210 research outputs found

    Swarm Intelligence for Transmission System Control

    Get PDF
    Many areas related to power system transmission require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics based swarm intelligence can be an efficient alternative. This paper highlights the application of swam intelligence techniques for solving some of the transmission system control problems

    A Comparison of PSO and Backpropagation for Training RBF Neural Networks for Identification of a Power System with STATCOM

    Get PDF
    Backpropagation algorithm is the most commonly used algorithm for training artificial neural networks. While being a straightforward procedure, it suffers from extensive computations, relatively slow convergence speed and possible divergence for certain conditions. The efficiency of this method as the training algorithm of a radial basis function neural network (RBFN) is compared with that of particle swarm optimization, for neural network based identification of a small power system with a static compensator. The comparison of the two methods is based on the convergence speed and robustness of each method

    Neural Networks Based Non-Uniform Scalar Quantizer Design with Particle Swarm Optimization

    Get PDF
    Quantization is a crucial link in the process of digital speech communication. Non-uniform quantizer such as the logarithm quantizers are commonly used in practice. In this paper, a companding non-uniform quantizer is designed using two neural networks to perform the nonlinear transformation. Particle swarm optimization is applied to find the weights of neural networks such that the signal to noise ratio (SNR) is maximized. Simulation results on different speech samples are presented and the proposed quantizer design is compared with the logarithm quantizer for bit rates ranging from 3 to 8

    Hybrid Predictive Models for Accurate Forecasting in PV Systems

    Get PDF
    The accurate forecasting of energy production from renewable sources represents an important topic also looking at different national authorities that are starting to stimulate a greater responsibility towards plants using non-programmable renewables. In this paper the authors use advanced hybrid evolutionary techniques of computational intelligence applied to photovoltaic systems forecasting, analyzing the predictions obtained by comparing different definitions of the forecasting error

    Particle swarm optimization for multimodal functions: a clustering approach

    Get PDF
    The particle swarm optimization (PSO) algorithm is designed to find a single optimal solution and needs some modifications to be able to locate multiple optima on a multimodal function. In parallel with evolutionary computation algorithms, these modifications can be grouped in the framework of niching. In this work, we present a new approach to niching in PSO based on clustering particles to identify niches. The neighborhood structure, on which particles rely for communication, is exploited together with the niche information to locate multiple optima in parallel. Our approach was implemented in thek-means-based PSO (kPSO), which employs the standardk-means clustering algorithm, improved with a mechanism to adaptively identify the number of clusters.kPSO proved to be a competitive solution when compared with other existing algorithms, since it showed better performance on a benchmark set of multimodal functions

    Remote Sensing Data Assimilation in Dynamic Crop Models Using Particle Swarm Optimization

    Get PDF
    A growing world population, increasing prosperity in emerging countries, and shifts in energy and food demands necessitate a continuous increase in global agricultural production. Simultaneously, risks of extreme weather events and a slowing productivity growth in recent years has caused concerns about meeting the demands in the future. Crop monitoring and timely yield predictions are an important tool to mitigate risk and ensure food security. A common approach is to combine the temporal simulation of dynamic crop models with a geospatial component by assimilating remote sensing data. To ensure reliable assimilation, handling of uncertainties in both models and the assimilated input data is crucial. Here, we present a new approach for data assimilation using particle swarm optimization (PSO) in combination with statistical distance metrics that allow for flexible handling of model and input uncertainties. We explored the potential of the newly proposed method in a case study by assimilating canopy cover (CC) information, obtained from Sentinel-2 data, into the AquaCrop-OS model to improve winter wheat yield estimation on the pixel- and field-level and compared the performance with two other methods (simple updating and extended Kalman filter). Our results indicate that the performance of the new method is superior to simple updating and similar or better than the extended Kalman filter updating. Furthermore, it was particularly successful in reducing bias in yield estimation
    • …
    corecore