1,171 research outputs found

    Human-centered machine learning through interactive visualization

    Get PDF
    The goal of visual analytics (VA) systems is to solve complex problems by integrating automated data analysis methods, such as machine learning (ML) algorithms, with interactive visualizations. We propose a conceptual framework that models human interactions with ML components in the VA process, and makes the crucial interplay between automated algorithms and interactive visualizations more concrete. The framework is illustrated through several examples. We derive three open research challenges at the intersection of ML and visualization research that will lead to more effective data analysis

    Conceptual design framework for information visualization to support multidimensional datasets in higher education institutions

    Get PDF
    Information Visualization (InfoVis) enjoys diverse adoption and applicability because of its strength in solving the problem of information overload inherent in institutional data. Policy and decision makers of higher education institutions (HEIs) are also experiencing information overload while interacting with students‟ data, because of its multidimensionality. This constraints decision making processes, and therefore requires a domain-specific InfoVis conceptual design framework which will birth the domain‟s InfoVis tool. This study therefore aims to design HEI Students‟ data-focused InfoVis (HSDI) conceptual design framework which addresses the content delivery techniques and the systematic processes in actualizing the domain specific InfoVis. The study involved four phases: 1) a users‟ study to investigate, elicit and prioritize the students‟ data-related explicit knowledge preferences of HEI domain policy. The corresponding students‟ data dimensions are then categorised, 2) exploratory study through content analysis of InfoVis design literatures, and subsequent mapping with findings from the users‟ study, to propose the appropriate visualization, interaction and distortion techniques for delivering the domain‟s explicit knowledge preferences, 3) conceptual development of the design framework which integrates the techniques‟ model with its design process–as identified from adaptation of software engineering and InfoVis design models, 4) evaluation of the proposed framework through expert review, prototyping, heuristics evaluation, and users‟ experience evaluation. For an InfoVis that will appropriately present and represent the domain explicit knowledge preferences, support the students‟ data multidimensionality and the decision making processes, the study found that: 1) mouse-on, mouse-on-click, mouse on-drag, drop down menu, push button, check boxes, and dynamics cursor hinting are the appropriate interaction techniques, 2) zooming, overview with details, scrolling, and exploration are the appropriate distortion techniques, and 3) line chart, scatter plot, map view, bar chart and pie chart are the appropriate visualization techniques. The theoretical support to the proposed framework suggests that dictates of preattentive processing theory, cognitive-fit theory, and normative and descriptive theories must be followed for InfoVis to aid perception, cognition and decision making respectively. This study contributes to the area of InfoVis, data-driven decision making process, and HEI students‟ data usage process

    Designing a Situational Awareness Information Display: Adopting an Affordance-Based Framework to Amplify User Experience in Environmental Interaction Design

    Get PDF
    User experience remains a crucial consideration when assessing the successfulness of information visualization systems. The theory of affordances provides a robust framework for user experience design. In this article, we demonstrate a design case that employs an affordance-based framework and evaluate the information visualization display design. SolarWheels is an interactive information visualization designed for large display walls in computer network control rooms to help cybersecurity analysts become aware of network status and emerging issues. Given the critical nature of this context, the status and performance of a computer network must be precisely monitored and remedied in real time. In this study, we consider various aspects of affordances in order to amplify the user experience via visualization and interaction design. SolarWheels visualizes the multilayer multidimensional computer network issues with a series of integrated circular visualizations inspired by the metaphor of the solar system. To amplify user interaction and experience, the system provides a three-zone physical interaction that allows multiple users to interact with the system. Users can read details at different levels depending on their distance from the display. An expert evaluation study, based on a four-layer affordance framework, was conducted to assess and improve the interactive visualization design

    Visualising Business Data: A Survey

    Get PDF
    A rapidly increasing number of businesses rely on visualisation solutions for their data management challenges. This demand stems from an industry-wide shift towards data-driven approaches to decision making and problem-solving. However, there is an overwhelming mass of heterogeneous data collected as a result. The analysis of these data become a critical and challenging part of the business process. Employing visual analysis increases data comprehension thus enabling a wider range of users to interpret the underlying behaviour, as opposed to skilled but expensive data analysts. Widening the reach to an audience with a broader range of backgrounds creates new opportunities for decision making, problem-solving, trend identification, and creative thinking. In this survey, we identify trends in business visualisation and visual analytic literature where visualisation is used to address data challenges and identify areas in which industries use visual design to develop their understanding of the business environment. Our novel classification of literature includes the topics of businesses intelligence, business ecosystem, customer-centric. This survey provides a valuable overview and insight into the business visualisation literature with a novel classification that highlights both mature and less developed research directions

    Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review

    Get PDF
    This paper investigates recent research on active learning for (geo) text and image classification, with an emphasis on methods that combine visual analytics and/or deep learning. Deep learning has attracted substantial attention across many domains of science and practice, because it can find intricate patterns in big data; but successful application of the methods requires a big set of labeled data. Active learning, which has the potential to address the data labeling challenge, has already had success in geospatial applications such as trajectory classification from movement data and (geo) text and image classification. This review is intended to be particularly relevant for extension of these methods to GISience, to support work in domains such as geographic information retrieval from text and image repositories, interpretation of spatial language, and related geo-semantics challenges. Specifically, to provide a structure for leveraging recent advances, we group the relevant work into five categories: active learning, visual analytics, active learning with visual analytics, active deep learning, plus GIScience and Remote Sensing (RS) using active learning and active deep learning. Each category is exemplified by recent influential work. Based on this framing and our systematic review of key research, we then discuss some of the main challenges of integrating active learning with visual analytics and deep learning, and point out research opportunities from technical and application perspectives-for application-based opportunities, with emphasis on those that address big data with geospatial components

    Case study: IBM Watson Analytics cloud platform as Analytics-as-a-Service system for heart failure early detection

    Get PDF
    In the recent years the progress in technology and the increasing availability of fast connections have produced a migration of functionalities in Information Technologies services, from static servers to distributed technologies. This article describes the main tools available on the market to perform Analytics as a Service (AaaS) using a cloud platform. It is also described a use case of IBM Watson Analytics, a cloud system for data analytics, applied to the following research scope: detecting the presence or absence of Heart Failure disease using nothing more than the electrocardiographic signal, in particular through the analysis of Heart Rate Variability. The obtained results are comparable with those coming from the literature, in terms of accuracy and predictive power. Advantages and drawbacks of cloud versus static approaches are discussed in the last sections

    Evaluating Interactive Visualization of Multidimensional Data Projection with Feature Transformation

    Get PDF
    There has been extensive research on dimensionality reduction techniques. While these make it possible to present visually the high-dimensional data in 2D or 3D, it remains a challenge for users to make sense of such projected data. Recently, interactive techniques, such as Feature Transformation, have been introduced to address this. This paper describes a user study that was designed to understand how the feature transformation techniques affect user’s understanding of multi-dimensional data visualisation. It was compared with the traditional dimension reduction techniques, both unsupervised (PCA) and supervised (MCML). Thirty-one participants were recruited to detect visual clusters and outliers using visualisations produced by these techniques. Six different datasets with a range of dimensionality and data size were used in the experiment. Five of these are benchmark datasets, which makes it possible to compare with other studies using the same datasets. Both task accuracy and completion time were recorded for comparison. The results show that there is a strong case for the feature transformation technique. Participants performed best with the visualisations produced with high-level feature transformation, in terms of both accuracy and completion time. The improvements over other techniques are substantial, particularly in the case of the accuracy of the clustering task. However, visualising data with very high dimensionality (i.e., greater than 100 dimensions) remains a challenge

    Deep Time-Series Clustering: A Review

    Get PDF
    We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives
    • …
    corecore