93 research outputs found

    Dense 3D Object Reconstruction from a Single Depth View

    Get PDF
    In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.Comment: TPAMI 2018. Code and data are available at: https://github.com/Yang7879/3D-RecGAN-extended. This article extends from arXiv:1708.0796

    LOD Generation for Urban Scenes

    Get PDF
    International audienceWe introduce a novel approach that reconstructs 3D urban scenes in the form of levels of detail (LODs). Starting from raw data sets such as surface meshes generated by multi-view stereo systems, our algorithm proceeds in three main steps: classification, abstraction and reconstruction. From geometric attributes and a set of semantic rules combined with a Markov random field, we classify the scene into four meaningful classes. The abstraction step detects and regularizes planar structures on buildings, fits icons on trees, roofs and facades, and performs filtering and simplification for LOD generation. The abstracted data are then provided as input to the reconstruction step which generates watertight buildings through a min-cut formula-tion on a set of 3D arrangements. Our experiments on complex buildings and large scale urban scenes show that our approach generates meaningful LODs while being robust and scalable. By combining semantic segmentation and abstraction it also outperforms general mesh approximation ap-proaches at preserving urban structures

    Discovering Regularity in Point Clouds of Urban Scenes

    Full text link
    Despite the apparent chaos of the urban environment, cities are actually replete with regularity. From the grid of streets laid out over the earth, to the lattice of windows thrown up into the sky, periodic regularity abounds in the urban scene. Just as salient, though less uniform, are the self-similar branching patterns of trees and vegetation that line streets and fill parks. We propose novel methods for discovering these regularities in 3D range scans acquired by a time-of-flight laser sensor. The applications of this regularity information are broad, and we present two original algorithms. The first exploits the efficiency of the Fourier transform for the real-time detection of periodicity in building facades. Periodic regularity is discovered online by doing a plane sweep across the scene and analyzing the frequency space of each column in the sweep. The simplicity and online nature of this algorithm allow it to be embedded in scanner hardware, making periodicity detection a built-in feature of future 3D cameras. We demonstrate the usefulness of periodicity in view registration, compression, segmentation, and facade reconstruction. The second algorithm leverages the hierarchical decomposition and locality in space of the wavelet transform to find stochastic parameters for procedural models that succinctly describe vegetation. These procedural models facilitate the generation of virtual worlds for architecture, gaming, and augmented reality. The self-similarity of vegetation can be inferred using multi-resolution analysis to discover the underlying branching patterns. We present a unified framework of these tools, enabling the modeling, transmission, and compression of high-resolution, accurate, and immersive 3D images

    VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

    Get PDF
    This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining. Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation. First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations. New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models

    Simplification of 2D Polygonal Partitions via Point‐line Projective Duality, and Application to Urban Reconstruction

    Get PDF
    International audienceWe address the problem of simplifying two-dimensional polygonal partitions that exhibit strong regularities. Such partitions are relevant for reconstructing urban scenes in a concise way. Preserving long linear structures spanning several partition cells motivates a point-line projective duality approach in which points represent line intersections, and lines possibly carry multiple points. We propose a simplification algorithm that seeks a balance between the fidelity to the input partition, the enforcement of canonical relationships between lines (orthogonality or parallelism) and a low complexity output. Our methodology alternates continuous optimization by Riemannian gradient descent with combinatorial reduction, resulting in a progressive simplification scheme. Our experiments show that preserving canonical relationships helps gracefully degrade partitions of urban scenes, and yields more concise and regularity-preserving meshes than common mesh-based simplification approaches

    Planar Shape Detection and Regularization in Tandem

    Get PDF
    International audienceWe present a method for planar shape detection and regularization from raw point sets. The geometric modeling and processing of man-made environments from measurement data often relies upon robust detection of planar primitive shapes. In addition, the detection and reinforcement of regularities between planar parts is a means to increase resilience to missing or defect-laden data as well as to reduce the complexity of models and algorithms down the modeling pipeline. The main novelty behind our method is to perform detection and regularization in tandem. We first sample a sparse set of seeds uniformly on the input point set, then perform in parallel shape detection through region growing, interleaved with regularization through detection and reinforcement of regular relationships (coplanar, parallel and orthogonal). In addition to addressing the end goal of regularization, such reinforcement also improves data fitting and provides guidance for clustering small parts into larger planar parts. We evaluate our approach against a wide range of inputs and under four criteria: geometric fidelity, coverage, regularity and running times. Our approach compares well with available implementations such as the efficient RANSAC-based approach proposed by Schnabel and co-authors in 2007

    MULTILEVEL SEMANTIC MODELLING OF URBAN BUILDING SPACE BASED ON THE GEOMETRIC CHARACTERISTICS IN 3D ENVIRONMENT

    Get PDF
    Data model is the basis of all the functions of geographic information system. As the land use structure has become more and more complicated in cities, the traditional geometric model are not able to satisfy the increasing demands of precise urban form recognition and space management. Against the shortcomings, we propose to construct a multilevel semantic model for better description of the spatial composition of each building and the relationships among different buildings. Based on the 3D surface models constructed with photogrammetry and remote sensing methods, the semantic model is generated to depict the urban building space hierarchically, from stories, buildings, subareas to the entire city zone. On the one hand, to figure out the stories of each building, the geometric 3D model is segmented vertically with reference to the compositional structures and spatial distributions of the functional features on the surfaces. On the other hand, to determine the subareas of the city, the buildings are grouped into meaningful clusters according to their geometric shape characteristics. Experiments were conducted on a small district with both commercial and residential buildings, and the effectiveness of the proposed approach and usage of the semantic model were demonstrated

    Real Time Detection of Repeated Structures in Point Clouds of Urban Scenes

    Full text link
    • 

    corecore