76 research outputs found

    Compete to Learn: Toward Cybersecurity as a Sport

    Get PDF
    To support the workforce gap of skilled cybersecurity professionals, gamified pedagogical approaches for teaching cybersecurity have exponentially grown over the last two decades. During this same period, e-sports developed into a multi-billion dollar industry and became a staple on college campuses. In this work, we explore the opportunity to integrate e-sports and gamified cybersecurity approaches into the inaugural US Cyber Games Team. During this tenure, we learned many lessons about recruiting, assessing, and training cybersecurity teams. We share our approach, materials, and lessons learned to serve as a model for fielding amateur cybersecurity teams for future competition

    What Are Cybersecurity Education Papers About? A Systematic Literature Review of SIGCSE and ITiCSE Conferences

    Get PDF
    Cybersecurity is now more important than ever, and so is education in this field. However, the cybersecurity domain encompasses an extensive set of concepts, which can be taught in different ways and contexts. To understand the state of the art of cybersecurity education and related research, we examine papers from the ACM SIGCSE Technical Symposium and ACM ITiCSE conferences. From 2010 to 2019, a total of 1,748 papers were published at these conferences, and 71 of them focus on cybersecurity education. The papers discuss courses, tools, exercises, and teaching approaches. For each paper, we map the covered topics, teaching context, evaluation methods, impact, and the community of authors. We discovered that the technical topic areas are evenly covered (the most prominent being secure programming, network security, and offensive security), and human aspects, such as privacy and social engineering, are present as well. The interventions described in SIGCSE and ITiCSE papers predominantly focus on tertiary education in the USA. The subsequent evaluation mostly consists of collecting students' subjective perceptions via questionnaires. However, less than a third of the papers provide supplementary materials for other educators, and none of the authors published their dataset. Our results are relevant for instructors, researchers, and anyone new in the field of cybersecurity education, since they provide orientation in the area, a synthesis of trends, and implications for further research. The information we collected and synthesized from individual papers are organized in a publicly available dataset

    Cyber Ranges and TestBeds for Education, Training, and Research

    Get PDF
    In recent years, there has been a growing demand for cybersecurity experts, and, according to predictions, this demand will continue to increase. Cyber Ranges can fill this gap by combining hands-on experience with educational courses, and conducting cybersecurity competitions. In this paper, we conduct a systematic survey of ten Cyber Ranges that were developed in the last decade, with a structured interview. The purpose of the interview is to find details about essential components, and especially the tools used to design, create, implement and operate a Cyber Range platform, and to present the findings

    The Threat of Offensive AI to Organizations

    Get PDF
    AI has provided us with the ability to automate tasks, extract information from vast amounts of data, and synthesize media that is nearly indistinguishable from the real thing. However, positive tools can also be used for negative purposes. In particular, cyber adversaries can use AI to enhance their attacks and expand their campaigns. Although offensive AI has been discussed in the past, there is a need to analyze and understand the threat in the context of organizations. For example, how does an AI-capable adversary impact the cyber kill chain? Does AI benefit the attacker more than the defender? What are the most significant AI threats facing organizations today and what will be their impact on the future? In this study, we explore the threat of offensive AI on organizations. First, we present the background and discuss how AI changes the adversary’s methods, strategies, goals, and overall attack model. Then, through a literature review, we identify 32 offensive AI capabilities which adversaries can use to enhance their attacks. Finally, through a panel survey spanning industry, government and academia, we rank the AI threats and provide insights on the adversaries

    GoibhniUWE: A lightweight and modular container-based cyber range

    Get PDF
    Cyberattacks are rapidly evolving both in terms of techniques and frequency, from low-level attacks through to sophisticated Advanced Persistent Threats (APTs). There is a need to consider how testbed environments such as cyber ranges can be readily deployed to improve the examination of attack characteristics, as well as the assessment of defences. Whilst cyber ranges are not new, they can often be computationally expensive, require an extensive setup and configuration, or may not provide full support for areas such as logging or ongoing learning. In this paper, we propose GoibhniUWE, a container-based cyber range that provides a flexible platform for investigating the full lifecycle of a cyberattack. Adopting a modular approach, users can seamlessly switch out existing, containerised vulnerable services and deploying multiple different services at once, allowing for the creation of complex and realistic deployments. The range is fully instrumented with logging capabilities from a variety of sources including Intrusion Detection Systems (IDSs), service logging, and network traffic captures. To demonstrate the effectiveness of our approach, we deploy the GoibhniUWE range under multiple conditions to simulate various vulnerable environments, reporting on and comparing key metrics such as CPU and memory usage. We simulate complex attacks which span multiple services and networks, with logging at multiple levels, modelling an Advanced Persistent Threat (APT) and their associated Tactics, Techniques, and Procedures (TTPs). We find that even under continuous, active, and targeted deployment, GoibhniUWE averaged a CPU usage of less than 50%, in an environment using four single-core processors, and memory usage of less than 4.5 GB

    Design and development considerations of a cyber physical testbed for operational technology research and education

    Get PDF
    Cyber-physical systems (CPS) are vital in automating complex tasks across various sectors, yet they face significant vulnerabilities due to the rising threats of cybersecurity attacks. The recent surge in cyber-attacks on critical infrastructure (CI) and industrial control systems (ICSs), with a 150% increase in 2022 affecting over 150 industrial operations, underscores the urgent need for advanced cybersecurity strategies and education. To meet this requirement, we develop a specialised cyber-physical testbed (CPT) tailored for transportation CI, featuring a simplified yet effective automated level-crossing system. This hybrid CPT serves as a cost-effective, high-fidelity, and safe platform to facilitate cybersecurity education and research. High-fidelity networking and low-cost development are achieved by emulating the essential ICS components using single-board computers (SBC) and open-source solutions. The physical implementation of an automated level-crossing visualised the tangible consequences on real-world systems while emphasising their potential impact. The meticulous selection of sensors enhances the CPT, allowing for the demonstration of analogue transduction attacks on this physical implementation. Incorporating wireless access points into the CPT facilitates multi-user engagement and an infrared remote control streamlines the reinitialization effort and time after an attack. The SBCs overwhelm as traffic surges to 12 Mbps, demonstrating the consequences of denial-of-service attacks. Overall, the design offers a cost-effective, open-source, and modular solution that is simple to maintain, provides ample challenges for users, and supports future expansion.</p
    corecore