS DNB data offers higher spatial resolution (500 m pixels )

and has a significantly higher radiometric resolution (14-bit). These improvements could

therefore enable minute detection of urban socio-economic phenomena at local scales. A

comparative study [181] between DMSP/OLS and VIIRS DNB data was carried out to

examine the potential of VIIRS DNB data to model GDP and electricity consumption at

multiple scales in China. The authors found that linear regressions between the sum of lights

obtained from VIIRS DNB showed higher correlation with GDP and electricity consumption
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than with DMSP/OLS at both provincial and prefecture levels. Jaturapitpornchai et al.

[98] applied Otsu thresholding method [149] and k-means clustering approach on VIIRS

DNB data to map urban areas in Thailand with considerable success. Ma et al. [122]

tested the responses of VIIRS DNB data at local and finer scales to draw insight from the

correlation between population, GDP, electric consumption, paved road area, and the total

lights intensity in Chinese cities. The study found a strong correlation between increase in

nighttime lights and linear growth in urban indicators, and suggests a strong applicability of

VIIRS DNB in studying socioeconomic indicators at local scales. A recent study [169] used

VIIRS DNB data to observe aggregated human behavior through the variations in electricity

demand patterns, especially during special social occasions. The energy consumption

behavior during these special occasions were found to follow the socio-cultural boundaries

at city, district, and country levels. This study demonstrates the capabilities of VIIRS DNB

data to monitor lighting demands on a daily basis at urban scales. These applications indicate

a strong possibility of utilizing VIIRS DNB data to study urban electricity consumption at

local levels. However, for all these existing studies, the city has been the minimum unit

of analysis without any attempt to explore the variations within the cities. Till now, no

analysis has been reported on exploring the intra-city electricity consumption patterns using

the high radiometric capabilities of VIIRS DNB data.

2.2.2 High-resolution images in urban remote sensing

High-resolution day-time images offer unique capabilities to distinguish between various

settlement types based on their physical appearances, some of these characteristics observable

in high-resolution images are [145, 72]:

1. Complexity in the appearance of settlement shape, heterogeneity within settlements.

2. Heterogeneous building materials and structures of different types of settlements.

3. Variation in building density and size.

4. Differences in street layout, such as narrow and irregular patterns in contrast with

planned road network with wide and gridded roads.
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These parameters have been used to identify settlement patterns in diverse urban areas,

and could therefore be used do develop a settlement database by their visual formality. A

link between the forms to functions of different settlement types can then be made. Such

functional human settlement inventory may be used for gathering more insights into urban

socio-economic patterns, including energy usage.

Multiple researchers have used spectral, texture, or object-based methods to identify and

map different types of urban structures [72], including delineation of urban areas, distinction

between formal and informal settlements, and classification of different settlement types.

Gamba et al. [70] applied object-based edge detection method on very-high resolution optical

and hyperspectral images in Italy. Texture analysis and local spatial statistics were used to

improve the object-based classification of urban areas on QuickBird images [186]. Authors

of this study compared among different combinations of moving window sizes and features

of grey-level co-occurrence metrics (GLCM) alongside spatial statistics to find optimum

combinations for classification accuracy improvement. Comparison of their output with only

spectral information based results indicated a significant improvement offered by the hybrid

approach. Another study [26] used texture analysis and high-performance computing on

high-resolution images from IKONOS satellite, they observed a correlation between urban

land cover areas and GLCM and local-edge pattern co-occurrence matrix generated statistical

features. Hofmann et al. [85] applied a hybrid application of an object-oriented texture

classifier and fuzzy logic rule based segmentation method to identify informal settlements

in Brazil from QuickBird data. Pesaresi et al. [159] presented a texture based index called

PanTex for finding presence of built-up areas. The index is created by calculating the

anisotropic texture co-occurrence properties from panchromatic images. The method was

found to provide a compact and rotation invariant built-up area index, which is robust to

contextual and seasonal variations in the data. Statistical properties of different land use

classes in high-resolution 1 meter images were carried out to explore the applicability of

computer vision approach to distinguish among various land covers in satellite images [204].

Researchers have also attempted to identify urban socio-economic characteristics via

indicators such as settlement types. Past studies have been reported in identification

of informal settlements from high-resolution images. A semi-automated object-based
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classification was applied on high-resolution QuickBird images of Delhi, India to identify

the urban land cover characteristics [145]. The classified image was then linked to ground

surveyed socio-economic data on population distribution and water consumption related

parameters to identify the informal settlements. To develop a generalizable model for

mapping of settlement types, applicable in diverse urban landscapes, Graesser et al. [72]

introduced a new method to differentiate between informal settlement and other structures

such as industrial, formal residential, and commercial buildings. The study utilized different

texture measures to characterize local neighborhoods of informal and formal settlements,

and non-settlement types in Caracas, Venezuela; Kabul, Afghanistan; and La Paz, Bolivia.

They achieved a high overall accuracy ranging between 85% to 92% . Benzhaf & Hofer [8]

used color infrared orthophotos, object-based image analysis, and image segmentation to

identify and discriminate between settlement structures on the basis of their tone, shape,

texture, and contextual characteristics in Leipzig, German.

However, almost all presently available remote sensing datasets represent urban or built-

up areas as a single contiguous class, without any further characterization. In the past,

researchers have indicated that separation of settlement types could lead to the identification

of urban dynamics patterns that were hitherto unseen [152, 190]. Recent advancements in

remote sensing capabilities regarding higher resolution input data as well as sophisticated

algorithms have paved the way for the identification of different urban settlement types

[217, 72]. Development of these settlement typology classifiers may reduce our dependence

on ground surveys to a large extent and find useful applications in understanding socio-

economic dynamics in data sparse regions.

2.3 Urbanization and energy consumption

The dual role of urban areas as the cause and also the potential solution to the challenges

of environmentally sustainable urban growth is a widely accepted fact [178, 65, 223]. The

relationship between urbanization and energy consumption has gained attention since the

1990s among economists, Dahl & Erdogan [37] explained the rise of oil consumption in

developing countries using income, price, and population growth resulting from urbanization
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as explanatory variables. Burney [19] used a cross-sectional data of 93 countries to study

the effect of urbanization on national electricity consumption while controlling for the effects

of per capita income and share of the industrial sector in GDP. A more recent study [113]

explored the effect of income growth on per capita energy requirements. The study observed

a differential effect of increasing income on energy requirements across Australia, Brazil,

Denmark, India, and Japan. For all countries except for Brazil, the elasticity of per capita

energy usage was observed to be less than one. However, in-spite of the general trend,

the controls of various socio-economic and demographic explanatory variables over energy

consumption differed significantly across countries, leading the authors to propose that

universal energy management strategies may not be ideal for energy usae reduction, instead

country-specific policies are needed.

A positive relationship between the rate of urbanization and energy use has been

evidenced in many econometric analysis. However, the reported growth in energy use

has varied considerably among these works. Jones [101] used a cross-sectional data of

59 developing countries for 1980 to find the elasticity of per capita aggregate energy use

to vary between 0.35 and 0.48, while controlling for per capita income and extents of

industrialization. Parikh & Shukla [151] used a sample of national-level data from developed

and developing countries for 1965-1987 period to find an elasticity of per capita energy use

with respect to urban population to be 0.28, while holding all other variables fixed. Going

further with their analysis on a subset of the sample, consisting of developing countries,

they found an elasticity of total electricity usage to be 0.43, thereby indicating that the

urbanization was less energy efficient in developing countries than in developed countries.

A study [112] was done on Canadian cities between annual per capita electricity usage and

demographic variables like inhabitant age and urban density, economic characteristics such

as land wealth and expenditure as well as meteorological data; the study revealed a negative

correlation between urbanization and per capita electricity consumption. This study also

revealed that urban density was one of the main factors in determining urban energy use. The

authors also pointed out that identification of good indicators for energy consumption was a

challenging issue. Pachauri & Jiang [150] investigated household energy transitions in India

and China to find that in both countries the rural households use more total energy than
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their urban counterparts, mostly due to the dependence on inefficient solid fuel sources that

constituted more than 85% of the energy requirements in the rural households. Along with

urbanization, the authors also found the income, energy access, price, and local availability

of fuels to be key drivers of the transition to modern energy.

Several studies have used time series data and the Granger causality test to identify

the causal relationship between urbanization and energy consumption. In support of the

theory that urbanization causes energy consumption, two plausible arguments have been

presented: the first argument suggests that urbanization offers greater access to electricity

which encourages more consumption; and the second one states that the formerly rural

households are likely to increase their energy use as they transition into urban households

due to higher usage of appliances [86, 75, 118]. Along these lines, Mishra et al. [137] found a

short run granger from urbanization to energy use in Pacific Island nations. However, for the

long run, they found Granger causality between electricity consumption and urbanization

to GDP, as well as from GDP and urbanization to electricity consumption. An alternative

theory supports energy consumption causes urbanization, which has found support in the

work of Liddle & Lung [115]. The authors tested the long-run causal relationship between

urbanization and electricity consumption using data from 105 countries during 1991-209, and

found a long-run Granger causality running from electricity consumption to urbanization.

Though the study did not reject the causality relation in the opposite direction. Energy

consumption fosters GDP growth, employment generation, and better life qualities and

this may cause more people to move to urban areas [118, 115]. However, this is a long-

term effect and could therefore be seen mostly in established urban areas. Liu [118]

explored the relationship between urbanization and energy consumption in China between

1978-2008 to find a long run relationship among GDP, population, energy consumption,

and urbanization. Most importantly, he found a unidirectional causal relationship from

urbanization to total energy consumption . Wang et al. [206] analyzed data from ASEAN

(Association of Southeast Asian Nations) countries between 1980 and 2009, to conclude that

urbanization induces energy use. Sardorsky found mixed results while analyzing the impacts

of urbanization on energy intensity. He pointed out the dual role of urbanization as a cause

of the confounded results, at one hand urbanization increases economic activity to increase
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energy consumption, while on the other hand the resultant economies of scale raises the

opportunities for energy efficiency. However, the study noted an increase in energy intensity

wherever the urbanization coefficients were statistically significant [171]. The results from

these national level studies indicate a strong relationship between urbanization and energy

consumption. However, the country level information as used in these studies does not

reveal much about their urban systems, which may mask out the critical information needed

for developing sustainability measures focused on individual countries or regions. Also, the

above mentioned studies have only explored the correlation and causal relationships between

various aspects of urbanization and energy consumption. The effects of urbanization on

energy consumption is an important task that has been much less studied [73]. Several past

studies have noted that the sustainability efforts of our present times may be won or lost in

the cities [178, 65], urban scale data could help shift the focus from nation to cities and help

reach the sustainability goals.

2.3.1 Urban Scaling of energy consumption

Urban scale consumption of resources, generation of socio-economic goods and waste have

been compared to a biological metabolic system under the concept known as “urban

metabolism”. This concept evolved in biological sciences and was later applied in urban

science [65]. Kennedy et al., while conducting a meta-analysis of different past studies

in urban metabolism, related to water, energy, materials, and nutrients; found that the

local climate, socio-economic conditions, urban structure, and urban heat islands plays a

crucial role in determining the energy profiles of individual cities [105]. Several studies

[171, 65]have pointed out that urban areas may in one hand spur economic growth and

industrial activities that could increase the energy consumption, however with increasing

urbanization increases the socio-economic as well as the technical output of the city which

pave the way for increasing energy efficiency. Thus, the effects of urban dynamics on energy

consumption is non-linear and dependent on several local factors. Identification of a simple

indicator that effectively summarizes the associated web of complex local interactions is

crucial for developing effective and generalizable models. Analogous to the body mass of an

organism, which determines it’s physiological characteristics, urban population size is widely
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accepted as an effective determinant of urban socio-economic characteristics [12]. Urban

population size has successfully been used to link urbanization and various socio-economic

attributes of urban areas such as urban road network in 425 US cities [172], homicide in

Brazilian cities between 1980 - 2009 [3]. Urban productivity in US cities was observed to

increase by about 111% with each 100% increase in population [119]. Moreover, analyzing

the deviations from the expected values, the study found that highly productive cities offered

higher wage and level of employment exceeding the theoretical expectations of wages and

jobs from cities their size, whereas cities showing low productivity were found to offer jobs

and wages lower than the theoretical expectations. In another study [66], CO2 emissions

were found to scale linearly with urban population size in the US census defined core based

statistical areas between 1999-2008, but this study indicated a a mild efficiency in larger

urban areas over smaller ones. Bettencourt et al. [13] provide the scaling exponents for

a large set of urban characteristics and the corresponding population for cities in the US,

China, European Union, and Germany. In this study, socio economic indicators were found

to exhibit an increasing return to urban scale; number of new patents, total wages, and

total electricity consumption, for example, were found to increase by a 127%, 112%, and

107% corresponding to a 100% population growth in the US (2001 and 2002) and Germany

(2002). The total housing and household water consumption was found to increase linealyr

and at 101% with a doubling of population in the US(2001) and China(2001). Infrastructural

parameters, such as gasoline sales and length of electrical cables were found to exhibit a

decreasing return to scale, which increased only by 79% and 87% respectively with 100%

increase in population.

This population dependent explanation of urban functions provides a simple yet powerful

analytical measure to summarize a complex web of demographic, social, and economic

interactions at local scales which contributes to a measurable urban characteristic. It has

been proven that the exponent of this relationship, between the natural logs of an urban

characteristic as the dependent variable and urban population as the independent variable,

is scale invariant. This ensures it’s applicability to all cities within an urban system with

regard to a specific urban property irrespective of their absolute sizes [12, 11]. When applied

specifically to model electricity usage, an earlier study [13] using data for Germany and
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China in 2002, indicated a 107% increase in total electricity consumption in Germany for

392 cities, and a proportional increase in electricity delivered to households from 377 German

cities. The same study also found the household electricity consumption to increase by about

105% corresponding to a 100% increase in population from 295 Chinese cities. Khnert et al.

[111], found an increase of 101% in usable electricity and a linear increase in electric power

delivered to households in Germany in 2002. Electricity consumption in Southern Spain

was investigated using data from 134 cities and villages, the authors set up different scaling

equations for various consumption sectors such as primary, secondary, tertiary, residential,

and administrative consumers to get a range consumption increase from 42% to 121% per

population doubling. The study found an overall increase of 106% across all electricity

consumer sectors [88]. Barring these studies, not much has been reported on the effects of

urbanization on electricity consumption. Mostly due to data constraints, how urbanization

affects electricity consumption remains far less studied compared to other energy related

issues such as gasoline consumption or emission from energy consumption.

2.3.2 Urban energy statistics and estimation

To explore urban scaling theories, availability of suitable data is a crucial requirement

[13, 12], and very few datasets exist that allow for analyzing the implications of the effect of

urbanization on energy consumption. Studies that specifically focus on urban scale electricity

consumption patterns are severely limited due to lack of reliably measured data. The

available datasets are generally not presented at urban scales, and the available datasets

are generally presented in aggregated form only at national and regional levels which are

not suitable for urban scale analyses. Also, non-standardized data collection and reporting

methods impede the available urban datasets from comparative analysis [65]. In the absence

of suitable ground data, past researchers have estimated energy consumption using proxy

measures. Satellite recorded nighttime light emissions from human settlements have been

known to be a useful proxy of human presence and their socio-economic activities [187, 133].

The informational value of nighttime lights data for countries where statistical datasets

are sparse or not available was recently highlighted by Chen & Nordhaus [25]. Similarly
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Ghosh et al. justified the importance of nighttime lights as an indicator of urban socio-

economic activities in places with no available census information [71]. Elvidge et al. [50]

found a significant correlation between the lit area and economic activity and electricity

consumption at national levels in 21 countries. Subsequently, nighttime lights data has been

used to estimate GDP at the state level in India, China, Turkey, and the US [188], and

to develop spatially disaggregated global and regional level map of economic activity [71].

Amaral et al. [4] used nighttime lights to estimate population and energy consumption in

Brazilian Amazon. Henderson et al. [79] used the growth in nighttime lights to improve

economic growth estimates. They found supplemental value in nighttime lights to improve

GDP estimates for countries with low quality national accounts data. However, for countries

with high-quality statistical data, the nighttime lights offered little usefulness.

By it’s design, the nighttime lights data does not capture the energy usage inside human

settlements, such as the energy needed for heating and cooling needs as well as for running

appliances[65]. Thus, using this data as a proxy for estimating electricity consumption

in the urban system of a large and diverse country may mask the spatial heterogeneities

arising from the variations in local conditions. For places where socio-economic datasets are

accessible, model-based estimation approaches have been used by researchers. Filippini &

Pachauri [60] used variables such as prices of electricity and fuel, income and age structure

of the population, and size of households, dwelling size, and geographic variability was used

to estimate monthly residential electricity consumption in India for multiple seasons; their

model explained between 50 - 54% of variance in the data. Price and income elasticities

of household electricity consumption were estimated using net income, prices of electricity,

natural gas, and oil, climate characteristics, and household cohorts in a pseudo-panel model

analysis in Quebec province, Canada [10]. In the United States, climate and weather

data, economic variables such as electricity sales, employment, unemployment, gross state

product, per capita income of the population, and labor force data was used to study climate

sensitivity of electricity consumption in residential and commercial sectors in Florida [142].

Tamayao et al. [189] used county-level electricity consumption data for California, climate

variables and population data to predict total electricity consumption at US county levels.
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These worka highlight the potential for efficiently estimating electricity consumption at urban

scales using socio-economic variables.

2.4 Existing knowledge gaps:

On the basis of the ongoing review of the existing body of knowledge, the following three

areas were identified as potential areas of knowledge gap. The research objectives of this

dissertation is aimed at addressing each of these points. A summary of these objectives and

how the following three chapters address them has been presented in section 1.5.

1. Accurate measurement of urban areas is an essential step towards understanding ur-

banization and associated energy processes. Comparison of high-resolution settlement

datasets against their lower and medium resolution counterparts over vastly different

geographies, which offer distinct scene characteristics and challenges for remote sensing

based data extraction, is needed a comprehensive assessment of their benefits. However,

this has not yet been addressed in the present literature. Also, no research has been

done assessing the performance of the 8 meter LandScan SL data in comparison with

other datasets.

2. While it is evident that texture and object-based image analysis can help characterize

urban settlements, no study has tested the applicability of this approach to connect

their visible form to their function, such as electricity consumption. In the absence

of ground data, especially in vast data-poor regions of the earth, this could provide a

high-resolution spatial proxy of energy usage and other socio-economic indicators.

3. Urban electricity consumption is expected to significantly increase in the future,

thus, it is imperative to assess the relationship between urbanization and electricity

consumption. However, such studies remain incredibly scarce, partly due to the scarcity

of suitable data. The key questions that need addressing are (1) In the absence of

statistical data, how can a generalizable method be made to estimate urban electricity

consumption? (2) How urbanization impacts electricity consumption? And (3) If
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urbanization indeed offer the efficiency from returns of scale, what are its limits and

implications?
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Chapter 3

Global and regional human settlement

mapping - a comparative analysis

3.1 Introduction

Urban dwellers made up about 54% of global population in 2014. According to the United

Nations, their share is projected to reach 68% by the year 2050 [195]. This unprecedented

growth introduces critical challenges for multiple issues such as management of population

growth, provisioning of civic services, waste disposal, access to social and health services,

supply of natural resources and energy access, and controlling pollution. These challenges

necessitate heightened efforts to ensure environmental sustainability, equitable growth and

prosperity, and citizens welfare are included in sustainable urban planning for the future. As

urban areas keep expanding, identification of new growth and changes to existing areas could

point at the hot spots of changing demographic, environmental, and economic scenarios on

the ground. Identification of new areas resulting from the peri-urban growth, as well as

from infilling of existing urban areas is also important as this is where the most vulnerable

members of urban communities are likely to be found. Human settlement maps derived from

remotely sensed images offer high spatial detail and can be updated regularly. They are thus

better suited for monitoring urbanization than traditional survey or census-based methods

[175]. Over the past three decades, satellite data derived coarse and medium resolution

datasets have been produced by different organizations. These free and open access global
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datasets have made strong scientific contributions in a range of studies related to population

distribution modeling [116], environmental impacts [174], urban planning [191], disaster

management [61], health [7], and energy studies [219] at regional and global levels. However,

the low-resolution datasets fail to identify finer details within the urban landscape, required

for current issues in urban dynamics research as outlined above. The insufficiency of low-

resolution datasets in accounting for large parts of built-up patches in and around urban

areas across the globe and the resulting uncertainties have led to a wide variety of urban

and built-up area estimates in reported work [173, 163, 164, 80, 174].

Increased availability of very high-resolution remotely sensed images in recent years,

coupled with advancements in high-performance computing resources and efficient image

processing algorithms have fostered the development of high-resolution human settlement

datasets [26, 203, 153]. While it is expected these high-resolution datasets are more adept at

capturing finer details in the urban landscape, comparative evaluation against low-resolution

datasets in diverse landscapes could justify their usage in scientific studies and offer new

insights into urban dynamics. This chapter presents a comparative evaluation of a set

of four distinct human settlement and built-up area datasets. The two high-resolution

datasets LandScan SL and GHSL have been analyzed for their mutual consistency; alongside

two datasets with coarse and medium resolution MODIS Land Cover and ESA - Climate

Change Initiative Land Cover Data. Barring LandScan SL, all three datasets are available

as global coverage. Hence, this analysis was conducted using a subset of the data. The study

areas, Egypt and Taiwan, were carefully chosen to represent two disparate geographies in

terms of demography, economy, and physiography. By analyzing the four datasets at both

national and sub-national levels, this chapter aims to identify the comparative performance

of these datasets at multiple resolutions. To explore identify inter-dataset correspondence

regarding built-up area detection, composite maps were generated at multiple scales, each

corresponding to the native spatial resolution of one of these datasets. A quantitative analysis

of urban morphology was then performed on this composite maps, using spatial metrics,

to draw insight on the congruency of these datasets in capturing the complex settlement

patterns and supplement existing knowledge of global human settlement mapping initiatives.

The rest of this has been ordered as the description of the datasets used and the preprocessing
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methods used, followed by a description of study areas, methodology, results, discussion,

conclusion, and lastly the chapter’s contribution.

3.2 Datasets

MODIS Land Cover Data: MODIS land cover dataset (also known as MCD12Q1)

is a 500 meter data (hereafter MODIS LC) developed by the National Aeronautics and

Space Administration (NASA) [68]. MODIS LC is produced using a supervised decision

tree classification algorithm on a full year of eight-day MODIS Normalized BRDF-Adjusted

Reflectance (NBAR) and MODIS Land Surface Temperature (LST) data composites[185].

The data is presented to the classifier either as monthly composites or annual metrics. The

data generation process includes an optimization method termed ”boosting” for improving

classifier accuracy, which is achieved by systematic variation of training samples [68]. MODIS

LC data has been extensively used in urban land cover related studies at global scales

[176, 96, 220, 138]. The data carries land cover information as per to five separate land cover

classification schemes, one in each of the first five layers. We used the layer depicting the

International Geosphere-Biosphere Programme (IGBP) scheme in the 2011 dataset, from

which the urban pixels were extracted. MODIS LC dataset may be freely downloaded

from the USGS website: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_

products_table/mcd12q1.

ESA - Climate Change Initiative Land Cover Data: European Space Agency’s

Climate Change Initiative (CCI) project has developed a global land cover dataset (hereafter

CCI-LC) at 300 meter spatial resolution. The datasets were designed to provide a stable,

time-series land cover maps, and have been developed for three time periods of 2008-2012,

2003-2007, and 1998-2002, respectively centered on 2010, 2005, and 2000 [82]. In production

of CCI-LC, Medium Resolution Imaging Spectrometer (MERIS) full resolution datasets were

used as the primary input while MERIS reduced resolution data were used in the absence of

full resolution coverage. Satellite Pour lObservation de la Terre Vegetation (SPOT-VGT)

data was used to fill in gaps in MERIS temporal coverage. These datasets follow the United
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Nations’ Land Cover Classification Scheme (UN-LCCS) for classifying the land cover classes

[82, 106]. We extracted the urban areas based on pixel values from the 2008-2012 dataset,

which is freely accessible at https://www.esa-landcover-cci.org/.

Global Human Settlement Layer: The GHSL data is developed by the Joint Research

Center at the European Commission, utilizing Landsat time series data collection ranging

from 1975 to Landsat-8 images from 2013 and 2014 [157]. GHSL is a global level data which

was created using supervised classification algorithms on the Landsat images. An array of

training datasets including MODIS 500m Global Urban Extent, Global Land Cover 2000 and

GHSL BUREF2010 data, WorldPop project settlement polygons, Open Street Map data, and

Geonames derived settlement points were used to refine the results. Finally, automatically

generated discriminant rules were applied to the data for information extraction. GHSL data

can be freely accessed at http://ghsl.jrc.ec.europa.eu/datasets.php.

BUMIX, a sub-pixel mixture model output at 38.2 meter spatial resolution available

within GHSL data suite, for the year 2014 was used in this analysis. In BUMIX data,

pixel values are represented as continuous integers in the 0-255 range where 0 represents 0%

built-up coverage while a pixel value of 255 denotes 100% built-up coverage within the pixel

[157].

LandScan Settlement Layer: Oak Ridge National Laboratory is currently engaged

in the refinement of the spatial resolution of the well established LandScan Global (30

arc-second) population distribution dataset to produce a high-resolution (3 arc-second)

gridded population dataset known as LandScan HD. One of the many underlying datasets

informing the population model is a high-resolution (8m) settlement layer, referred to as

LandScan Settlement Layer (LandScan SL). This dataset is derived from the optical and

near-infrared bands of very high-resolution images (≤0.5m) processed through a set of

supervised pattern recognition algorithms to identify human settlements [26, 153]. For

global scale processing, cluster-based parallel computing is utilized which significantly

decreases the computational time. Lastly, the binary output (depicting either settlement
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or non-settlement) is subjected to a through verification and validation process using semi-

automated and manual techniques, which is expanded upon in [207], to resolve commission

or omission errors. After the manual review, the dataset is considered to be of reference

quality. For this research, settlement data for the year 2014 was used.

3.3 Data processing

The four unique datasets representing human settlements and built-up areas at different

native spatial resolution, for the areas of interest, were acquired from their respective sources.

A total of five MODIS LC tiles were downloaded (three for Egypt and two for Taiwan) to

create mosaics for each country. The CCI-LC dataset was downloaded from the ESA website,

and the GHSL data was provided by the European Union’s Joint Research Council. The

LandScan working group at Oak Ridge National Laboratory provided the LandScan SL data

for both countries.

To make the datasets suitable for comparative analysis, they were reprojected to

Geographic Lat/Lon projection with WGS1984 datum from their native projection systems.

Since the datasets are widely different in their native spatial resolution; to ensure multi-

resolution analysis, the exploration of their mutual correspondence was carried out at each

dataset’s native resolution. Hence, the datasets were resampled to the four different spatial

resolutions of 500, 300, 38.2 and 8 meters, using nearest neighbor resampling method. Then

the thematic comparisons were conducted at each of these resolutions.

3.3.1 Processing GHSL data:

The pixel values in GHSL data is different from the other three datasets, where a pixel

value indicates either built-up or non built-up or other categories, in the sense that GHSL

data represents the percentage of built-up areas within a pixel. The percent built-up area

coverage per pixel has been scaled between 0 and 255 [157], where the pixel values 0 and 255

represents 0% and 100% built-up area. Therefore, to calculate the actual built-up area, the
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pixel values were transformed from percentage to square meters using the following equations

3.1a and 3.1b:

Pij = [(DNij − 0)/255] (3.1a)

Aij = (Ftij × Pij) (3.1b)

Where Pij is the proportion of built-up area in pixel ij, the value ranges between 0 and 1

(where 1 and 0 indicates 100% and no presence of built-up areas respectively). DNij is the

value of pixel ij in the GHSL dataset. Aij represents the built-up area in pixel ij, and Ftij is

ground footprint of a GHSL pixel (38.2 X 38.2 sq. meters or 1459.2 sq. meters). The total

built-up area (A) for a given area was then estimated using the following equation 3.2:

A =
∑

Aij (3.2)

3.4 Study Area

3.4.1 Egypt:

Egypt is a situated in between the north-east part of Africa and south-west parts of Asia

in Northern Africa. It experiences desert climates characterized by hot, dry summers and

moderate winters. Its 97 million inhabitants (July 2017 est.) occupy a land area of 995,450

sq. Km with a population density of 90 persons/sq. Km. The country consists of 27

administrative regions known as governorates. Due to the arid physiography, much of these

vast lands are uninhabited, and 95% population live within a 20 km zone around the Nile

River and its delta region, leaving vast countrysides mostly uninhabited (see figure 3.1). A

rapidly growing population, coupled with the short supply of arable land poses challenges

for resource management. Two important cities Cairo and Alexandria were inhabited by

about 20.1 million and 5.1 million people. Egypt’s population grew at 2.45% in 2017 while

the country is being urbanized at an estimated rate of 1.86% per year between 2015-2020;

about 42.7% of the total national population lived in urban areas in 2018. Economy wise,
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Egypt was World’s 22nd largest economy with a GDP (on purchasing power parity basis) of

$1.20 trillion in 2017, which was growing at a rate of 4.2% annually [28].

Figure 3.1: Human settlement distribution over Egypt and Taiwan, using LandScan SL
data.

3.4.2 Taiwan:

Taiwan is an East Asian state. Compared to Egypt, it has a much higher population density

of 648 persons/sq. Km, totaling about 23.5 million residents (July 2017 est.) spread over

32,260 sq. Km. of land area. Taiwan enjoys a tropical marine climate, marked by seasonal

southwest monsoonal rainfall from June to August, and persistent cloudiness all year around.

The population is centered around the coastlines, and the main concentration occurs along

the northern and western coasts (see figure 3.1). The population growth rate was estimated

to be 0.17% in 2017, and the urbanization rate between 2015-2020 has been estimated to

be 0.8%. Taiwan is comparatively more urbanized than Egypt, approximately 78.2% of the

total population was living in urban areas in 2018. Taiwan is divided into 22 administrative

regions which include six special municipalities of Kaohsiung, New Taipei, Taichung, Tainan,

Taipei, and Taoyuan; three provincial cities and 13 counties. New Taipei city had 4.3 million

inhabitants, while the capital Taipei city is home to 2.7 million people. Taipei had $1.19
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trillion in GDP (on purchasing power parity basis) in 2017, growing at 2.8% annually, placing

it as the 23rd largest in the world[29].

3.5 Methods

Several methods have been used by past researchers for comparison of thematic maps, such

as the kappa statistics [161], pairwise comparison [64], error budget approach [32], and

quantity and allocation analysis [162] have been used for assessing congruency of land cover

datasets. After considering potential advantages and disadvantages of these methods with

respect to the present research objective, this problem as approached through quantity and

allocation approach as it allows quantification of congruency among the datasets and visual

identification of agreements and disagreements. We first quantify the settlement areas as

estimated by each dataset at national and sub national levels, followed by a comparison

to explore spatial variation in classification at local scales. Secondly, mutual agreement-

disagreement maps were developed, at each native resolutions of these datasets to identify

the discrete zones of agreement and disagreement and conduct further quantitative analysis

to identify trends.

3.5.1 Agreement-disagreement maps

Accurate allocation of pixels to land use classes is a critical aspect of thematic map

comparison [162]. The assignment of pixels provides spatial validity and allows for visual

comparison of the results. The research objective here is to explore the congruency of pixels

assigned as built-up in these datasets, and it’s implications. Analysis of spatial agreement

and disagreement between datasets was found useful for this purpose [148, 126]. Accordingly,

spatial agreement-disagreement maps were created for the study areas and four discrete

inter-dataset levels of agreements were identified in the resultant maps, at all four spatial

resolutions. The agreement levels are described below: a. No agreement: Only one of the

four datasets represent pixel i,j as built-up. b. Low agreement: Two of the four datasets

represent pixel i,j as built-up. c. High agreement: Three of the four datasets represent pixel

i,j as built-up. d. Full agreement: All datasets represent pixel i,j as built-up.
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3.5.2 Landscape indices

Egypt and Taiwan display vast differences in their physiographic, climatic and demographic

characteristics, these factors have been found to have a profound impact on the development

of human settlement patterns [182]. Therefore, these differences could have resulted in

spatially distinct settlement patterns between these two countries. Furthermore. Distinct

on-ground settlement patterns, combined with different satellite captured data characteristics

could create a several challenges for the datasets based on their input data and processing

algorithms. Thus the capabilities of these datasets in accounting for built-up areas over

different geographies need to be tested through further analysis. To account for various

morphological characteristics of the built-up areas, three landscape indices: Landscape

Shape Index (LSI), Mean Patch Fractal Dimension (FRACMN) and Percentage of Likely

Adjacencies (PLADJ) were calculated. Each index is briefly described in the following

paragraphs. For further background information may be obtained from [129].

• Landscape shape index: LSI is a measure of class aggregation or disaggregation

of a landscape. The measure is obtained through measuring the ratio between total

class edge length or edge density in a landscape to that of a landscape with a standard

simple shape such as a square patch, adjusted for the landscape size. For a landscape

consisting of a single square shaped patch, the LSI value obtained will be 1. As

the landscape becomes more disaggregated, the index value increases infinitely (see

equation 3.3).

LSI =
ei

min(ei)
(3.3)

Where, ei is the total length of the perimeter or edge of patches involving class i, and

min(ei) is the minimum total perimeter or edge length of class i, both measured in

terms of number of cell surfaces.

• Mean patch fractal dimension: Fractal dimension measures patch complexity

through calculating the perimeter-area relationship, where both numerator and

denominator are log transformed. An index value of 1 indicates simple perimeter.
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The index value increases with complexity till it reaches 2, which indicates highly

convoluted and plane-filling perimeters. The mean index values (FRACMN) were used

in this analysis (see equation 3.4).

FRAC =
2ln(0.25pij)

ln(aij)
(3.4)

Where, pij and aij are the perimeter and area of the patch ij respectively.

• Percentage of likely adjacencies: Contiguity is another critical morphological

aspect of a landscape. PLADJ measures patch contiguity by calculating the number of

like adjacencies involving one particular class divided by the total number of adjacencies

involving the class, multiplied by 100. The index values equal 0 if the class patches

are maximally disaggregated with no like adjacencies, and a value of 100 represents a

single patch landscape where all the adjacencies are within the same class (see equation

3.5).

PLADJ = (

∑m
i=1 gii∑m

i=1

∑m
k=1 gik

)× 100 (3.5)

Where, gii denotes the number of likely adjacencies between pixels of class i and gik

denotes the number of adjacencies between pixels of class i and k, both measured using

double-count method.

3.6 Results

3.6.1 Analysis of built-up area estimates:

As a first step, the built-up areas as estimated by each of these datasets were calculated, at

their respective original resolution (i.e., before any resampling process) for both national and

sub national levels. At the national level, the total built-up area estimates for Egypt ranged

from a minimum of 3123.75 sq. Km (GHSL) to a maximum of 8166.53 sq. Km (MODIS

LC), indicating a variation of 161%. The country level estimates for Taiwan ranged from
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Table 3.1: Built-up areas detected by the datasets at national scale.

Country
Built-up area (in sq. km.)

MODIS LC CCI-LC GHSL LandScan SL
Egypt 3132.75 5395.41 8166.53 3867.78
Taiwan 2506.25 4390.92 2373.01 2083.83

2083.83 (LandScan SL) to 4390.92 km (CCI-LC), thereby indicating a variation of 110% in

built-up area estimates (see table 3.1).

The estimated built-up areas varied even more severely at the sub national level. For 27

governorates in Egypt, the lowest variation of around 60% was found for Beni Suef, while

the estimates of built-up areas varied as much as 900% for South Sinai (see figure 3.2).

For the 22 cities, municipalities and counties in Taiwan, the lowest variation in built-up

area estimates was obtained for New Taipei City (around 27%), the highest variation was

observed for Chiayi County where the estimates varied by about 534% (see figure. 3.3).

Figure 3.2: Comparison of built-up area estimates at governorate level in Egypt.
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Figure 3.3: Comparison of built-up area estimates at city and county level in
Taiwan.

3.6.2 Analysis of spatial congruency among datasets

The agreement-disagreement maps, as described in the methods section, were created for the

study areas to assess congruency of the datasets under analysis across four spatial resolutions.

Four distinct inter-dataset agreement classes were identified in the resultant maps that help

in identification of the agreements and disagreements, and subsequent analysis. Figures 3.4

and 3.5 display the inter dataset agreement in Cairo city, Egypt and Taipei city, Taiwan and

their surrounding areas at 8 meter spatial resolution.
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Figure 3.4: Agreement-Disagreement map for Cairo City and surroundings, Egypt.
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Figure 3.5: Agreement-Disagreement map for Taipei City and Surroundings, Taiwan.
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To analyze the spatial characteristics of these discrete patches of agreements and

disagreement zones observable in these maps, spatial metrics were used. Spatial metrics have

been successfully used by past researchers in studying urban settlement patterns[179, 175]. In

this work, three essential morphological characteristics of urban landscape, i.e. complexity,

aggregation, and contiguity of built-up patches [81] were calculated and analyzed. By

examining these characteristics across the four agreement classes (no agreement, low

agreement, high agreement, and full agreement, referred to as CL1, CL2, CL3, and

CL4 hereafter) obtained from the agreement-disagreement maps, how differences in these

morphological characteristics of built-up areas correspond to congruency among these

datasets was explored. The three spatial metrics were calculated for two countries for

all built-up patches belonging to CL1, CL2, CL3, and CL4. The interpretation of many

spatial metrics is dependent on the size of the landscape. Therefore, fixed landscape size

was needed for comparative analysis [129]. Subdividing the countries into smaller square

blocks also reduced computational burden, while ensuring uniform landscape size. Hence,

the study areas were sub-divided into square blocks of 5km X 5km dimension, a spatial unit

that was found sufficiently large to capture urban patterns in the two study areas.

Once the spatial metrics were calculated using Fragstats software, it was necessary to

check that the differences in the morphological characteristics across the agreement classes, as

represented by these metrics values, were indeed statistically significant. Therefore, analyses

of variance (ANOVA) test was conducted for both Taiwan and Egypt for each spatial metric

at all resolution levels. The data showed non-homogeneity of variance within the classes,

thus a robust ANOVA using Welch’s correction was conducted which was found to account

for such non homogeneous within class variance [208]. The test results were found to be

significant at 95% confidence level for both countries and at all four spatial resolutions. the

results of the ANOVA tests have been presented in tables 3.2 - 3.4. For the mean values of

these metrics across different inter-dataset agreements, please see tables A.1 through A.4 in

appendix A.

The ANOVA results confirms that statistically significant differences do exist in

morphological characteristics across the agreement classes at all four spatial scales. This

allows for a safe rejection of the null hypothesis that no difference in morphological
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Table 3.2: ANOVA results for LSI - Egypt and Taiwan.

Resolution Egypt Taiwan
500 m F[3,2567.3]=1026.8, p<.00001 F[3,708.8]=31.0, p<.00001

300 m F[3,2575.7]=660.4, p<.00001 F[3,1017.1]=40.5, p<.00001

38.2 m F[3,3826.2]=938.9, p<.00001 F[3,1496.4]=75.7, p<.00001

8 m F[3,3440.8]=267.0, p<.00001 F[3,1460.3]=95.1, p<.00001

Table 3.3: ANOVA results for FRACMN - Egypt and Taiwan.

Resolution Egypt Taiwan
500 m F[3,2274.9]=191.2, p<.00001 F[3,662.8]=6.8, p=.0002

300 m F[3,2170.5]=32.5, p<.00001 F[3,922.2]=9.5, p<.00001

38.2 m F[3,2735.8]=334.7, p<.00001 F[3,1378.7]=104.1, p<.00001

8 m F[3,3177.5]=278.4, p<.00001 F[3,1398.1]=100.4, p<.00001

characteristics exists across agreement classes. These discrete classes are derived from

agreement and disagreement amongst the built-up areas, identified by the four datasets.

Therefore, the morphological characteristics associated with the different agreement classes

could indicate an association between the urban built-up area morphology and congruency

among datasets. Hence, the data was further analyzed to explore the possible effects of built-

up area morphology over the inter datasets agreements. The observed agreement classes are

discrete in nature, past study have indicated suitability of logistic regression models for their

analysis [128]. Thus, four ordered LOGIT regressions were developed, one for each spatial

resolution, to be run between the agreement classes (CL1, CL2, CL3, and CL4) as dependent

variable and the morphological indices values (LSI, FRACMN, and PLADJ) as independent

variables. Equation 3.6 below illustrates the general formulation of the model:

CL = β̂0 + β̂1 × LSI + β̂2 × FRACMN + β̂3 × PLADJ + ε (3.6)

Table 3.4: ANOVA results for PLADJ - Egypt and Taiwan.

Resolution Egypt Taiwan
500 m F[3,2094.2]=310.2, p<.00001 F[3,663.9]=19.2, p<.00001

300 m F[3,2220.9]=139.1, p<.00001 F[3,957.4]=37.5, p<.00001

38.2 m F[3,2991.1]=718.6, p<.00001 F[3,1485.1]=80.4, p<.00001

8 m F[3,3566.2]=626.9, p<.00001 F[3,1436.9]=63.9, p<.00001
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The regression coefficients for both countries at all four spatial resolutions were found

to be significant (see table 3.5 for Egypt and table 3.6 for Taiwan). In terms of overall

trend, an increasing disaggregation (LSI) of built-up patches were found to be negatively

associated with increasing correspondence among the datasets. The contiguity (PLADJ) of

built-up patches was positively associated with inter dataset correspondence. However, the

increasing complexity of built-up patches (FRACMN) was found to be strongly associated

with inter dataset correspondence. This association could be misleading at the outset and

may be misconstrued as an indication of a general association between increasing complexity

of built-up patches with increasing agreements among datasets. However, the values of

FRACMN metric range between 1 and 2, where values nearing 2 indicate an increase in

convoluted, plane filling shapes while values close to 1 indicate simple perimeters such as a

square [129]. An increasing FRACMN value here should be interpreted as an indication of

increased proximity among built-up of patches with narrow gaps in between. Such conditions

are likely to be found in the densely developed urban cores where narrow open areas such

as roads, lanes, and parks are intermingled with built-up areas. The PLADJ and FRACMN

exhibit negative coefficients for the analysis at 500 meters in Egypt. We interpret this as a

likely effect of the coarse pixels, which fails to identify the finer spatial complexities. Also,

the settlement layout of Egypt with very dense settlements in and around cities along with

vast non-built-up swaths could likely have contributed to the negative association between

increasing inter-dataset agreement and PLADJ and FRACMN at 500 meter resolution. For

Taiwan, however, no such trend was observed.
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Table 3.5: Ordered LOGIT regression results for Egypt.

Variable
At 500 m at 300 m

Reg. Coeff. (± SE) t-value p-value Reg. Coeff. (± SE) t-value p-value
LSI -0.60 (± 0.03) -20.19 <0.0001 -1.03 (± 0.03) -39.18 <0.0001
FRACMN -3.65 (± 0.87) -4.18 <0.0001 13.35 (± 1.37) 9.72 <0.0001
PLADJ -0.02 ((± 0.001)) -14.06 <0.0001 0.03 (± 0.001) 14.82 <0.0001

Variable
At 38.2 m at 8 m

Reg. Coeff. (± SE) t-value p-value Reg. Coeff. (± SE) t-value p-value
LSI -0.21 (± 0.005) -41.11 <0.0001 -0.12 (± 0.003) -37.72 <0.0001
FRACMN 24.87 (± 1.27) 19.58 <0.0001 20.19 (± 0.95) 21.15 <0.0001
PLADJ 0.04 (± 0.001) 32.96 <0.0001 0.06 (± 0.001) 37.16 <0.0001

Table 3.6: Ordered LOGIT regression results for Taiwan.

Variable
At 500 m at 300 m

Reg. Coeff. (± SE) t-value p-value Reg. Coeff. (± SE) t-value p-value
LSI -0.65 (± 0.06) -10.54 <0.0001 -0.37 (± 0.03) -11.07 <0.0001
FRACMN 8.27 (± 2.28) 3.62 <0.0001 7.33 (± 2.06) 3.56 <0.0001
PLADJ 0.02 (± 0.003) 4.47 <0.0001 0.016 (± 0.003) 5.45 <0.0001

Variable
At 38.2 m at 8 m

Reg. Coeff. (± SE) t-value p-value Reg. Coeff. (± SE) t-value p-value
LSI -0.06 (± 0.005) -11.80 <0.0001 -0.05 (± 0.004) -13.51 <0.0001
FRACMN 30.11 (± 2.05) 14.71 <0.0001 29.96 (± 1.98) 15.15 <0.0001
PLADJ 0.01 (± 0.002) 7.08 <0.0001 0.04 (± 0.004) 9.82 <0.0001
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In spite of Egypt and Taiwan sharing dissimilar physical and demographic characteristics,

which could possibly have led to dissimilar built-up patterns, the association between built-

up area morphology and inter dataset agreements as observed from regression coefficients

remain mostly similar across all four spatial resolutions. This trend indicates that the

detection of built-up areas by the individual datasets is fundamentally affected by the

morphological characteristics of urban areas irrespective of geographical variances in study

areas. Quantification of these effects on inter-dataset congruency could therefore reveal the

basic effects of landscape morphology on urban area detection in remote sensing data. As

ordered LOGIT coefficients represent the change in a dependent variable in terms of logs of

odds ratios, this is often unsuitable for direct interpretation other than their significance and

direction of the effect. Under these conditions, representation of these effects as probability is

much easier to interpret, which can be done through marginal effects [139]. Marginal effects

represent the expected change in a dependent variable from a unit change in a specific

independent variable while keeping all other variables constant at their respective means

[131]. In this study, in addition to observing the general trend through an ordered LOGIT

regression, an assessment of how these morphological characteristics affect the agreement

among datasets helped draw more insight. The average marginal effects calculated for Egypt

(see table 3.7) show that 1 unit increase in disaggregation (LSI) in a built-up area will lead

to an average increase between 0.029 and 0.249 in probability of that area belonging to CL

1 or no agreement zone, while the average decrease in its probability of falling into CL 2

(low agreement), CL3 (high agreement) or CL4 (full agreement) ranges between 0.012 and

0.058; 0.011 and 0.133; 0.006 and 0.059 respectively. A unit increase in shape complexity

(FRACMN) leads to an average probability decrease of a built-up patch falling into CL1

between 3.218 and 6.208, while increasing its average probability between 0.735 and 2.761,

1.722 and 2.509, and 0.762 and 0.974 for falling into CL2, CL3 and CL4 respectively, within

the resolution range of 8 - 300 meter. Similarly, 1 unit increase in contiguity (PLADJ) leads

to a decrease of an average probability between 0.006 and 0.015 for CL1 while increasing its

average probability of belonging to CL2, CL3 or CL4 between 0.001 and 0.006, 0.003 and

0.006, and 0.001 and 0.003 within the 8 - 300 meter resolution range. However, it should be

noted that at the 500 meter resolution the marginal effects of FRACMN and PLADJ shows
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Table 3.7: Marginal Effects of urban morphological characteristics - Egypt.

Variable
At 500 m At 300 m

CL1 CL2 CL3 CL4 CL1 CL2 CL3 CL4
LSI 0.149 -0.058 -0.059 -0.032 0.249 -0.057 -0.133 -0.059
FRACMN 0.911 -0.354 -0.362 -0.196 -3.218 0.735 1.722 0.762
PLADJ 0.005 -0.002 -0.002 -0.001 -0.006 0.001 0.003 0.001

Variable
At 38.2 m At 8 m

CL1 CL2 CL3 CL4 CL1 CL2 CL3 CL4
LSI 0.052 -0.023 -0.021 -0.008 0.029 -0.012 -0.011 -0.006
FRACMN -6.208 2.761 2.509 0.938 -5.046 2.166 1.906 0.974
PLADJ -0.010 0.005 0.004 0.002 -0.015 0.006 0.006 0.003

reverse trends than what described above. We consider this as a likely effect of loss of details

at coarse resolution.

Similarly, table 3.8 presents the marginal effects for Taiwan which indicates that 1 unit

increase in built-up area disaggregation (LSI) will lead to an average probability increase

between 0.012 and 0.160 of that area being classified as CL 1 or no agreement zone, while

the average decrease in its probability of falling into CL 2 (low agreement), CL3 (high

agreement) or CL4 (full agreement) ranges between 0.002 and 0.028; 0.005 and 0.073; 0.005

and 0.059 respectively. An unit increase in shape complexity, indicated by FRACMN, leads

to an average decrease in probability of a built-up area to fall into CL1 between 7.224 and

2.031, while increasing its average probability between 0.215 and 1.259, 0.855 and 3.352, and

0.714 and 2.818 for falling into CL2, CL3 and CL4 respectively. Lastly, one unit increase in

contiguity (PLADJ) will lead to a decrease of an average probability between 0.004 and 0.009

for CL1 while increasing its average probability of belonging to CL2, CL3 or CL4 between

0.001 and 0.002, 0.002 and 0.004, and 0.001 and 0.003. The PLADJ values at 500 and 300

m resolution showed no affect on a class falling into CL2, however no anomalous pattern like

Egypt was observed in Taiwan. Comparing with Egypt, while the absolute numbers change

slightly, most likely due to the difference physiographic and demographic factors and their

effects on built-up area and settlement characteristics. The overall trends, however, remains

the same. This also highlights how basic urban morphological features such as complexity,

contiguity or aggregation affect detection of a built-up patch by the datasets and thereby

affecting the inter-dataset agreements.
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Table 3.8: Marginal Effects of urban morphological characteristics - Taiwan.

Variable
At 500 m At 300 m

CL1 CL2 CL3 CL4 CL1 CL2 CL3 CL4
LSI 0.160 -0.028 -0.073 -0.059 0.092 -0.011 -0.044 -0.037
FRACMN -2.031 0.355 0.928 0.748 -1.785 0.215 0.855 0.714
PLADJ -0.004 0.001 0.002 0.001 -0.004 0.000 0.002 0.002

Variable
At 38.2 m At 8 m

CL1 CL2 CL3 CL4 CL1 CL2 CL3 CL4
LSI 0.015 -0.002 -0.007 -0.006 0.012 -0.002 -0.005 -0.005
FRACMN -7.212 1.042 3.352 2.818 -7.224 1.259 3.218 2.747
PLADJ -0.003 0.000 0.002 0.001 -0.009 0.002 0.004 0.003

3.7 Discussion

In this work, performance of high-resolution human settlement datasets were assessed against

coarse and medium resolution datasets at multiple scales in Egypt and Taiwan. Since the

datasets were obtained from different sources, necessary preprocessing were done to make

them suitable for comparative analysis. Initial assessment of built-up area estimates highlight

that such estimates vary considerably at national scales and exhibits severe variations at

sub-national levels. Next, in order to analyze the spatial allocation of built-up areas in

these datasets agreement-disagreement maps were developed from these datasets. Using

these maps, analysis of built-up area morphological characteristics at different agreement

levels was done to highlight the association of basic urban landscape characteristics with the

mutual congruency of these datasets.

The general trend amongst the datasets, observed through the analysis in both Egypt

and Taiwan, indicates higher inter-dataset agreement over the core urban areas, from where

it decreases gradually over fringe and peri-urban areas. The decreasing inter-datasets

agreement highlights the inability of some of these datasets to identify the areas away from

the core urban areas where the most disaggregated built-up patches may be found. This

brings the attention to the spatial resolution of these datasets as a likely reason for such

failures in detection. However, the far flung areas from the urban core has been observed

to have serious implications for urban sustainability. Peri-urban areas have been identified

as the most predominant form of new urban growth, and remote sensing has an important
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role to play in capturing this land transformation [177]. These areas, growing rapidly in

disjunct fashion, have attracted much attention from researchers, especially in developing

countries. For example, many facilities such as manufacturing units, airports, and office

spaces were found to have shifted to fringe areas of Sao Paolo, Brazil [31]. Another study

found a decrease in population density in core city and along with an increase in the fringe

areas of Cairo, Egypt [216]. In this analysis, these essential components of urban areas

were observed to have been missed out by the MODIS LC as well as CCI-LC, while being

detected by LandScan SL and at most times by GHSL, causing the significant inter-dataset

disagreement as observed before. The limitation of low-resolution built-up area datasets and

the comparative strength of high-resolution mapping in capturing the most dynamic and

rapidly evolving portions urban areas, especially at local scales is starkly visible in these

areas.

In terms of the estimation of built-up area extents, past study has argued that even

though the coarse and medium resolution images fail to capture the smaller and narrower

landscape patches, it does not make a significant difference in the aggregated total area

estimates [17]. In this light, the increasing variations in the total built-up area estimates

from national to local scales can be explained, as the smaller differences got masked at an

aggregated level but become more evident at local scales. Due to larger pixel size of MODIS

LC or CCI-LC (500m and 300m), and contingent upon the land cover classification rules

applied, it is likely that settlement patches smaller than the ground footprint of these pixel

caused the entire pixel to be labelled as either built-up or non built-up, leading to erroneous

detection and estimation of built-up area in either case. However, these uncertainties have

serious implications for downstream studies, as this may result in misleading results from

other studies like hydrological, population, and ecological modeling that use these datasets as

main input. In addition to urban extents, identification of fine patterns of urban settlements

helps analysis of urban morphology, and its relation to human health, mobility patterns,

economic status. However, coarse and medium resolution datasets fail to account for these

complex urban patterns emerging out of new urban growths as well as infilling of existing

urban areas, creating severe hindrance for their application in urban studies. The new high-

resolution human settlement datasets such as GHSL and LandScan SL were found to be able
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to account for settlement areas that were unseen through other built-up area and land cover

datasets.

Development of urban maps through digitization or crowd-sourced data may provide

maps that meet the need of urban dynamics studies, however they comparatively need higher

investment of money and time, which could act as a hindrance especially over remote areas.

As urban analyses gradually become more focused on regional and local scales, requirements

of detection and quantification of complex local-scale urban patterns for understanding urban

dynamics will become increasingly vital. The high and very high-resolution image derived

human settlement datasets could prove to be an efficient data source to meet such demands.

The spatio-temoral urban change detection, which was primarily limited to global or national

scale so far could now potentially be conducted at much finer scales, as the high-resolution

datasets are produced in regular update cycles.

3.8 Conclusion

With the world becoming increasingly urbanized, analysis of local scale urban dynamics

is becoming increasingly important for understanding the inter-linkages between local to

regional and global level dynamics. To now, the coarse and medium resolution global and

regional level land cover and built-up area datasets have fulfilled the needs of scientific data.

However, as they fail to capture the complex, subtle urban patterns at finer scales, their

applications become limited for new analyses focused on local areas. As observed from this

study, aggregation, complexity, and contiguity of urban areas impact both detections as well

as estimates of built-up areas by remote sensing derived datasets. The peri-urban areas,

which are less contiguous and highly fragmented, may be missed entirely by low-resolution

datasets. On the other hand, urban infilling typically consists of informal settlements and

exhibits complex patterns, which again may not accurately be identified and represented by

low-resolution datasets. Both of which seriously limits their applicability in urban dynamics

analysis. It was also observed that the estimation of urban extents varies increasingly

from national to local scale, where the lack of spatial resolution becomes a limiting factor

for low resolution datasets. Harnessing the opportunity presented by very high-resolution
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satellite imagery and high-performance computing infrastructure, a new set of high-resolution

human settlement datasets could address the present limitations in urban remote sensing.

Application of such high-resolution data could generate new insights on urban dynamics

through spatiotemporal inter-comparison as the high-resolution human settlement datasets

are developed for other countries, ultimately satisfying the data requirements of the present

and future urban studies.
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Chapter 4

Assessment of intra-urban electricity

consumption patterns using a

data-driven settlement

characterization method

As per the most recent estimates, the phenomenal rate of urban growth is set to result

in 68% of the global population living in urban areas by the year 2050 [198]. It is very

likely that the existing urban infrastructures related to water, energy, and essential services

will bear severe stress to accommodate this increasing populace, in near future [127], which

are crucial factors in the well-being of modern society. United Nation’s Center for Human

Settlements considers the access to electricity as a vital indicator of economic growth [200].

It is imperative that the energy systems be planned well ahead in time, which is not only

crucial for maintaining the present well-being of urban areas, but also to crucial for ensuring

that future urban areas and those in low-income nations gradually get uninterrupted access

to electricity. Hence, understanding of energy consumption patterns may not only help

understand the present situation but may also assist in projecting future needs and creation

of plans to address them [89, 227].
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Various factors such as location, climate, topography, and economics govern electricity

usage at local levels [132, 225], contributing to wide variations in electricity usage among

nations and within geographic regions. In developed countries, much of the local level

energy usage information may be captured by intelligent infrastructures such as smart meters

capable of recording customer behavior and consumption patterns [76, 6]. The collected

information may then be passed on to be analyzed in a central location to support the

present, and short-term needs and also prepare the systems to meet the long-term energy

requirements [165]. The value of such measurements and associated feedback have been

found to be helpful in lowering the household energy wastage [39]. However, for cities in the

developing countries, these infrastructure is practically non-existent [83]. At present, energy

consumption estimates for most places are based on the Gross Domestic Product (GDP),

population growth rates, and calculations of efficiency measures. However, such models

may not be effective in capturing the energy dynamics at local levels [202]. GDP values

have also been found to be inconsistently measured around the world and thus may not be

reliable while trying to estimate future energy needs [59]. The issues surrounding irregular

and non-standardized electricity usage surveys only make the task of electricity consumption

monitoring much more difficult [59]; and prevents useful comparison among cities, needed

for evaluation of efficiency measures. Under current projections, nearly 90% of the global

urban expansion in the future will occur in Asia and Africa; while Africa will experience the

highest rate of urbanization [180, 73].

In these areas where due to lack of infrastructure and statistics reporting mechanisms,

remote sensing based methods could be used in deriving proxies of energy use. The high-

resolution optical images are available for almost anywhere on the land surface. Texture

analysis of these high-resolution images has been observed to help distinguish among urban

settlement types [85, 8, 72]. Different urban settlements display contrasting physical

appearance on high-resolution images [145, 72], which could be captured using texture

analysis, leading to the development of a functional inventory of settlements. This inventory

may then be utilized, on the assumption that, e.g., an industrial building will have very

different energy consumption than a residential or commercial building, as a proxy to

draw insights on local level socio-economic dynamics. To counter the problem of lack
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of electricity statistics, another set of remotely sensed images called the nighttime lights

might be used as a spatial proxy for the distribution of electricity usage. The nighttime

lights capture visible as well as near-infrared lights emission from human settlements at

night under cloud-free conditions. Nighttime lights imaging capabilities provided by Defense

Meteorological Satellite Programs Operational Linescan Sensor (DMSP/OLS) have long been

exploited by scientists to monitor and map electricity consumption patterns at regional

and global scales [209, 210, 4, 23, 114, 224, 214, 215, 20, 78]. The recent introduction of

Visible Infrared Radiometer Suite (VIIRS) Day/Night band (DNB) data has added much-

needed improvement to existing nighttime imaging capabilities in terms of higher spatial

and radiometric resolutions [52]. The initial research findings from the application of VIIRS

DNB datasets have indicated higher discerning power than its predecessor [181, 98, 122, 169].

In this chapter, a set of texture measures was applied on the high-resolution optical

images for three cities in the developing world, i.e., Ndola, Zambia; Sana’a, Yemen, and

Johannesburg, South Africa. This was followed by a factorization based texture segmentation

method [217] to classify the settlements into different functional types. Using this human

settlement inventory, a correlation between settlement types and associated nighttime lights

emission from VIIRS DNB data was drawn, to gather insight into electricity usage patterns.

In the following sections, the study areas and datasets have been briefly described, followed

by an explanation of the methods applied, and the obtained results. The chapter ends with

a discussion on the observed patterns in these three cities and highlights the significance of

this work for understanding urban energy dynamics in data-poor regions of the world.

4.1 Data

4.1.1 High-resolution optical images

The high-resolution satellite images for the three cities, with a spatial resolution of 0.3 - 0.5

meter, were obtained from the WorldView 2 and WorldView 3 satellites. The images were

observed to encompass a wide variety of human settlement types, from which the functional

neighborhoods have been generated. For the city of Sana’a, a collection of images in a strip
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was processed. The data was collected by WorldView 2, on December 12, 2016, covering

a total area of approximately 1,320 sq. km. Similarly, for the city of Ndola, a collection

of images, collected by WorldView 3 on June 24, 2016, arranged as a strip was processed.

The images covered an area of approximately 450 sq. km. The amount of geographical

area processed for Johannesburg was 11,039 sq km and was spread across four image strips

collected from WorldView 2 and WorldView 3 satellites. The acquisition period for those

four images strips is from August 2017-December 2017. Across the 3-city study area a total

of 6 image strips, further broken down into 32 scenes of approximately 44000-pixel columns

by 31000-pixel rows, each scene was between 2-4 GB in size. The images were ordered as

4-band (NIR-Red-Green-Blue) data, and mosaics for each city was created to be used as the

input data for texture analysis.

4.1.2 VIIRS DNB nighttime lights data

The 2015 VIIRS DNB annual composite data used in this study was downloaded from

the website of the National Geophysical Data Center of National Oceanic and Atmo-

spheric Administration (NGDC-NOAA) (https://ngdc.noaa.gov/eog/viirs/download_

dnb_composites.html). The VIIRS DNB offer significant improvements over its predecessor

DMSP/OLS datasets both in terms of higher spatial resolution (500m vs. 1km) and

much higher radiometric resolution (14-bit vs. 6-bit quantization levels). The increased

information content may enable minute detection of urban lights at local levels [48]. The

VIIRS DNB annual composites are average radiance values of the emitted urban lights

in nanoWatts/cm2/sr. To create an annual composite, all available cloud-free data for a

calender year is used to obtain the average values of the pixels. Prior to compositing,

anomalies from Aurora, sunlit and moonlit pixels, clouds, lightning, and stray lights have

been removed from the data, along with the background values [52]. However, as of now,

lights from gas flares and biomass burning are still present in this data. To address this

issue, a gas flare mask obtained from NGDC-NOAA was applied to the data, and all such

lights associated with gas flares were omitted. After this correction, the data was considered

to be free from all known sources of errors.
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4.2 Study area

4.2.1 Johannesburg, South Africa:

Johannesburg is the largest city in South Africa (see figure 4.1) and had a population of

9.6 million in 2016. Johannesburg was originally founded in 1886, making it one of the

youngest major cities in the world. According to the 2016 World’s Cities Report, The

United Nations projects Johannesburg to become a Megacity between 2016 and 2030 with

am estimated population of 11.5 million by 2030. [197]. Johannesburg has seen many periods

of rapid expansion, including after the discovery of gold in the 1890’s. Like many cities in

the global south, Johannesburg continues to experience the affects of rapid urbanization,

frequent migration and crowding, and massive unemployment, among other challenges. The

city experiences what can be described as a warm temperate climate, according to the

Koppen-Geirger Climate Classification, with dry winters and warm summers. Temperatures

are considered mild year round, which is another favorable draw to the constant influx of

population [110]. The climate and location are not the only attractive characteristics of

Johannesburg. The City of Johannesburg has typically had an economic growth rate higher

than the provincial Gauteng and even the national level across all periods between 1997-2016

[102].

Figure 4.1: Location map and satellite image of Johannesburg, South Africa. (Source:
Google Map. Note: Not drawn to scale, for representative purpose only)
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4.2.2 Sana’a, Yemen:

Sana’a is the Capital, as well as the largest city in the Republic of Yemen (see figure 4.2).

The population of Sana’a was 3,937,500 in 2012. It also carries the distinction of being one

of the continuously inhabited oldest cities, as well as one of the highest elevation capital

cities in the world. Due to it’s long heritage and distinctive architectural patterns, part of

the city (Old City of Sana’a) is designated as a UNESCO World Heritage Site. The city

experiences mild semi-arid climate which can often be characterized as cold steppe/desert

type of climate [110]. Due to the recent conflict in Yemen, many areas, including Sana’a, are

experiencing a declining economy which is pushing poverty to abround 80% nationally. The

recent influx of population is from Internally Displaced People (IDP) seeking refuge from

the conflict. Due to increased political tension, Sana’a is experiencing armed conflict, which

currently makes the city a point of constant dynamic population movement [192]

Figure 4.2: Location and satellite image of Sanaa, Yemen. (Source: Google Map. Note:
Not drawn to scale, for representative purpose only)
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4.2.3 Ndola, Zambia:

Zambia is a landlocked nation located in Southern Africa (see figure 4.3), surrounded on

all sides by Democratic Republic of the Congo, Tanzania, Malawi, Mozambique, Zimbabwe,

Botswana, Namibia, and Angola. Ndola is the third largest city of Zabia, which is also

known as the commercial capital. Ndola experiences a warm climate with a dry winter, and

warm summers.[110] As per the 2010 census, Ndola was home to 455,194 people. According

to the 2010 Census of Housing and population, Ndola has had a steady growth rate of

1.9 percent between 2000-2010 [22]. It is located in the ’Copperbelt’ region, which is well

known for copper mining activities. Consequently, Ndola has become the main industrial

and commercial hub in the region. The region went through an economic boom during the

early 1980’s, when multiple industries such as vehicle assembly and clothing manufacturing

used operate in the area. However, it went through a lean period thereafter till 2000. Since

then, the economy has continued a steady recovery with a 1.8 percent increase in the labor

force between 2000-2010, and Ndola has an employment rate of 76.9% [22].

Figure 4.3: Location and satellite image of Ndola, Zambia. (Source: Google Map. Note:
Not drawn to scale, for representative purpose only)
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4.3 Methods

Two major steps were followed to achieve the research objectives. First, the settlement

characterization was done in the study areas. Then, the analysis of the relationships between

the settlement types and corresponding nighttime lights emission was carried out to derive

insights on electricity consumption patterns. For characterization of human settlements, the

texture responses were calculated on for training samples of settlement types in each of the

three cities. The samples were collected after careful visual observation of each city so that

such samples comprehensively represent the observed settlement types. Once the texture

responses were calculated for these training samples, a texture-based segmentation method,

as proposed by [217], was applied to the data for delineation of the different settlement types.

The texture measures used in this study as well as the segmentation method has been

briefly described in the following subsections.

4.3.1 Texture analysis

Image texture could be characterized by the spatial distributions of grey levels in a given

neighborhood of an image. Jain et.al., defined texture as the repeating patterns of the

local variations in the intensity of Digital Number (DN) values, which are too fine to be

distinguished as separate objects [97]. On high-resolution images, texture analysis has

been shown to provide supplementary information on the image properties and improve

classification accuracy [1]. In this work, two widely available texture measures, Gabor filter

and Laplacian of Gaussian, were used, which are described below:

Gabor filter:

Gabor filter, a linear filter that was originally introduced by Dennis Gabor in 1946, is mostly

used for edge detection. Researchers have found successful application of Gabor functions

to model the simple cells in the mammalian visual cortex and thus it is thought to be

similar to the human visual system in perception. These have widely been used in imagery

analysis owing to their spatial locality, orientation selectivity and frequency characteristics

[123]. Gabor filters have been widely applied in urban feature extraction from remote sensing
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images [170, 226, 205, 184]. Following the work of [62], the Gabor function could be defined

as (see equation 4.1):

G(x, y|W, θ, ψ,X, Y ) = exp
−[(x−X)2+(y−Y )2]

2σ2 ×Sin(W (xcosθ − ysinθ) + ψ) (4.1)

Where, σ represents the Gaussian width, θ is the filter orientation, W denotes the

frequency and ψ indicates the phase shift. X and Y are the center of the filter applied.

For an input matrix L(x, y) and a Gabor operator G(x, y|W, θ, ψ,X, Y ), a G × L spectra

could be obtained for different orientations and shifts of the Gabor operator for identifying

the texture element, as given below (see equations 4.2a - 4.2c):

GL1(X, Y |W, θ) =
∑

xyG(x, y|W, θ, 0, X, Y )× L(x, y) (4.2a)

GL2(X, Y |W, θ) =
∑

xyG(x, y|W, θ, π
2
, X, Y )× L(x, y) (4.2b)

S2(X, Y |W, θ) = GL1(X, Y |W, θ) +GL2(X, Y |W, θ) (4.2c)

Where, x and y are indices over the basic matrix elements, ψ denotes the phase shift

(i.e. 0 and π/2) and W is the number of cycles in n pixels, where n is the size of the input

pattern. GL1 and GL2 are Gabor filter convolutions and textures while S is the locally shift

invariant output obtained by using mean of GL1 and GL2.

Laplacian of Gaussian:

The Laplacians are the second order spatial derivatives of an image, which helps to identify

areas of rapid change such as the edge areas in an image. The input to generating Laplacian

is a single gray-scale image, and the process produces another gray-scale image as output.

The mathematical formulation of the Laplacian is as follows (see equation 4.3):

L(x, y) = ∇2f(x, y) =
δ2f(x, y)

δx2
+
δ2f(x, y)

δy2
(4.3)
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Here, L(x, y) is the Laplacian of an image where it’s DN values are given by f(x, y). In a

gray-scale input image, this is calculated by applying discrete convolution kernels. However,

the derivative filters are known to be sensitive to image noise. Hence it is required that a

smoothing operation is done on the image, which is generally done using Gaussian filters

before applying the derivative filters. This way, the process of application of Laplacian

filter in an image texture analysis becomes a two-step process and is collectively known as

Laplacian of Gaussian or LoG operation. When the Gaussian filter is included for smoothing

purposes, a combined Laplacian of Gaussian may be explained by a single equation, under

the assumption that the LoG function centered on zero and Gaussian standard deviation is

σ (see equation 4.4):

LoG(x, y) =
1

πσ4
[1− x2 + y2

2σ2
]e−

x2+y2

2σ2 (4.4)

LoG texture descriptors have found wide acceptance in urban feature extraction from

images [84, 108, 218, 33].

4.3.2 Settlement characterization:

In this work, four Gabor filters with orientations at 0, 45, 90, and 135 degrees and a scale

value of 2.5 was utilized along with two LoG filters with scale values of 1.2 and 1.8, to capture

the textural characteristics of the settlements such as their size, density, and orthogonality of

their layout. Satellite images for each city were first visually inspected for distinct settlement

patterns. Once the distinct settlement types were identified, individual models for each

city were developed using up to 4 training samples per settlement type. First, the texture

responses were calculated on the training samples, which is followed by the application of

a factorization based texture segmentation approach [217] to segment the data into these

settlement types. A settlement area mask was used to keep non-settled areas out of this

process, which helped in dimension reduction and computational efficiency. The settlement

mask was obtained from the LandScan project team at Oak Ridge National Laboratory. More

information on development of the settlement layer may be found in [26, 153]. The output

was then checked manually for accuracy of segmentation, and new samples were included
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if necessary. This was done repetitively until satisfactory settlement characterization was

achieved.

The segmentation method utilizes a specific texture descriptor called local spectral

histograms [217], which is calculated based on the local distribution of the filter responses

[117]. In this method, the input is represented by an M × N feature matrix, comprising

of M dimensional feature vectors computed from N number of pixels. The feature at every

pixel is regarded as a linear combination of the representative features, which encodes the

criterion for selection of boundaries. Two matrices, containing representative features and

their pixel-wise combined weights, are multiplied to obtain the feature matrix. The combined

weights indicate the belongingness of the corresponding pixels to different segments. The

final segmentation is then achieved through factorizing the feature matrix using singular

value decomposition and non-negative matrix factorization. For a detailed description on

each of these steps, readers may refer to [217].

Through visual analysis of high-resolution optical images, multiple settlement classes in

each of the cities were identified. These three cities are located in significantly different

climatic and physiographic settings, and vast differences exist in the socio-cultural and

economic conditions of their inhabitants. All such conditions could have distinct effects

in the manifestation of the settlement patterns [182]. Distinct patterns were also observed

in the settlements of these three cities. For the sake of generalizability and interpretation,

five broad settlement types were identified whose interpretation closely aligns for all three

cities(see figure 4.4).
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Figure 4.4: Samples showing different settlement classes identified in three cities.
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1. Class 1: High-Density, small-sized urban houses. Characterized by non-orthogonal

layout.

2. Class 2: High to medium density, medium sized urban buildings. Characterized

by orthogonal layout and mixed use commercial and residential. Some suburban

developments in case of Johannesburg.

3. Class 3: Medium to low density, medium sized urban and suburban houses. Charac-

terized by orthogonal layout.

4. Class 4: High-density large sized urban buildings. In case of Johannesburg, it includes

the downtown area and high-rise buildings. In case of Sana’a, the development is

medium to low density, however marked by large urban buildings.

5. Class 5: Very low density rural type developments, includes all other types of

developments not included in Classes 1 - 4.

4.3.3 Analysis of correspondence between settlement types and

electricity consumption:

As mentioned previously, in the absence of any electricity consumption data for these cities,

VIIRS DNB nighttime lights data was used as an indicator for the spatial distribution of

electricity usage. However, the 500 meter spatial resolution of VIIRS DNB is much coarser

than that of the settlement inventory map used in this study, which is around 8 meter. Hence,

a pixel to pixel correspondence was not possible in this study. To examine the relationship

between the settlement types and corresponding nighttime lights emission, the presence of

different types of settlements within the ground footprint area corresponding to each VIIRS

DNB pixels was calculated. In order to calculate the composition of different settlement

types, regular grids matching the spatial resolution of VIIRS DNB data covering each city

was created. Next the areas of different settlement types within each grid was extracted

in square kilometer unit. It was observed that for some parts of the cities, especially in

Sana’a and Ndola, VIIRS DNB did not detect any lights. This could be a sign of the

lack of electricity access. However, these settlements were most likely inhabited by people
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belonging to economically weaker section of the society, hence, these areas should be a part

of the analysis. Thus, such pixels were included in the analysis. The implications of this has

been mentioned in the discussion section. Additionally, for Ndola, presence of a large flare

was observed right on the eastern edge of the city, the affected pixels were removed from

analysis using the gas flare mask mentioned earlier. Next, linear regression models were

developed to assess the relationship between the settlement types and the corresponding

nighttime lights emission, where the VIIRS DNB values were considered as the dependent

variable, while the area of the settlement types were included in the model as dependent

variable.

The general form of the equation is as follows (see equation 4.5):

DNV IIRSDNB = (
5∑
i=1

βi ∗ Settlementi) + ε (4.5)

Where, Si is the area of settlement type i in square kilometer, i denotes the number

of different settlement classes. DNV IIRSDNB denotes the pixel values in the VIIRS DNB

data, and ε denotes the Gaussian noise. The coefficients obtained from the regression model

indicate what is the expected change in the nighttime lights emission in nanoWatts/cm2/sr,

a proxy for the in the electricity usage in the area in the absence of electricity consumption

data, corresponding to one square kilometer increase or decrease of the individual settlement

types. The data exhibited signs of heteroskedasticity, thus the coefficients and stanrard errors

were estimated using a heteroskedisticity consistent method, the White-Huber standard

errors. The initial settlement map, classified settlement map, VIIRS DNB nighttime lights

observation, and correspondence between lights data and settlements have been graphically

provided for each city in figures 4.5 - 4.7.

Subsequently, ANOVA tests were carried out on the regression coefficients, from each of

the three, to check whether the light emission associated with each settlement types were

statistically significant from each other.
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Figure 4.5: From left: Settlement Map, Settlement Classes, Settlement Classes overlaid on VIIRS DNB, and VIIRS DNB for
Ndola, Zambia.
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Figure 4.6: From left: Settlement Map, Settlement Classes, Settlement Classes overlaid on VIIRS DNB, and VIIRS DNB for
Sana’a, Yemen.
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Figure 4.7: Clockwise from top-left: Settlement Map, Settlement Classes, Settlement
Classes overlaid on VIIRS DNB, and VIIRS DNB for Johannesburg, South Africa.
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4.3.4 Correlating building types to electricity consumption in

Johannesburg

As mentioned in the introduction, urban level energy data is almost non-existent in

developing worlds. However, linking actual electricity consumption to the building types

would undoubtedly establish the applicability of the method presented here. A through

search of published high-level reports revealed a 2011 record of 58,839,270 gigajoules (which

is equivalent of 16,344,242 Mwh) total electricity consumption in Johannesburg metro area

. An attempt has thus been made here to link this consumption to the buildings. However,

the temporal mismatch of six years between the energy record and building inventory could

not be bridged, and an assumption was made that the spatial distribution of electricity usage

remained similar in this time period.

To connect the building types to electricity consumption, the total electricity consump-

tion was spatially disaggregated from city to pixel levels using the nighttime light data,

which is a surrogate of electricity consumption. The method of spatially disaggregating

electricity consumption using nighttime lights was proposed by [222]. In this method, the

sum of all lights in Johannesburg metro area was considered equivalent of the total electcity

consumpotion, from there the electricity consumption represented by one unit of sum of light

was calculated (see equation 4.6)

UV IIRSDNB = Totalelectricityconsumption/Sumoflights (4.6)

The sum of lights in Johannesburg was found to be 313,155. Using equation 4.6, the

electricity consumption represented by an unit of sum of light was found to be 187.89 Mwh.

Next, a constant raster whose DN value was equivalent to 187.89 was created and multiplied

with the VIIRS DNB data. The DN values of the resultant raster now represents the

electricity consumption in correspond ng area in Mwh. Again, a linear regression similar

to equation 4.5 was developed, where the only exception was in the new equation electricity

consumption was used as independent value.
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4.4 Results

The results from the regression for Ndola, Sana’a, and Johannesburg indicated a statistically

significant correlation between the settlement types and corresponding nighttime lights

emission. The regression model for Ndola, Zambia, explained 77% of the variance in the

data (R2 = 0.77, F(5,1634) = 1080, p < 0.0001), while the model for Sana’a, Yemen,

explained 71% of the variance (R2 = 0.71, F(5,5798) = 2862, p < 0.0001). Lastly, the

model for Johannesburg, South Africa, explained 45% of the variance in the data (R2 =

0.45, F(5,14338) = 2372, p < 0.0001).

Table 4.1: Robust coefficients from regression between VIIRS DNB and settlement types
in Ndola, Zambia.

Settlement Type Regression coefficients (± SE) t value p value
Class 1 1.70 (± 0.08) 21.07 < 0.0001
Class 2 2.61 (± 0.18) 14.14 < 0.0001
Class 3 3.17 (± 0.37) 8.61 < 0.0001
Class 4 2.74 (± 0.15) 18.38 < 0.0001
Class 5 0.35 (± 0.24) 1.45 0.1465

In Ndola, Zambia, we observed with every square kilometer increase of class 1 type

settlement (high-density, small urban houses), the nighttime lights emission increased by

1.70 nanoWatts/cm2/sr. Similarly a square kilometer increase in high to medium, mid-sized

urban buildings that could be used for both commercial or residential use (Class 2) leads

to 2.61 nanoWatts/cm2/sr increase in nighttime lights emission. The increase of per square

kilometer area of Class 3 and Class 4 type settlements results in an increase of 3.17 and 2.74

nanoWatts/cm2/sr respectively. The coefficient for class 5 was found to be extremely small

and non-significant in this model. The most plausible reason for this have likely been caused

by extremely sparse development in Class 5 for this city, many of which were not identified

by VIIRS DNB data (see figure 4.5) . Most nighttime lights emission in Ndola were found to

be associated with Class 3 which represents the medium to low-density, medium sized urban

and suburban houses (see table 4.1).

For Sana’a, Yemen, most nighttime lights emission was found to be associated with Class

4, showing an increase of 3.86 nanoWatts/cm2/sr in nighttime lights emission from one
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Table 4.2: Robust coefficients from regression between VIIRS DNB and settlement types
in Sana’a, Yemen.

Settlement Type Regression coefficients (± SE) t value p value
Class 1 3.60 (± 0.31) 11.79 < 0.0001
Class 2 1.99 (± 0.04) 44.44 < 0.0001
Class 3 2.89 (± 0.33) 8.62 < 0.0001
Class 4 3.86 (± 0.19) 19.91 < 0.0001
Class 5 1.77 (± 0.33) 5.41 < 0.0001

square kilometer increase in Class 4 settlement type. This was closely followed by Class 1,

showing 3.60 nanoWatts/cm2/sr increase in lights emission corresponding to a one square

kilometer increase in the area of Class 1 type settlements. Class 3, 2, and 5 were observed

as having comparatively less effect on nighttime lights emissions (see table 4.2).

Table 4.3: Robust coefficients from regression between VIIRS DNB and settlement types
in Johannesburg, South Africa.

Settlement Type Regression coefficients (± SE) t value p value
Class 1 1.54 (± 0.08) 19.47 < 0.0001
Class 2 2.05 (± 0.03) 70.90 < 0.0001
Class 3 1.50 (± 0.03) 49.51 < 0.0001
Class 4 5.38 (± 0.10) 51.72 < 0.0001
Class 5 1.75 (± 0.32) 5.45 < 0.0001

In Johannesburg, South Africa, Class 4 type settlements, which included the downtown

areas and the high-rise buildings, were observed to have the most association with the

nighttime lights emission. Results show a 5.30 nanoWatts/cm2/sr increase in nighttime

lights for each square kilometer increase in Class 4 type settlements, while a square

kilometer increase in Class 2 type settlement was found to result in an increase of

2.05 nanoWatts/cm2/sr in nighttime lights emission. Classes 1, 3, and 5 have a lesser

and somewhat similar association with nighttime lights (see table 4.3). The analysis of

correspondence between electricity consumption and settlement types were done using a

linear regression similar to equation 4.5. The results are presented in table 4.4 below:

From table 4.4, the impact of each type of settlement on electricity consumption can be

identified. Similar to table 4.3, a square kilometer increase in high-rise, large commercial

building stock was seen to cause about 1012 Mwh increase in annual electricity consumption,
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Table 4.4: Robust coefficients from regression between 2011 electricity consumption and
settlement types in Johannesburg, South Africa.

Settlement Type Regression coefficients (± SE) t value p value
Class 1 289.60 (± 14.87) 19.47 < 0.0001
Class 2 385.24 (± 5.43) 70.90 < 0.0001
Class 3 281.35 (± 5.68) 49.51 < 0.0001
Class 4 1011.66 (± 19.56) 51.72 < 0.0001
Class 5 328.01 (± 60.18) 5.45 < 0.0001

the corresponding electricity consumption increase from class 2 type buildings was 385.24

Mwh.

The ANOVA tests highlighted that the light emission from each type of settlements

were indeed statistically significant from each other. Only for Class 5 or the rural type of

settlements in Ndola did not show statistical significance. This is most likely an effect of

very sparse distribution of this type of settlements in Ndola, from where not much light

was captured to render its statistical significance. Results from the ANOVA tests have been

provided in tables B.1 - B.3 in appendix B.

4.5 Discussion

The research objective of this study has been to assess the applicability of a data-driven

settlement characterization method in understanding local level electricity consumption

patterns. Two widely accepted texture descriptors and a texture-based segmentation

method proposed by [217] was utilized to develop a functional inventory of urban settlement

for Ndola, Zambia; Sana’a, Yemen; and Johannesburg, South Africa. This functional

settlement inventory was then used to find a possible correlation with the proxy of electricity

consumption. As mentioned earlier, in the absence of measured electricity consumption

data, remote sensing based indirect methods such as presented here could help fill the

data gap. Hence, the nighttime lights from VIIRS DNB were used here as a surrogate

of urban electricity consumption. Since the spatial resolution of the urban settlement

raster created in this work and VIIRS DNB are widely dissimilar, the area of different

settlement types corresponding to each VIIRS DNB pixel was calculated, next regression
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models were developed between the area of different settlement types and corresponding

nighttime lights emission, expressed in nanoWatts/cm2/sr. In all three cities, a common

trend was observed to emerge where the Class 4 type settlements (High-density large sized

urban buildings; in the case of Johannesburg, it includes the downtown area and high-rise

buildings) in Johannesburg, and Sana’a corresponds the most with nighttime lights emissions.

In the case of Sana’a, Class 1 (High-Density, small-sized urban houses characterized by non-

orthogonal layout) settlements were seen to have the second most association with nighttime

lights emission, closely following the Class 4 buildings. In Ndola, the highest association

was observed between Class 3 or the medium to low density, medium sized, urban and

suburban houses. The rural type, sparsely distributed buildings did not exhibit a statistically

significant relationship with the lights; it is assumed that this is a likely effect of their sparse

distribution and the fact that many such buildings did not register lights. Using an old

statistic in Johannesburg, it was demonstrated that the effect of building stock on electricity

consumption can be evaluated. However, even with the nighttime lights unit, the relative

interpretations of the effect of the buildings on energy consumption remain the same.

The general trend observed from the three regression results indicate a common

correlation between settlement types and corresponding nighttime lights emission, considered

a proxy of electricity consumption in this study. This validates the general applicability of

this method in understanding local electricity consumption patterns in data sparse regions.

The usage of nighttime lights as a spatial indicator of electricity usage further generalizes

this approach as this data is freely available for any place on Earth. However, due to the

coarse spatial resolution of 500 meters, VIIRS DNB data alone may not be able to address

the minute local variation within cities. Characterization of human settlements, as seen in

this work, extends the scope of this analysis to a much finer resolution, beyond the generic

spatial resolution of VIIRS data. Ratti et al. [167], found useful correlation between urban

texture and energy consumption, while assessing the applicability of digital elevation models

alongside 3-dimensional urban models . While this work was focused on highly developed

cities such as London, United Kingdom; Berlin, Germany; and Toulouse, France, and used

much detailed datasets describing urban texture, it nonetheless demonstrated that patterns

observed in urban landscapes could be a key to understanding energy consumption dynamics.
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This work indicated that urban density and organization patterns have significant influence

in determining energy consumption. Comparatively, this work was done using only two

remote sensing datasets with an objective to apply these methods where no ground data is

available. The fact that results from this study conform to similar patterns, as seen from

the past work mentioned above, confirms it’s applicability.

As caveats of this study, it first needs to be stated that the nighttime lights data was

found not to have captured lights from some parts of these cities, especially in Sana’a, Yemen,

and Ndola, Zambia. This is an artifact of the socio-economic conditions in these places as

well as the late overpass time of VIIRS which is after midnight local times. Hence, many

parts of these cities could have turned their lights off, and the reliability of power grids

might also have played a role in non-detection in these parts. Secondly, the coefficients of

determination for Johannesburg, South Africa was much weaker than the other two cities.

It can be assumed that this is an effect of highly mixed land-use in parts of Johannesburg,

resulting in nighttime lights signals that did not always match with the physical appearance

of the buildings, e.g., much higher light emission from a building that houses both residential

and commercial activities.

This study presents an application of data-driven methods in urban electricity related

applications. In the absence of any ground information, which is prevalent in many low-

income countries, this method could indicate the differential electricity consumption levels at

a local scale. Such information, in conjunction with land-use land-cover information, could

provide valuable insights into urban planning. For example, the planners may correlate

between existing land use and electricity usage patterns, identify zones that are prime for

rolling out efficiency measures or areas that could be developed according to plans meeting

future goals.

4.6 Conclusion

This study provides a direction towards using remote sensing data and image processing

driven methods to understand local-scale energy consumption patterns, and understanding

socio-economic dynamics within cities. Application of these methods over more number
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of cities will validate the assumptions this study relied on. The patterns identified in this

study may be used in conjunction with other available data such as land use and land cover

maps to inform local-level policymaking. Ultimately, helping urban planners make informed

decisions in data scarce regions of the world.
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Chapter 5

Dynamics of urban electricity

consumption in the United States and

implications for sustainability

Urban areas consume around three-quarters of the world’s primary energy supply and

generate almost 70% of global energy consumption related CO2 emissions [196, 178].

Electricity is the second largest fuel by end-use within the global energy mix. As of

the year 2015, electricity accounted for around 18.5% of global energy consumption and

occupied an even higher market share of 22.2% in the case of OECD countries [92]. Urban

electricity requirements arise from a myriad of activities related to operating and maintaining

built-environments, e.g., lighting, space heating and cooling, running appliances in urban

households, and operating machines in industries. The urban population currently accounts

for 55% of the world’s total population; this is expected to reach 68% by the year 2050

[198], expanding urban areas and infrastructures considerably in the due process. Urban

electricity consumption can be expected to increase significantly in the future due to

unhindered urbanization, up-gradation of existing infrastructures with electrical systems,

increasing electrical use in industrial machines, and mass usage of electric vehicles. IEA

estimates that 40% of the growth in global energy end-usage by year 2040 will come from

increased consumption of electricity, which is presently the fastest growing energy fuel by

end-use[93]. Under these circumstances, the energy policymakers face twin challenges of
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ensuring uninterrupted future supply of electricity and reducing environmental impacts

from electricity generation. The existing electricity generation pathways are known to cause

irreversible harm to the environment through emission, water usage, and land-use change.

Within the United States, it is estimated that 67% of the generated electricity came from

fossil fuel sources in 2016, and US power plants were responsible for the release of 64% and

75% economy-wise release of Sulfur dioxide and acid gases respectively [124].

Several past studies have indicated the dual role of urban areas as both the cause and the

solution to global sustainability problems [178, 65, 223]. The urban areas are characterized by

high energy demands and diversity of energy usage which presents unique opportunities for

implementing energy efficiency measures, energy management, and clean energy practices

[21, 73]. Urban infrastructures are constantly expanding to support the inflow of people,

which further increases the energy demands. Similarly, urban areas concentrate sets of

diversely skilled people within their perimeter, coupled with the free flow of ideas, capital,

and materials may also encourage transitional changes to promote efficiency and lower per

capita electricity consumptions. These effects depend on the interplay of several socio-

economic, geographical, and technological factors. Thus, systematic studies are required to

identify the trends at the urban system level. Such studies may serve as a metric used to

identify the needs of intervention and analyze the performance of efficiency measures.

However, regardless of the fact that all over the world energy usage is heavily urban-

centric, the existing energy statistics mechanisms operate at regional and national scale.

Such aggregated datasets mask the variation observed from one urban area to another, and

masks any potential for city comparison, energy analysis at the urban system level. Even

in the United States, the second largest electricity consumer after China, the urban level

electricity data is rare. The US Energy Information Administration (EIA) provides electricity

sales statistics at state levels which can be used as an indicator of state-level consumption.

Thus, it is critical to develop efficient and generalizable urban level energy data gathering

methods, for studying the present dynamics and predicting the future scenarios. In the

absence of statistical data, geospatial data based methods may be used to approximate the

urban electricity consumption, using pertinent variables such as climate, economy, industrial

activities, and population.

88



In this chapter, an attempt has been made to use the EIA state-level electricity data to

downscale the electricity consumption at urban levels, in order to overcome the obstacle of

data scarcity. The estimates were then used for the analysis of the effects of urbanization

on electricity consumption in the US urban system. The following questions were explored

in this study: 1. Can geospatial and ancillary data based models be used to satisfactorily

estimate urban electricity consumption in the United States? 2. What is the expected

change in electricity consumption in response to urbanization in the United States? 3. If

any evidence of returns of scale is found then where are the limits of such energy efficiency?

The following sections sequentially describe the datasets used in this study and their sources.

Followed by a detailed discussion on the rationale of urban delineation scheme, urban

electricity estimation model, and scaling analysis. The results from this study have been

presented afterward along with the discussion of the implications, In conclusion, the summary

and limitations of this work have been provided.

5.1 Data

The first step in this study was to develop a model to estimate the electricity usage at

urban scale. To ensure the general applicability of the model elsewhere, care was taken to

include variables that can be easily obtained at other places. As detailed in Chapter 2,

urban electricity consumption is shaped by factors such as local climate, economy, industrial

activities, and population. Thus, degree days were included as an indicator of local climate,

aggregated household income was included to reflect the economic status, and the number

of manufacturing industries indicated economic activities. The following describes these

datasets and their sources in detail. It also includes descriptions of additional datasets, such

as population, extents of built-up areas.

5.1.1 Climate data

The Heating and Cooling degree days (HDD and CDD) are commonly used metrics to

estimate the energy requirements to satisfy heating and cooling needs inside buildings, as a

response to daily weather across different locations [95]. On a given day, the number of degree
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days for a place is calculated by comparing the mean temperature to a base temperature,

commonly considered as 65◦F. For example, a day’s a mean temperature of 70◦F corresponds

to 5 CDDs while a mean temperature of 30◦F results in 35 HDDs. NOAA estimates the

daily temperatures for each of the 344 climate divisions in the United States by using the

records from one to four relevant weather stations. These daily temperature estimates are

then used to calculate the number of degree days for respective climate divisions. Using

the degree days of the relevant climate divisions, the degree days for the individual states

are finally calculated. In this process, the division level records are multiplied by weights

proportional to the ratio of the population of the corresponding divisions to that of the state,

to reflect the effect if population on energy consumption [146]. Degree days data can be freely

downloaded for both station and state levels from NOAA website. The station level data

provides the number of CDD and HDDs on a monthly basis for 331 NOAA weather stations

situated within the contiguous US, while the state level data is derived from the process

mentioned above. Both station and state level datasets for year 2015 were downloaded

from NOAA’s National Weather Service website (ftp://ftp.cpc.ncep.noaa.gov/htdocs/

products/analysis_monitoring/cdus/degree_days/archives/).

5.1.2 Electricity data

Retail electricity sales (in Megawatt-hours, Mwh) to the end-consumer segments was

considered as a proxy for electricity consumption. 2015 data was downloaded from the EIA

website (https://www.eia.gov/electricity/data/state/). In this data, sales volumes

are recorded across four different consumer segments: residential, commercial, industrial,

and transportation. Among these sub-categories, the electricity used for lighting public

buildings, streets, and highways, and sales to the public entities have been accounted for

in the commercial sector; while agricultural and irrigation related sales are included in the

industrial sector. Electricity sold to the transportation sector include electrified rail and

urban transit systems. Very few states contain records under this category, and it formed a

small fraction of the respective total electricity sales for states where there was any electricity

used by the transportation sector. Hence, for the sake of generality, only the first three

categories were considered in this study.
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California is the only state for which the county level electricity consumption data

is available. This data was downloaded from the California Energy Commission website

(http://ecdms.energy.ca.gov/elecbycounty.aspx). The data was provided in millions

of Kilowatt-hours units. Thus, the necessary conversion factor was applied to the data to

make it comparable with the EIA data.

5.1.3 Socio-economic data

The American Community Survey (ACS) is a part of the decennial census program, that

is conducted nationwide to identify community-level changes. Various attributes such as

income, house values, and age structure are captured in this yearly data. The aggregated

household income data for each state and counties was obtained from the ACS database. The

5 year estimates are developed based on the data collected in previous five years proceeding

the release year. This version of the data has been indicated to have higher precision than

single-year estimates. Thus, the 5 year estimates were chosen for this study and downloaded

the data from the US Census website (https://factfinder.census.gov/faces/nav/jsf/

pages/index.xhtml)

County Business Patterns (CBP) dataset is released annually by the US Census

Bureau, containing information on business-related economic parameters such as the number

of employees, payrolls, and number of business establishments at multiple geographical

scales like states, counties, and Zip codes. Number business establishments are recorded

following the North American Industry Classification System (NAICS), information on

some establishment types like public administration, government and railroad employees,

National Postal Service, and the self-employed have been excluded from this data [18]. 2015

data was obtained from the US Census website: (https://factfinder.census.gov/faces/

tableservices/jsf/pages/productview.xhtml?pid=BP_2015_00A1&prodType=table).

5.1.4 National Land Cover Database

The National Land Cover Database (NLCD) is a time-series land cover dataset, produced

at 30-meter spatial resolution by the Multi-Resolution Land Characteristics Consortium at
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the United States Geological Survey (MLRC-USGS). The most recent release of this dataset

dates to 2011, which was downloaded from the MLRC website (https://www.mrlc.gov/

nlcd11_data.php). The developed areas within the contiguous United States were then

extracted from this data. NLCD follows a 16 class land cover classification system, which

includes forest, shrubs, developed, cultivated, and wetlands, among other land cover classes.

The developed class represents impervious areas such as housing, parks and clubs, industrial,

and commercial spaces. Based on percent of the impervious area, the developed class

has been sub-divided into open spaces, low intensity, medium intensity and high intensity

developed areas [87]. Based on the original classification scheme, the pixels were re-classified

as either developed or non-developed, by grouping all developed pixels into one class and all

other pixels into non-developed class (see figure 5.1).

Figure 5.1: Developed areas in the contiguous United States, extracted from 2011 NLCD
data.
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5.1.5 Administrative boundaries and population data

Administrative boundaries, such as outlines of the contiguous United States; individual

states, counties, and MSAs for the year 2015 were downloaded as TIGER (Topologically

Integrated Geographic Encoding and Referencing) Shapefiles from the Census Bureau web-

site (https://www.census.gov/geo/maps-data/data/tiger.html). These vector layers

also contained attribute information on 2015 population estimates (estimated using 2010

population as the base) and geographic areas of the administrative subdivisions.

5.2 Methods

The research objective in this work required a few key steps be followed in sequential order.

The functional definition of urban areas is critical for this analysis, hence an appropriate

urban unit was selected first. Next, estimates of county level degree days were made using

the NOAA station level degree days data. Finally, the electricity consumption model was

developed using state level electricity consumption data as dependent variable and state

level degree days, number of manufacturing industries, aggregated household income, and

population as independent variables. States are the highest level of spatial granularity at

which electricity statistics was available. Thus, downscaling of state level consumptions to

the county levels had to be done using the electricity consumption model. Once the county

level consumptions were estimated, the estimates were normalized to the corresponding state

level totals. Next, the corresponding counties for each urban area were aggregated to obtain

the urban electricity consumption estimates. Finally, the scaling analysis was done using

the estimates of urban electricity consumption and corresponding census derived population

for 2015. The following paragraphs provides a detailed and systematic description of each

of these steps.

5.2.1 Delineation of urban areas:

Urban socio-economic dynamics, such as electricity consumption, is characterized by socio-

economic interactions between the urban core and its surrounding areas. Changing urban
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definitions have been observed to have severe effects on the observed relationship between

the size of urban areas and their socio-economic characteristics [11]. Therefore a stable

functional definition of urban areas is required for analysis of urban electricity consumption.

A functional definition can spatially enclose the network of associated socio-economic

interactions, and is more appropriate than administrative boundaries which are often drawn

in an arbitrary manner [12, 65]. Moreover, functional definition enables clear demarcation of

electricity consumption patterns over space, removing ambiguities over association of spatial

patterns with urban entities.

In the United States, the Metropolitan Statistical Areas (MSA) represent a temporally

consistent definition of urban areas which is independent of administrative definitions such

as states or municipalities. Recent work in urban energetics [65] used multiple sets of urban

definitions and observed a wide range of exponents for the relationship between urbanization

and consumption of total electricity. The results from [65] further justifies the need of a single,

unambiguous, and objective urban definition. Among all urban definitions in the US, MSAs

were found to be most aligned with an ideal functional definition of urban areas. MSAs are

characterized by the presence of a city with at least 50000 inhabitants or an urbanized area

with a minimum of 100000 people. Along with the core urban areas, MSAs also consist of

one or more adjacent whole counties that share a high level of socio-economic integration,

measured by the patterns of commuting to work, with the urban core. This effectively marks

a unified labor market within which the flow of materials, information and people is fully

contained. As per the 2010 Census, around 83.7% population in the United States lived in

MSAs, with a population density of around 283 persons/mile2 which is several times higher

than the non-urban areas that experience a population density of 10 person/mile2 [212].

Cumulatively, these MSAs generated around 90% of the national GDP in 2015. All 377

MSAs in the contiguous United States in 2015 were included in this study. The terms urban

areas and MSA have been used interchangeably in the rest of this chapter.

5.2.2 Estimation of county degree days:

Yearly number of degree days for each county were estimated using the NOAA station level

monthly observations. As climatic phenomena such as temperature, wind, and humidity
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are affected by a variety of location specific geographic factors, which may not have been

accounted for by the nearest station alone. Thus, it was empirically determined that 6

nearest stations were needed to sufficiently account for the site specific variations in degree

days in each county. First, the yearly degree days for each stations was calculated from

the monthly data. Six nearest weather stations from each county were then identified. The

degree days for each county were then determined through Inverse Distance Weighted (IDW)

interpolation, where the effect of each nearest six stations on the estimated CDD and HDD is

inversely proportional to the square of their distance from the county centroids. The process

is defined in equation 5.1:

Z(x) =

∑
wizi∑
wi

(5.1)

Where, Z(x) is the estimated degree days at location X, z is observed number of degree

days at the weather stations, w is the distance based weight (w = 1/distance2) assigned

to each of 6 stations used for estimation, and i is the station index. The estimation results

were validated against the actual observations from NOAA weather stations, which indicated

an average mean percentage error of 7.2%. The actual degree days count was used for the

counties where NOAA weather stations were located. The estimated county level degree

days have been presented in figure 5.2.

5.2.3 Estimation of electricity consumption:

Electricity consumption was modeled as a function of climate, industrial activities, economy,

and population. The electricity sales for the year 2015 was included as a proxy for

consumption. Degree days were used as an indicator of electricity needs in response to local

climate, the number of manufacturing establishments was considered a proxy of industrial

activities. Aggregate household income was included as an indicator of economic status.

The states were split into two categories based on the median aggregated household income,

normalized by population to control for the large variations in state population sizes. These

groups were included in the model as dummy for economic status. Electricity needs in

response to climate is highly dependent on the population, e.g. moderate temperature
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Figure 5.2: Estimated (a) CDDs and (b) HDDs at county level. (c) NOAA weather station
locations are shown in the inset.

change in a highly populous area will lead to higher demand than a significant temperature

change in a sparsely populated area. Thus, to include the population effect in the model

(see equation 5.2), the number of degree days were included as interaction variables with

population. In order to check for the main effects in the model, another model with main

effects were developed and tested against the model presented here. The Chi Square test

between the two models revealed the first model did not fit the data significantly better than

the second model. Hence, the reduced model has been used in this study.

E = α + β1 ×G+ β2 × (CDD : POP ) + β3 × (HDD : POP ) + β4 ×M (5.2)

In equation 5.2 above, E indicates state-wise retail electricity sales, G represents the two

categories of income, CDD and HDD represent the estimated cooling and heating degree

days, POP is the corresponding population in 2015, and M is the number of manufacturing
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establishments for each state. The regression was performed with a heteroskedasticity

consistent, White-Huber method method, the summary results are presented in table 5.1

below.

Table 5.1: Summary of regression results using heteroskedasticity consistent standard error
estimation.

Variable β SE(β) t Value p Value
Intercept -1.88e+07 1.30e+07 -1.45 0.153153
Group 1.95e+07 7.16e+06 2.72 0.009282∗∗
I(CDD:POP) 2.30e+03 2.38e+02 9.65 1.958e-12∗ ∗ ∗
I(HDD:POP) 2.84e+03 6.22e+02 4.58 3.851e-05∗ ∗ ∗
M 3.87e+02 6.85e+02 0.56 0.575181

The coefficient of determination (R2) was 0.97 (F (4,44)=391.5, p<0.0001). Compared

against the actual data, the model estimates indicated a mean relative error (where,

RelativeError(RE) = (Actual − Estimate)/Actual) of 0.09 and standard deviation of

RE equaling 0.36. The same set of independent variables, as in equation 5.2, were either

estimated (degree days) or obtained (aggregated household income, population, number of

manufacturing industries) for each county (see section 5.1, for details on the data), on which

the model was used to predict county-level electricity consumption.

The initial county estimates (Ec) were aggregated to corresponding state levels (Es).

Normalization factors (Ns) for each state were then calculated, as a ratio between actual

(As) and estimated consumption (Es). Finally, the normalized estimates (E∗
c ) were obtained

by multiplying the initial county estimates by the corresponding normalization factor (See

equations 5.3a - 5.3c).

Es =
∑

Ec (5.3a)

Ns =
As
Es

(5.3b)

E∗
c = Ns × Ec (5.3c)

97



Where, s and c are indexes for states and counties respectively. In the next step, the

MSAs were matched to the corresponding counties, and the E∗
c for the counties corresponding

to each MSA were added up to get the MSA level estimates.

5.2.4 Validation against California data:

For external validation, the electricity consumption estimates were compared against the

California data for the same time period. As the California data was also provided at county

levels, the counties forming each MSA were added together to calculate actual electricity

consumption for California MSAs for the year 2015. A plot of relative errors and log of

MSA population has been provided in figure 5.3. The mean RE of 0.12 was obtained across

all MSAs in California. The RE for most MSAs lie within ±0.25, with several of them

being tightly knit around the RE = 0 line. REs for eight MSAs fell within pm(0.25 - 0.5).

Three MSAs with small population and low consumption have REs the range 0.5 ≥RE≤1.0.

These were interpreted as an artifact of using a state-level model for county-level estimation,

causing it to overestimate at smaller urban areas. However, the model worked reasonably

well to capture the moderate to major urban areas in California. Thus, going forward in

subsequent analyses.

5.2.5 Scaling of urban electricity consumption:

Urban population size was used as an indicator to assess the electricity consumption change

in response to urban growth. Urban population has been widely accepted as an effective

determinant of it’s socio-economic characteristics [12]. Quantifiable variation in measurable

urban characteristics has been observed in response to population change. For example,

economic productivity and innovation rates have been observed to increase about 115% with

each doubling of population, while the corresponding increase in the length of electric cable

was only 90% [14]. The productivity, innovation, and wealth in urban areas rise with the

growing population, increasing their attraction, consequently attract more people to urban

areas. This sets off a chain event that allows larger urban areas to grow faster and consume

resources more rapidly than the smaller ones. Urban scaling refers to a power law theory
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Figure 5.3: Relative errors for California MSAs.

that efficiently captures this functional relationship between urban properties and size, which

may be defined as follows (see equation 5.4):

Y (t) = Y0 ×N(t)β (5.4)

Where Y (t) is the quantity of an urban property, Y0 is a normalization constant and N(t)

is the population size at time t, the scaling exponent is denoted by β which indicates the

change in urban property in response to population change. If the per capita quantity at time

t is denoted by y(t) = Y (t)/N , the per-capita change in the said urban property in response

to a fractional population change (∆N/N) can be expressed as ∆y/y ≈ (β− 1)∆N/N . [14].

If β = 1, then ∆y/ = 0, y remains constant, and Y and N exhibit a linear relationship;

signifying no change in the per-capita quantity with respect to population growth. Variables

related to the individualistic needs have displayed such relationship with population size.
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But practically, the scaling exponents of most urban properties differ from this and display

considerable variation [14]. Indicators of economic productivity such as number of patents,

creative occupations, wages, and gross domestic product have been observed to scale super-

linearly (β >1), while infrastructural indicators such as road surface, electrical cable lengths,

number of gas stations, and volume of gasoline sales exhibit sub-linear scaling ( β <1) [13].

At any given value of ∆N/N , y is independent of the initial size N and is a function of β.

This size invariance of scaling exponent allows for its application over all urban areas within

a system, based on their relative differences irrespective of the absolute quantities.

Following equation 5.4, electricity consumption and population size in urban system of

the United States was theorized below (see equation 5.5a).

Ei = ψ0 ×Nβ
i (5.5a)

Where Ei and Ni are respectively the electricity consumption and population of urban

area i, ψ0 is a normalization constant, and β is the scaling exponent. Linear form of the

equation was obtained via log-transforming both sides (see equation 5.5b).

log(Ei) = logψ0 + β × log(Ni) + ε (5.5b)

In equation 5.5b, β is the elasticity measure of the urban scaling representing the expected

percent change in Ei resulting from 1% change in population, and ε is the gaussian noise.

We determined the exponent using natural logs of estimated electricity and population.

As MSAs are made up of adjacent whole counties, they include all non-developed areas

inside the county boundaries. Figure 5.1 highlights the composition of developed and non-

developed areas within MSAs. As the human activities related to electricity consumption

are almost entirely concentrated within the developed areas, population densities based

on geographical areas may provide unreasonable correlation with per capita electricity

consumption. Thus, To explore the relationship between per-capita electricity consumption

and population density, urban population densities were calculated on the basis of developed

area, which was derived from the NLCD data.
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5.3 Results

5.3.1 Comparison of electricity consumption among urban areas

The estimates of electricity consumption for 377 metropolitan regions in the US reveal a stark

contract between large urban centers against the rest. Figure 5.4 represents a proportional

area diagram depicting electricity consumption at each of urban areas, from which it is

evident that handful of urban areas consume a major of electricity. The top 10 MSAs

together consumed around 27% of the total yearly consumption in 2015, while the same

for the bottom 50 MSAs is only around 2.3% (see table 5.2 and 5.3). New York-Newark-

Jersey City metropolitan region is by far the largest consumer of electricity, consuming about

6.5% of the total urban consumption in 2015, followed by the Chicago-Naperville-Elgin, and

Washington-Arlington-Alexandria metropolitan regions. On the other hand, Great Falls,

MT consumed the last amount of electricity, followed by Missoula, MT, and Pocatello, ID.

Figure 5.4: Estimated electricity consumption in MSAs. Each small square is proportional
to consumption, the rectangle circumscribed in thick red line represents total 2015 urban
electricity consumption.
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Table 5.2: Ten urban areas consuming most electricity in 2015.

Urban area Consumption (Mwh) Population
New York-Newark-Jersey City, NY-NJ-PA 142241597 20118063

Chicago-Naperville-Elgin, IL-IN-WI 84860058 9532569
Washington-Arlington-Alexandria, DC-VA-MD-WV 65037566 6078469

Los Angeles-Long Beach-Anaheim, CA 59938373 13268828
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 57474413 6062303

Riverside-San Bernardino-Ontario, CA 40610356 4475437
Boston-Cambridge-Newton, MA-NH 36577646 4766755

Seattle-Tacoma-Bellevue, WA 36455165 3727097
Minneapolis-St. Paul-Bloomington, MN-WI 32393762 3518252

San Francisco-Oakland-Hayward, CA 28057153 4642227

Table 5.3: Ten urban areas consuming least electricity in 2015.

Urban area Consumption (Mwh) Population
Sioux Falls, SD 771264 251889

Las Cruces, NM 759884 213567
Santa Fe, NM 744609 147708

Farmington, NM 736896 118701
Hot Springs, AR 642864 97154

Coeur d’Alene, ID 575655 150364
Rapid City, SD 568878 144059

Pocatello, ID 546068 83911
Missoula, MT 278057 113982

Great Falls, MT 270051 82118

5.3.2 Effect of urbanization on electricity consumption

The scaling of electricity consumption was estimated using equation 5.5b, where Ei is the

estimated electricity consumption in each of 377 MSAs, Ni is the corresponding population

in 2015 and β is the scaling exponent. The regression was found to be significant at 95%

confidence level and the model explained 79% of the variance (R2 = 0.79, F (1,375)1404,

p<0.0001). The scaling exponent indicated an increase of 77% (SE ±2.04%, p<0.0001) in

electricity consumption corresponding to 100% increase in population. The regression fit is

represented in Figure 5.5 (blue line), while the theoretical β = 1 (black dashed)and β = 7/6

(red dashed) lines are included in the graph for distinction the observed pattern from the

theoretical ones.
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Figure 5.5: Scaling of urban electricity consumption and population, MSAs 2015.

5.4 Discussion

In this work, the expected increase in electricity consumption in the United States, in

response to urbanization was analyzed. Such studies are severely hampered due to lack

of suitable data. To overcome this impediment, an electricity consumption model using a

combination of five independent variables, and the 2015 state level electricity sales data as

a proxy for consumption was developed. The estimates were validated against the 2015

California data. This external validation showed an average relative error of 12%. The

subsequent scaling analysis of electricity consumption with urbanization indicated a 77%

increase in electricity consumption corresponding to each doubling of urban population. In

the following paragraphs summarize the research findings and their implications for urban

sustainability.

Estimation of urban electricity consumption: In the first part of this work, an

urban electricity consumption model using four crucial drivers of electricity consumption,

i.e. climate, population, industrial activities, economic standards, was developed. The
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electricity sales, used as a proxy of consumption, was only reported for the states. Thus,

appropriate independent variables, that were also available at the county levels, were required

for downscaling the state level consumptions to urban levels. Moreover, it was intended that

the analysis approach be sufficiently generalizable for other parts of the world. Which further

dictated the variable selection process in this work. Past research in the United States have

utilized California data alone for such analysis [65, 189]. The validation from [189] showed

an 11% mean error against the state level data. Which is comparable to our results with

California urban areas. However, it is should be noted that the state of California is the

second most energy efficient state in the nation [46]. Hence, California energy dynamics may

stand in stark contrast with some of the other states, and using this state specific data in

model development may result in unwanted bias. In this study, state level data and linear

regression based model was used to downscale the consumption to urban levels. California

statistical data was used for an unbiased external validation of the downscaled estimates,

as this is the only statistical data available at this spatial scale. Availability of similar data

from other states would have helped in more robust validation. Some estimation errors were

observed for the smaller MSAs that returned higher relative errors (see figure 5.4). This

is an artifact of the model which was used to downscale the estimates, thus the predictive

accuracy decays for new data points further away from the initial data points, as in the case

of the smaller MSAs. Similar to this patterns, [189] also indicated narrower error margins for

metropolitan counties, indicating the increasing error over less urbanized areas. Therefore,

while this model was found to be effective for large urbanized areas, this approach is not

applicable for semi and non-urban areas. To ensure any estimation errors for individual data

points are are minimized to the fullest possible extend, correction factors at state levels were

used to derive normalized county level electricity consumptions (see equation 5.3c). This part

of the analysis thus demonstrates that urban level electricity consumption may be estimated

using geospatial data modeling approach, and overcome the data scarcity problem.

Scaling of urban electricity consumption: In the second part of this study, the

urban electricity consumption estimates were used to study urban scaling of electricity

consumption in the United States. The analysis showed a sub-linear scaling of urban
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electricity consumption in the United States, which is quite in contrary to the past work

suggesting linear [111] or mildly super-linear [88, 13] scaling. The results presented here

suggest a 77% increase in urban electricity consumption corresponding to 100% increase

in population. From the perspective of economies of agglomeration, instead of return to

scale or increasing returns to scale, the observed pattern indicates a economies of scale

at 23%. This may be interpreted as an evidence that larger cities indeed consume less

electricity per person than the smaller ones. This could be due to their technological

advancements, socio-economic conditions, design and infrastructural characteristics, and

governing policy. The difference between scaling exponents from past work could also

be attributed to the differences in geographies and associated socio-economic processes.

Thus, further analysis of these patterns is required to pinpoint the factors behind this

observed efficiency. Identification and understanding of urban attributes responsible for such

economies of scale may help in developing a global taxonomy of cities, addressing one of the

key research areas of sustainable urban science [166]. The evidence of efficiency is nonetheless

an encouraging indication for the role of cities in combating the negative consequences of

urbanization. However, as a word of caution, it needs to be pointed out that any evidence

of efficiencies need to be interpreted with respect to other associated evidences and not be

used as a justification for further populating the cities. Urban growth driven by efficiency

has theoretically been observed to reach a carrying capacity threshold, beyond which the

growth ceases [13]. This is of great implications for sustainable urbanization, urban growth

is inevitable but the trajectories of future urbanization can be well understood so as to align

the desired sustainability goals with present and future trends.

Bounds of urbanization potential: A plot of urban population density (for detail see

methods section) and the estimate per-capita electricity consumption reveals the limits of

such economies of scale (see figure 5.6). A loess curve has been fit to the data to assist the

reader to follow the trend in data. It may be seen in the plot that maximum efficiency is

gained when urban density increases from 200 to 800 persons/sq. km, resulting in capita

electricity consumption reduction from about 22 Mwh/year/person to 9 Mwh/year/person.

Between 800 and 2000 persons/sq. km the gain is only about 4 Mwh/year/person. Beyond
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the 2000 persons/sq. km mark, the efficiency rapidly diminishes. Similar relationship with

urban density has been documented for several related areas such as household carbon

footprint [100]. High urban density has adverse effects on urban heat islands [147], less

access to green space and safety [40]. Given this fundamental nature of urban systems,

hypothesized by earlier work [13]. These efficiency thresholds may be different for other

urban systems, but it is a fundamental property. Thus, future energy sustainability plans

need to be aware of these limitations and aim for the gains within these specific limits.

Figure 5.6: Per capita electricity consumption and population density, MSAs in the United
States 2015. The black dashed line at y ≈ 5 indicates the lower limit of per-capita electricity
consumption.

To point out the limitations of this work, the weakness of the electricity estimation model

over semi-urban and non-urban areas needs to be mentioned first. Due to the lack of urban

energy data on urban scales, a linear model to downscale energy consumption at county levels.

Linear models have been widely used in such conditions among other common regression

methods [193]. However, as the model was calibrated using state level data, smaller counties

are much beyond the data range which caused higher estimation error. Similar analysis

using actual data, if it becomes available, could reveal specific insights not obtained from
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regression predictions.Secondly, this study did not include any other geographic variability

other than climate, however other specific geographical variables may be included in future

work. Indicators for local energy policies, which can be a strong determinant, was not

included in this work.

5.5 Conclusion

This work makes two significant contributions. First, a simple geospatial data driven model

to downscale urban electricity consumption from state levels to urban levels was developed

for the United States. The validation results showed acceptable results, coparable with

past work. This shows an approach to overcome the scarcity of statistical data in urban

energy consumption. Second, the expected change in electricity consumption in response

to urbanization was explored. The evidences of economies of scale in urban electricity

consumption was observed, with an efficiency of around 23%. While this is an encouraging

sign of prospects of leveraging urbanization to lower per capita energy consumption, however

this should not be considered as a limitless opportunity for efficiency. The subsequent

analysis also shows that the efficiency slows down and eventually diminishes at certain

population density thresholds in the United States urban system. This work identifies a

trend but further work in this area need to be carried out to identify the specific factors

leading to the observed energy efficiency. This can lead to development of taxonomy of cities

with respect to energy consumption and help sustainable urban science. Also, availability of

energy consumption data on urban scales will help in identification of finer trends that are

not discernible through estimation models.
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Chapter 6

Conclusion

Urbanization is a hallmark of the human civilization in post-industrial revolution era. Urban

areas act as the massive socio-economic engines of the society. Given their diverse roles,

urban areas can be expected to grow at the present rate in the foreseeable future. However,

due to the adverse effects of urbanization on the environment and human well-being, it has

become critical to find ways to ensure that the socio-economic growth follows an environment

and natural resource-friendly manner. Worldwide, 75% of the total primary energy supply

is consumed in urban areas which causes the release of around 70% of the world’s energy-

related carbon-di-oxide emissions. Electricity is the fastest growing energy fuel by end-

usage, and it is expected to contribute to about 40% of the growth in total energy end-

usage by 2040. Given the increasing market share of the electricity, ensuring access to

reliable and long-lasting electricity supply while minimizing the environmental footprint

of electricity generation pathways are critical energy sustainability challenges. Cities are

dynamic entities, where the interplay of social, economic, and technical parameters shape

the electricity consumption profiles. Most of the past studies have focused on national and

regional level correlation analysis between urbanization and electricity consumption, which

notes an overall positive relationship between them. However, these studies do not elucidate

much detail about the urban systems of these countries. Scholars have argued that the

struggle for sustainability will either be won or lost in urban areas. Thus energy-related

studies need to be focused on the city scale.
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One of the major hindrance to urban level energy analysis is the lack of appropriate

data. The energy statistics mechanisms, all around the world, are still nation or region-

centric. This practice severely limits the potential of implementation and evaluation of

energy efficiency measures, and future capacity building. While a there are a few initiatives

starting to shape up, such as the Energy Data initiative in the United States, or the World

Bank’s Open Energy Data initiative, currently operating in African cities of Accra, Ghana

and Nairobi, Kenya. However, the availability of energy data across an urban parameter

with uniform detail has not yet been reached. Under these circumstances, this dissertation

work has made an effort to explore the critical question of whether geospatial data-driven

approaches can fill this data void and answer some of the pressing questions on urban energy

sustainability. In order to address this broad research question, three research objectives

were identified and answered in this dissertation. The following paragraphs summarize the

research questions, and the insights gathered from their exploration.

Urban influence on the global arena is a well-established fact; this necessitates iden-

tification and measurements of urban areas for any analysis of their impacts. Satellite

image derived urban area maps are far more efficient than the traditional surveys due to

high temporal granularity and low costs. Yet, these datasets severely diverge in the way

they depict and quantify of urban lands. To understand the effects of urbanization on

environmental as well as socio-economic systems, accurate and unambiguous quantification of

urban areas at multiple spatial scales is a necessary first step. As the urban area maps derived

from high-resolution satellite images offer much more spatial detail than their coarse and

low-resolution counterparts, the performance of such high-resolution datasets was analyzed

at multiple scales in the third chapter of this dissertation. The analysis, conducted in

Egypt and Taiwan at national and regional scales, indicate that the estimated urban extents

severely fluctuate amongst these datasets. The variations also display an increasing pattern

from national to regional scales, with the regional level variations reaching as high as 900%

in Egypt and about 550% in Taiwan. The next step in this analysis was to explore the

relationship between the morphological characteristics of the urban landscape and the mutual

agreements of these datasets. The agreement-disagreement maps, for these two countries

indicated that the agreements amongst these datasets regarding detection of urban lands
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quickly diminishes from the urban core to peripheral areas. Landscape morphology analysis

highlights that complexity and disaggregation of urban patches contribute to increased inter-

dataset disagreements; while increasing contiguity results in higher inter-dataset agreements.

Since the high complexity and disaggregation of landscape are more prevalent in peri-urban

areas as well as informal settlements within urban infilling zones; these areas may therefore

not be identified by all datasets alike. Lack of spatial resolution in the coarse and medium-

resolution datasets will, therefore, hinder the accurate detection of these vital areas. These

areas may lack electricity access, or consume much more electricity than expected due to

the nature of the informal economy. Their non-detection may simply omit one of the most

vibrant components of moder urbanization from any analysis. The insights from this analysis

firmly highlight the importance of high-resolution urban mapping for energy-related studies.

Continued application of these high-resolution datasets could also lead to a convergence in

global urban area estimations.

The problem of urban data scarcity is much severe in the developing and under-developed

nations. The lack of information severely hinders analysis of the lack of electricity access,

and the management and planning of energy systems. Thus, an attempt was made in the

fourth chapter to utilize satellite image derived proxy measures to understand electricity

consumption patterns in Johannesburg, Sana’a, and Ndola, which represents three cities

from the developing nation. As the high-resolution satellite images are capable of recording

the size, shape, and orientation of urban structures, this has been exploited by past

studies to classify urban structures based on their visual characteristics on satellite images.

These capabilities were used to develop a generalizable urban taxonomy, consisting of five

classes of settlements. These classes roughly represent high-density, small sized, and non-

orthogonally laid out residential structures which are most likely informal; low to medium

density residential and commercial buildings; low density urban and suburban houses; large

buildings which are most likely of commercial and industrial usage; and lastly the rural

houses. This settlement inventory was then linked to nighttime lights emission from these

areas. The nighttime lights are a well-known proxy of socio-economic activities including

electricity consumption. Regression analyses indicate that in Johannesburg the commercial

and industrial buildings consume the most electricity, while in Ndola it is the medium
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to low density, medium sized urban buildings that are associated with maximum light

emission. However, in the case of Sana’a, it was observed that both the large commercial and

administrative buildings as well as small and likely informal settlements that correlate with

maximum light emission. This trend is not unexpected given the current political unrest in

Yemen that led to the significant internal displacement of people. However, this does indicate

that high-resolution image derived metrics can identify minute patterns within urban areas.

The results show an association between energy consumption, which is approximated using

the nighttime lights as a proxy, and building stocks in these three cities. The planners

can use them to promote energy access and efficiency, identify the areas requiring attention

in an informed manner. It was also observed that there were some pockets of settlements,

especially in Ndola and Sana’a, where nighttime lights data did not detect any light emission.

The is a likely indication of lack of access to electricity in those areas, which could again

help the planning authorities in focusing their attention and resources more accurately and

effectively.

Beyond the immediate issue of the identification of urban areas and patterns of urban

electricity consumption, this dissertation work was also aimed at exploring the role of

geospatial data-driven modeling to address energy sustainability questions. Thus, the effect

of urbanization on electricity consumption in the urban system of the US was addressed in the

fifth chapter of this work. The United States is one of the most urbanized nations in the world

and the second largest consumer of electricity. To overcome the lack of urban electricity data,

a predictive model was developed as a function of local climate, economy, industrial activity,

and population. The census defined metropolitan statistical areas were chosen to represent

urban areas, which was found to be most consistent with the functional definition of urban

areas provided by past studies. The model estimates were found to have an average error

of 12% upon validation against the California data, which is the only available county level

statistical data in the US. The national electricity data was only available at the state level.

This effectively forced the regression model to make predictions in the data range beyond its

original configuration, which contributed to some of the errors. The urban population size

is a well-known indicator of urbanization, the analysis between urbanization and electricity

consumption revealed that in the United States, each doubling of the urban population would
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lead to a 77% increase in electricity consumption. This evidence of 23% energy savings is

an indication that larger cities could help to reduce the per capita consumption levels. This

finding that urbanization could be used to lower energy consumption is vital for urban

sustainability. However, the next question that comes with this finding is how large the

urban areas can grow? To answer this, the focus was turned to urban population density,

a crucial factor in determining urban energy profiles. Subsequent analysis shows that by

increasing population density from 200 to 800 persons/sq. km urban areas can lower per

capita annual electricity consumption from 22 to 9 MWh. However, between 800 to 200

persons/sq. km., the potential for electricity efficiency is only 4 MWh/person/Year. Beyond

the density of 2,000 persons/sq. km., there is almost no efficiency to be gained. This is

aligned with the theoretical hypothesis that efficiency driven urban growth eventually comes

to a limiting stage [13]. The results highlight the potential of urbanization to alleviate energy

sustainability challenges along with the limits of these opportunities, such insights may be

used by urban planners and energy policy makers in their energy sustainability efforts.

6.1 Uncertainties

The main focus of this work pertains to utilization of geospatial datasets and modeling to

support urban energy related studies. The initial part of this work addresses the issue of

mutual consistencies of global and regional human settlement datasets. As these datasets

mark the human presence on the face of the Earth, accuracies of such measurements assume

paramount importance. There is an urgent need for convergence in these measures, and such

goal can only be achieved through multi-scale analysis amongst datasets. While LandScan

SL employs a rigorous manual quality control, this dataset can be thought of as reference

quality. Thus, the analysis of mutual consistencies in the first part of this study was limited

to comparison and contrast among the datasets. However, not all the datasets employ

similar quality control measures which can introduce random elements into such analysis.

The application of satellite image derived human settlement inventories have been indicated

as a potential metric for assessing urban socio-economic dynamics in the past. The work

presented in the fourth chapter presents a five class settlement typology for three cities in the
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developing world, namely Johannesburg, South Africa; Ndola, Zambia; and Sana’a, Yemen.

However, more cities need to be included into such analysis to develop a more generalizable

settlement inventory purely based on the data. The small sample size of the rural type

settlement in Ndola, Zambia alongwith non-detection of much lights from these buildings

have resulted in statistically insignificant coefficients. Such uncertainties can be avoided

by including more cities from a country into the analysis. Also, the relationship between

nighttime lights and human activities are mediated by cultural and economic factors. It is

assumed, however, that the effects of such non-stationarity is minimal within a particular

city. Lastly, as the nationwide electricity data was only available at state levels, the regression

model in fifth chapter was used to make out-of-sample predictions. This has resulted in some

systematic errors where the smaller MSA’s were overestimated.

6.2 Limitations

While discussing the limitations of this work, the following points needs to be mentioned:

• Firstly, the LandScan SL is going through a continuous maturation process. Thus, its

availability as a global coverage is presently being worked on. Availability of a global

coverage will allow testing the potential of this dataset alongside others over more

geographies, and at region, nation, to continental scale.

• In the intra-urban electricity consumption pattern analysis, the nighttime lights data

was found deficient in capturing lights from some parts of the three cities, especially

in Sana’a, Yemen, and Ndola, Zambia. This could either be due to lack of access

or due to a combination of late overpass time of VIIRS satellite and socio-economic

conditions leading to lights being turned off during data acquisition. The reliability

of power grids might also have played a role. The coefficients of determination in the

regression developed for Johannesburg was found to be much weaker than the other

two. This may be interpreted as is an effect of highly mixed land-use in some areas of

Johannesburg city. The mixed land-use may result in nighttime lights signals associated

with an economic activity that does not always match with the physical appearance
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driven taxonomy of the buildings. For example, much higher light emission from a

building that houses both residential and commercial activities. These factors caused

likely confounded the data and subsequent analysis.

• The limitations in urban electricity estimation model lies in its weakness over semi-

urban and non-urban areas. Due to the lack of energy data at urban scales, the linear

model was used to downscale energy consumption at urban levels. An Analysis using

actual urban statistical data could reveal specific insights not obtained from regression

predictions. Also, due to the limited sample size (n=50) which restricts the number of

independent variables in the model, no other geographic variable other than climate

was included in the study. However, other location specific geographical variables

may be included in future work to better incorporate geographical effects on electricity

consumption. Policy indicators could also be used to give model more flexibility. Urban

level statistical datasets, if they become available, may help inclusion of many more

pertinent variables in future research.

6.3 Major contributions

This dissertation work highlights the potential geospatial data, especially high-resolution

image derived datasets, and modeling in understanding urban electricity consumption

patterns. The major contributions made in this dissertation are:

1. This is work highlights mutual disagreements in the identification of urban areas

and their measurements among global and regional datasets, at multiple scales; and

illustrates how urban landscape morphology affects the level of disagreements. This

insight could be used to choose appropriate urban areas datasets for subsequent

analysis by future researchers. The results also establish the strength of high-resolution

mapping in urban pattern detection.

2. A method has been presented that highlights the use of complimentary high and

low-resolution satellite datasets in understanding electricity consumption patterns in

data starved regions. Such methods could be rapidly deployed by urban planners to
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develop and visualize an intra-urban energy consumption map, to be used for planning

purposes.

3. An urban electricity consumption model has been presented. The subsequent analysis

using model estimates reveal that the urban system in the US provides an opportunity

for electricity efficiency. The limits within which such efficiency can be realized has

also been pointed out. These insights could prove valuable urban energy sustainability

6.4 Future research directions

The future research with regards to the present study will be focused in the following

directions:

1. Application-focused comparisons of human settlement datasets need to be carried out.

The outcomes can be checked against known data to identify ideal data for specific

applications. This may make a strong case for high-resolution data to other domains.

2. Availability of micro-census data can be highly beneficial to develop empirical rela-

tionships between settlement types and their socio-economic characteristics. Through

analysis of different economies more generalizable empirical relationships can be

developed.

3. Urban scaling analysis needs to be done using actual statistical data; strong cases need

to be made for collection and publication of such data. Estimates can provide general

direction, but subtle variations may get masked due to generalizations and assumptions

in the model.

4. Urban socio-economic, technological characteristics, and existing energy policies need

to be analyzed against their energy profiles to identify the crucial variables for

sustainability and to develop specific sustainability plans.
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innovation, scaling, and the pace of life in cities. Proceedings of the national academy of

sciences, 104(17):7301–7306. 34, 35, 100, 105, 106, 112

[14] Bettencourt, L. M. A., Lobo, J., Strumsky, D., and West, G. B. (2010). Urban scaling

and its deviations: Revealing the structure of wealth, innovation and crime across cities.

PLOS ONE, 5(11):1–9. 98, 99, 100

[15] Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of

photogrammetry and remote sensing, 65(1):2–16. 20

[16] Boyd, D. S. and Foody, G. M. (2011). An overview of recent remote sensing and gis

based research in ecological informatics. Ecological Informatics, 6(1):25–36. 23

[17] Boyle, S. A., Kennedy, C. M., Torres, J., Colman, K., Pérez-Estigarribia, P. E., and Noé,
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[170] Ruiz, L., Fdez-Sarŕıa, A., and Recio, J. (2004). Texture feature extraction for

classification of remote sensing data using wavelet decomposition: a comparative study.

In 20th ISPRS Congress, volume 35, part B, pages 1109–1114. 71

[171] Sadorsky, P. (2013). Do urbanization and industrialization affect energy intensity in

developing countries? Energy Economics, 37:52–59. 33

[172] Samaniego, H. and Moses, M. E. (2008). Cities as organisms: Allometric scaling of

urban road networks. Journal of Transport and Land use, 1(1):21–39. 34

[173] Schneider, A., Friedl, M. A., McIver, D. K., and Woodcock, C. E. (2003). Mapping

urban areas by fusing multiple sources of coarse resolution remotely sensed data.

Photogrammetric Engineering & Remote Sensing, 69(12):1377–1386. 22, 40

[174] Schneider, A., Friedl, M. A., and Potere, D. (2010). Mapping global urban areas using

modis 500-m data: New methods and datasets based on ?urban ecoregions? Remote

Sensing of Environment, 114(8):1733–1746. 22, 40

[175] Schneider, A. and Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive?

a comparison of urban growth in twenty-five global cities using remotely sensed data,

pattern metrics and census information. Urban Studies, 45(3):659–692. 20, 39, 53

[176] Schwarz, N., Lautenbach, S., and Seppelt, R. (2011). Exploring indicators for

quantifying surface urban heat islands of european cities with modis land surface

temperatures. Remote Sensing of Environment, 115(12):3175–3186. 41

[177] Seto, K. (2009). Global urban issues–a primer. In Gamba, H. and Herold, M., editors,

Global mapping of human settlements: Experiences, Data Sets, and Prospects, pages 3–9.

CRC Press. 20, 21, 60

135



[178] Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., Huang, L.,

Inaba, A., Kansal, A., Lwasa, S., et al. (2014). Human settlements, infrastructure and

spatial planning. In Climate Change 2014: Mitigation of Climate Change. IPCC Working

Group III Contribution to AR5. Cambridge University Press. 1, 30, 33, 87, 88

[179] Seto, K. C. and Fragkias, M. (2005). Quantifying spatiotemporal patterns of urban

land-use change in four cities of china with time series landscape metrics. Landscape

Ecology, 20(7):871–888. 53
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A Additional tables for chapter 3

Table A.1: Group means of calculated spatial metrics across agreement classes at 500 meter resolution. (Standard errors are
given in the parenthesis.)

Class
Egypt Taiwan

LSI FRACMN PLADJ LSI FRACMN PLADJ
CL1 2.419 (0.01) 1.046 (0.00) 41.198 (0.29) 2.350 (0.03) 1.025 (0.00) 21.909 (0.50)
CL2 2.410 (0.02) 1.034 (0.00) 32.316 (0.35) 2.206 (0.03) 1.023 (0.00) 20.084 (0.58)
CL3 1.795 (0.02) 1.027 (0.00) 26.415 (0.42) 2.083 (0.04) 1.024 (0.00) 20.239 (0.74)
CL4 1.467 (0.02) 1.029 (0.00) 35.806 (0.90) 1.848 (0.05) 1.033 (0.00) 30.447 (1.29)

Table A.2: Group means of calculated spatial metrics across agreement classes at 300 meter resolution. (Standard errors are
given in the parenthesis.)

Class
Egypt Taiwan

LSI FRACMN PLADJ LSI FRACMN PLADJ
CL1 3.012 (0.02) 1.022 (0.00) 22.799 (0.27) 3.044 (0.04) 1.027 (0.00) 25.585 (0.52)
CL2 2.470 (0.02) 1.020 (0.00) 19.930 (0.30) 2.980 (0.05) 1.025 (0.00) 23.130 (0.53)
CL3 1.975 (0.02) 1.026 (0.00) 27.325 (0.41) 2.746 (0.06) 1.025 (0.00) 22.050 (0.58)
CL4 1.636 (0.03) 1.027 (0.00) 33.326 (0.73) 2.303 (0.06) 1.035 (0.03) 35.151 (1.16)
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Table A.3: Group means of calculated spatial metrics across agreement classes at 38.2 meter resolution. (Standard errors are
given in the parenthesis.)

Class
Egypt Taiwan

LSI FRACMN PLADJ LSI FRACMN PLADJ
CL1 9.258 (0.09) 1.036 (0.00) 50.541 (0.31) 8.986 (0.15) 1.035 (0.00) 52.160 (0.60)
CL2 7.192 (0.08) 1.043 (0.00) 60.917 (0.38) 8.769 (0.21) 1.042 (0.00) 52.631 (0.53)
CL3 5.279 (0.10) 1.052 (0.00) 70.968 (0.43) 9.548 (0.28) 1.049 (0.00) 57.092 (0.52)
CL4 3.409 (0.07) 1.054 (0.00) 74.361 (0.62) 5.765 (0.19) 1.049 (0.00) 66.899 (0.87)

Table A.4: Group means of calculated spatial metrics across agreement classes at 8 meter resolution. (Standard errors are
given in the parenthesis.)

Class
Egypt Taiwan

LSI FRACMN PLADJ LSI FRACMN PLADJ
CL1 11.959 (0.13) 1.059 (0.00) 72.873 (0.28) 12.932 (0.23) 1.061 (0.00) 83.099 (0.32)
CL2 10.494 (0.13) 1.069 (0.00) 80.906 (0.30) 12.291 (0.33) 1.071 (0.00) 84.046 (0.34)
CL3 9.045 (0.19) 1.076 (0.00) 87.517 (0.29) 13.899 (0.45) 1.075 (0.00) 86.512 (0.32)
CL4 5.963 (0.17) 1.075 (0.00) 89.256 (0.36) 7.535 (0.27) 1.071 (0.03) 90.141 (0.45)
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B Additional tables for chapter 4

Table B.1: ANOVA table for the regression coefficients from the Ndola model.

Settlement Class df Sum sq. Mean Sq F Value Pr(>)F
1 1 26999.6 26999.6 2642.7132 <0.00001∗ ∗ ∗
2 1 12931.5 12931.5 1265.7304 <0.00001∗ ∗ ∗
3 1 7867.6 7867.6 770.0794 <0.00001∗ ∗ ∗
4 1 7376.0 7376.0 721.9655 <0.00001∗ ∗ ∗
5 1 15.6 15.6 1.5291 0.2164

Table B.2: ANOVA table for the regression coefficients from the Sana’a model.

Settlement Class df Sum sq. Mean Sq F Value Pr(>)F
1 1 7632 7632 1789.06 <0.00001∗ ∗ ∗
2 1 44405 44405 10408.71 <0.00001∗ ∗ ∗
3 1 2424 2424 568.21 <0.00001∗ ∗ ∗
4 1 6347 6347 1487.78 <0.00001∗ ∗ ∗
5 1 245 245 57.40 <0.00001∗ ∗ ∗

Table B.3: ANOVA table for the regression coefficients from the Johannesburg model.

Settlement Class df Sum sq. Mean Sq F Value Pr(>)F
1 1 61801 61801 432.445 <0.00001∗ ∗ ∗
2 1 473771 473771 3315.1812 <0.00001∗ ∗ ∗
3 1 87448 87448 611.910 <0.00001∗ ∗ ∗
4 1 1065948 1065948 7458.898 <0.00001∗ ∗ ∗
5 1 6021 6021 42.131 <0.00001∗ ∗ ∗
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