9 research outputs found

    An investigation into sustainable e-government in Saudi Arabia

    Get PDF
    Sustainable e-government has become an important consideration for governments. However, existing e-government literature on sustainability is sparse. A quantitative empirical study was conducted to survey the perceptions of Saudi Arabian citizens with regard to the characteristics of sustainable e-government. Survey data gathered from 442 respondents were analysed to investigate their understanding of the importance of each of these characteristics, allowing the identification of a set of key characteristics likely to influence citizens’ utilization of sustainable e-government services. The study also investigated users’ perceptions of three key barriers to the ability of policymakers to develop and adopt sustainable e-government systems. The results indicate that the characteristics perceived to be the most significant were usability, security, performance, transparency and flexibility, whereas respondents were relatively unconcerned with the social, environmental and economic dimensions of the impact of the software used in e-government systems. This study has also shed new light on experts’ perceptions by investigating sustainable e-government features from their perspective. Data gathered from 83 respondents affirms the importance of sustainable e-government, the importance of cooperation between software development department and government agencies during designing and using sustainable e-government, and the influence of sustainability qualities on e-government. These results will be utilised in future as part of a framework for evaluating sustainable e-government

    Review of Serious Energy Games : Objectives, Approaches, Applications, Data Integration, and Performance Assessment

    Get PDF
    In recent years, serious energy games (SEGs) garnered increasing attention as an innovative and effective approach to tackling energy-related challenges. This review delves into the multifaceted landscape of SEG, specifically focusing on their wide-ranging applications in various contexts. The study investigates potential enhancements in user engagement achieved through integrating social connections, personalization, and data integration. Among the main challenges identified, previous studies overlooked the full potential of serious games in addressing emerging needs in energy systems, opting for oversimplified approaches. Further, these studies exhibit limited scalability and constrained generalizability, which poses challenges in applying their findings to larger energy systems and diverse scenarios. By incorporating lessons learned from prior experiences, this review aims to propel the development of SEG toward more innovative and impactful directions. It is firmly believed that positive behavior changes among individuals can be effectively encouraged by using SEG

    A GIS Open-Data Co-Simulation Platform for Photovoltaic Integration in Residential Urban Areas

    Get PDF
    The rising awareness of environmental issues and the increase of renewable energy sources (RES) has led to a shift in energy production toward RES, such as photovoltaic (PV) systems, and toward a distributed generation (DG) model of energy production that requires systems in which energy is generated, stored, and consumed locally. In this work, we present a methodology that integrates geographic information system (GIS)-based PV potential assessment procedures with models for the estimation of both energy generation and consumption profiles. In particular, we have created an innovative infrastructure that co-simulates PV integration on building rooftops together with an analysis of households’ electricity demand. Our model relies on high spatiotemporal resolution and considers both shadowing effects and real-sky conditions for solar radiation estimation. It integrates methodologies to estimate energy demand with a high temporal resolution, accounting for realistic populations with realistic consumption profiles. Such a solution enables concrete recommendations to be drawn in order to promote an understanding of urban energy systems and the integration of RES in the context of future smart cities. The proposed methodology is tested and validated within the municipality of Turin, Italy. For the whole municipality, we estimate both the electricity absorbed from the residential sector (simulating a realistic population) and the electrical energy that could be produced by installing PV systems on buildings’ rooftops (considering two different scenarios, with the former using only the rooftops of residential buildings and the latter using all available rooftops). The capabilities of the platform are explored through an in-depth analysis of the obtained results. Generated power and energy profiles are presented, emphasizing the flexibility of the resolution of the spatial and temporal results. Additional energy indicators are presented for the self-consumption of produced energy and the avoidance of CO2 emission

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Social Media Text Processing and Semantic Analysis for Smart Cities

    Get PDF
    With the rise of Social Media, people obtain and share information almost instantly on a 24/7 basis. Many research areas have tried to gain valuable insights from these large volumes of freely available user generated content. With the goal of extracting knowledge from social media streams that might be useful in the context of intelligent transportation systems and smart cities, we designed and developed a framework that provides functionalities for parallel collection of geo-located tweets from multiple pre-defined bounding boxes (cities or regions), including filtering of non-complying tweets, text pre-processing for Portuguese and English language, topic modeling, and transportation-specific text classifiers, as well as, aggregation and data visualization. We performed an exploratory data analysis of geo-located tweets in 5 different cities: Rio de Janeiro, S\~ao Paulo, New York City, London and Melbourne, comprising a total of more than 43 million tweets in a period of 3 months. Furthermore, we performed a large scale topic modelling comparison between Rio de Janeiro and S\~ao Paulo. Interestingly, most of the topics are shared between both cities which despite being in the same country are considered very different regarding population, economy and lifestyle. We take advantage of recent developments in word embeddings and train such representations from the collections of geo-located tweets. We then use a combination of bag-of-embeddings and traditional bag-of-words to train travel-related classifiers in both Portuguese and English to filter travel-related content from non-related. We created specific gold-standard data to perform empirical evaluation of the resulting classifiers. Results are in line with research work in other application areas by showing the robustness of using word embeddings to learn word similarities that bag-of-words is not able to capture

    Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization

    Get PDF
    In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems
    corecore