30 research outputs found

    Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices

    Full text link
    Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and low-cost indoor fall detector, called Anti-Fall. For the first time, the CSI phase difference over two antennas is identified as the salient feature to reliably segment the fall and fall-like activities, both phase and amplitude information of CSI is then exploited to accurately separate the fall from other fall-like activities. Experimental results in two indoor scenarios demonstrate that Anti-Fall consistently outperforms the state-of-the-art approach WiFall, with 10% higher detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc

    Outage minimization of energy-harvesting wireless sensor network supported by UAV

    Get PDF
    Due to their adaptability, mobility, and capacity to offer an ideal channel, unmanned aerial vehicles (UAVs) have become a potential option for wireless power transfer and data collection in wireless sensor networks (WSNs). This paper examines energy-constrained WSNs, where data transfer to the data center is facilitated by UAV and sensors rely on radio frequency (RF) energy obtained by a Power Beacon (PB). However, due to energy limitations, sensors can only send data using the harvested energy. We consider a WSN in which the nodes are randomly distributed within a circular area, with the PB placed at the center of the WSN. To evaluate the system performance, we consider the dynamic nature of the wireless channel, which includes factors such as signal reflection, scattering, and diffraction. Through numerical analysis and simulations, the main aim is to identify the optimal system parameters that minimize the outage probability. This analysis provides valuable insights for designing more effective and reliable energy-harvesting WSNs with UAV as data collector. By leveraging UAV in WSNs, system performance can be improved, ensuring data transmission to destination nodes placed at a large distance from the WSN

    GPU Computing Taxonomy

    Get PDF
    Over the past few years, a number of efforts have been made to obtain benefits from graphic processing unit (GPU) devices by using them in parallel computing. The main advantage of GPU computing is that it provides cheap parallel processing environments for those who need to solve single program multiple data (SPMD) problems. In this chapter, a GPU computing taxonomy is proposed for classifying GPU computing into four different classes depending on different strategies of combining CPUs and GPUs

    A New WRR Algorithm for an Efficient Load Balancing System in IoT Networks under SDN

    Get PDF
    The Internet of Things (IoT) connects various smart objects and manages a vast network using diverse technologies, which present numerous challenges. Software-defined networking (SDN) is a system that addresses the challenges of traditional networks and ensures the centralized configuration of network entities to manage network integrity. Furthermore, the uneven distribution of IoT network load results in the depletion of IoT device resources. To address this issue, traffic must be distributed equally, requiring efficient load balancing to be ensured. This requires the development of an efficient architecture for IoT networks. The main goal of this paper is to propose a novel architecture that leverages the potential of SDN, the clustering technique, and a new weighted round-robin (N-WRR) protocol. The objective of this architecture is to achieve load balancing, which is a crucial aspect in the development of IoT networks as it ensures the network’s efficiency. Furthermore, to prevent network congestion and ensure efficient data flow by redistributing traffic from overloaded paths to less burdened ones. The simulation results demonstrate that our N-WRR algorithm achieves highly efficient load balancing compared to the simple weighted round-robin (WRR), and without the application of any load balancing method. Furthermore, our proposed approach enhances throughput, data transfer, and bandwidth availability. This results in an increase in processed requests

    Rhymes: a shared virtual memory system for non-coherent tiled many-core architectures

    Get PDF
    The rising core count per processor is pushing chip complexity to a level that hardware-based cache coherency protocols become too hard and costly to scale. We need new designs of many-core hardware and software other than traditional technologies to keep up with the ever-increasing scalability demands. The Intel Single-chip Cloud Computer (SCC) is a recent research processor exemplifying a new cluster-on-chip architecture which promotes a software-oriented approach instead of hardware support to implementing shared memory coherence. This paper presents a shared virtual memory (SVM) system, dubbed Rhymes, tailored to such a new processor kind of non-coherent and hybrid memory architectures. Rhymes features a two-way cache coherence protocol to enforce release consistency for pages allocated in shared physical memory (SPM) and scope consistency for pages in per-core private memory. It also supports page remapping on a per-core basis to boost data locality. We implement Rhymes on the SCC port of the Barrelfish OS. Experimental results show that our SVM outperforms the pure SPM approach used by Intel's software managed coherence (SMC) library by up to 12 times, with superlinear speedups (due to L2 cache effect) noted for applications with strong data reuse patterns.published_or_final_versio

    SDN-Based Approach to Evaluate the Best Controller: Internal Controller NOX and External Controllers POX, ONOS, RYU

    Get PDF
    Software Defined Networking (SDN) is a rising technique to deal with replace patrimony network (coupled hardware and software program) control and administration by separating the control plane (software program) from the information plane (hardware). It gives adaptability to the engineers by influencing the focal control to plane straightforwardly programmable. Some new difficulties, for example, single purpose of disappointment, may be experienced because of the original control plane. SDN concentrated on flexibility where the security of the system was not essentially considered. It promises to give a potential method to present Quality of Service (QoS) ideas in the present correspondence networks. SDN automatically changes the behavior and functionality of system devices utilizing a single state program. Its immediate OpenFlow is planned by these properties. The affirmation of Quality of Service (QoS) thoughts winds up possible in a versatile and dynamic path with SDN. It gives a couple of favorable circumstances including, organization and framework versatility, improved exercises and tip-top performances. This research work will concentrate on the Quality of Service (QoS) like delay, response time, throughput, and other execution assessing parameters of our proposed arrange design using internal controller, e.g., Network Operating System (NOX) and external controller, e.g., Pythonic Network Operating System (POX), Open Network Operating System (ONOS) and RYU. Regardless of the way that thoughts of QoS, they did not comprehend the correspondence systems with high utilization, diverse quality and acknowledgment costs. It will focus on the outside controller and inner controller execution in the proposed architecture. These perceptions of switch diversity may give SDN application engineer's bits of knowledge while acknowledging QoS ideas in an SDN-based system

    FENet: An SDN-based scheme for virtual network management

    Get PDF
    Virtual networking is vital to efficient resource management in Clouds, and it is in fact one of the main services provided by many Cloud Computing platforms. Virtual network management needs to meet specific requirements, including tenant isolation and adaption to virtual machines' lifecycle. Most of the existing schemes for virtual network management are based on the use of overlay networks in order to achieve a desirable degree of flexibility. However, these schemes suffer from a common limit, i.e. relatively high performance penalty due to a complicated forwarding process. We address this performance concern by developing a new management scheme, FENet, which makes use of Software-Defined Networks (SDN) to create virtual networks and manage them via the SDN controller programs. We present the design of an SDN controller, with the definition of flow entry rules based on the OpenFlow protocol and the specification of a routing algorithm. The results from our experimental evaluation show that our SDN-based prototype can control virtual network interconnections and tenant isolation appropriately. FENet achieves about 30% better network performance than the management scheme based on OpenVPN and lower latency in comparison with the traditional bridging scheme

    Detection of Essential Tremor at the S -Band

    Get PDF
    Essential tremor (ET) is a neurological disorder characterized by rhythmic, involuntary shaking of a part or parts of the body. The most common tremor is seen in the hands/arms and fingers. This paper presents an evaluation of ETs monitoring based on finger-to-nose test measurement as captured by small wireless devices working in shortwave or S-band frequency range. The acquired signals in terms of amplitude and phase information are used to detect a tremor in the hands. Linearly transforming raw phase data acquired in the S-band were carried out for calibrating the phase information and to improve accuracy. The data samples are used for classification using support vector machine algorithm. This model is used to differentiate the tremor and nontremor data efficiently based on secondary features that characterize ET. The accuracy of our measurements maintains linearity, and more than 90% accuracy rate is achieved between the feature set and data samples

    Channel State Information from pure communication to sense and track human motion: A survey

    Get PDF
    Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology
    corecore