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Abstract
We address the problem of simplifying two-dimensional polygonal partitions that exhibit strong regularities. Such partitions are
relevant for reconstructing urban scenes in a concise way. Preserving long linear structures spanning several partition cells
motivates a point-line projective duality approach in which points represent line intersections, and lines possibly carry multiple
points. We propose a simplification algorithm that seeks a balance between the fidelity to the input partition, the enforcement of
canonical relationships between lines (orthogonality or parallelism) and a low complexity output. Our methodology alternates
continuous optimization by Riemannian gradient descent with combinatorial reduction, resulting in a progressive simplification
scheme. Our experiments show that preserving canonical relationships helps gracefully degrade partitions of urban scenes, and
yields more concise and regularity-preserving meshes than common mesh-based simplification approaches.

Keywords: polygonal partition, simplification, projective duality, optimization, urban reconstruction
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1. Introduction

Space partitioning data structures, such as adaptive grids, triangula-
tions or polyhedral partitions, often play a central role in geometric
modelling by bridging the gap between unorganized data measure-
ments and standardized algorithms. In many applications, however,
they are often overly complex and cannot properly capture the ge-
ometric regularities contained in the observed scenes. These limi-
tations are particularly relevant in urban reconstruction where ex-
pected output models must be both concise and regular. Indeed,
a standard representation for urban scenes in Geographic Infor-
mation Systems (GIS) uses the support of two-dimensional piece-
wise linear functions to model buildings. To achieve this expected
modelling simplicity, existing methods commonly operate by either
consolidating the data measurements with resampling and filtering
approaches, or by simplifying the output models via remeshing. The
former approach often relies upon heuristics and lacks generality,

whereas the latter has difficulty generating concise meshes with-
out altering the geometric accuracy. To our knowledge, none of the
existing methods study the possibility of simplifying the space par-
titioning data structure itself.

We address the problem of simplifying an input 2D partition
while keeping a satisfactory tradeoff between low complexity, high
regularity and high fidelity to the input partition. We deal with 2D
partitions in which the cells are convex polygons and the vertices
are located where line segments either intersect or end. Sets of
collinear line segments are frequent as they originate from long lin-
ear structures detected in urban scenes, such as facades or roads.
In our context, high fidelity refers to preserving the input poly-
gons and collinearities between line segments. As the partitions
are defined by points and line segments, this justifies the pro-
posed duality-based approach. Figure 1 illustrates the goal of our
work.
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Figure 1: Decomposing scenes into planimetric partitions of 2D polygons is a popular approach in urban reconstruction. However, common
partitioning schemes produce overly complex and unregularized partitions. Our approach simplifies such partitions while preserving their
fidelity to data and enforcing some geometric regularities contained in the scene (the histograms depict the angle deviation around 90◦ and
the distribution of edge lengths in the partitions). The output model, reconstructed by lifting the partition in 3D, is both more concise and
regular (see closeups). Data from the 2015 LiDAR survey of Dublin [LAV*17].

2. Related Work

Our review of previous work covers urban reconstruction methods
based on 2D space partitions, as well as algorithms based on mesh
simplification and regularity detection.

2D space partitions and urban reconstruction. 2D space par-
titioning data structures have been used routinely for urban re-
construction [MWA*13]. Commonly constructed from unorganized
measurement data such as point clouds or images, they are often
lifted in 3D to represent urban objects such as buildings or facades
with a simple disk-like topology.

Popular Delaunay triangulations yield dense partitions that must
be simplified in order to produce concise output meshes. Reducing
the size of the triangulation is achieved, for instance, by contracting
edges with an optimal transport approach [DGCSAD11], splitting
and merging triangles [GS97] or inserting and removing vertices
within a spatial point process framework [FLBA20]. However, such
operations alter the alignment of the triangulation with the input
data and prevent the subsequent reconstruction step from producing
meshes that are both concise and geometrically accurate [BRG15].
Voronoi diagrams [DL16] or adaptive grids [ZN10] also exhibit this
weakness. The former does not allow complex buildings to be accu-
rately reconstructed by a few Voronoi cells lifted in 3D. The latter
can only reconstruct buildings accurately with dense grids.

2D partitions of polygons offer a better tradeoff between data fi-
delity and conciseness on urban objects. For instance, the roof sec-
tion of a building can be ideally abstracted by a single polygon.
Such partitions can be created by kinetic simulations that propa-
gate line-segments aligned with the data [Gui04, BL18] or by the
vectorization of region maps [AS17]. However, their use to recon-
struct buildings [ZBKB08, BL19] or facade objects [RBDD18] is
effective only when the partitions are simple and preserve the ge-
ometric regularities inside objects and scenes, such as parallelism,
orthogonality or symmetry. In their simplest forms, the problems of
simplifying such partitions while controlling the deviation from the

initial configuration are similar to NP-hard problems of 2D point
cloud simplification such as geometric unit disk cover or minimum
dominating set on unit disk graphs [MBHI*95]. For this reason, as
is already the case for these simpler problems, we do not expect the
existence of an efficient algorithm for a global minimum formula-
tion of the problem of simplifying these 2D partitions. Discrete ap-
proaches have been proposed, based on merging and splitting poly-
gons [LLM20]. However, they do not make it possible to simplify a
2D polygon partition while also improving its geometric regularity.

Mesh simplification. An alternative approach consists of simpli-
fying the output (dense) mesh instead of the underlying space
partition. Common algorithms contract edges until a target mesh
complexity is reached [GH97, Lin00]. Such mesh decimation ap-
proaches can be extended to preserve piecewise-planar structures
of objects by guiding edge contractions with pre-detected planar
shapes [SLA15]. Such planar shapes can also be directly assem-
bled into a concise mesh when their adjacency graph is correctly
extracted [CAD04]. Among specialized approaches for simplify-
ing buildings, Kada [Kad07] proposes a method for decomposing
a building into structural parts before replacing them with 3D ide-
alized primitives. Bredif et al. [BBPDM08] utilize a kinetic model
to make facets more consistent with the data. Verdie et al. [VLA15]
assemble planar shapes that are filtered to produce output meshes
with different levels of detail. These approaches yield good results
when dense meshes are geometrically and topologically accurate.
However, this condition is rarely met in practice when dealing with
defect-laden data.

Detection of geometric regularities. Our work is also closely re-
lated to the problem of regularity detection. Geometric regularities
typically include parallelism, orthogonality, coplanarity [LWC*11]
and symmetry [PMW*08, MPWC13]. Their detection is usually
operated from input 3D data through global analysis of local ge-
ometric features. In contrast, our goal is to regularize polygon parti-
tions without a preliminary detection from the input data. This task
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Figure 2: Overview of our method. After extracting 3D line-segments (b) from an input point cloud (a) and projecting them onto the horizontal
plane to form a polygonal partition (c), our method simplifies the partition while capturing some geometric regularities inside (d). The resulting
partition is then lifted in 3D to create a concise polygonal surface mesh (e).

typically requires an energy minimization framework with priors
that encourage regularities, as proposed by Monszpart et al. for ex-
tracting planar primitives from point clouds [MMBM15]. For recon-
structing buildings, the most common regularities are orthogonality
and parallelism [ZN12, HK12]. These two regularities are often im-
posed by constructionwith aManhattan-World (or Polycube) geom-
etry in which all elements are either orthogonal or parallel [CY00,
SRF*14]. Unfortunately, such a geometry is only relevant for some
specific urban scenes.

Homogeneous coordinates and point-line duality. Projective ge-
ometry has become the de facto standard representation for com-
puter graphics and vision. The use of homogeneous coordinates
[Her92, NDW93] allows a common representation 4× 4 matrices
of general 3D isometries, as well as projective transformations in-
duced by an eye-centred perspective. It has found widespread ap-
plications [PW09] in the form of epipolar geometry for multi-view
reconstruction problems [HZ06] or NURBS for computer-aided de-
sign [Far99]. In the latter case, projective representation allows an
exact modelling of parametric conics curves and derived parametric
surfaces, such as cylinders, spheres and, more generally, surfaces
of revolution through (piecewise) polynomial patches in homoge-
neous coordinates.

The point-line duality is also a common tool for theoretical anal-
ysis of geometric problems [CGL85, Gun17]. However, to the best
of our knowledge, using this duality for a continuous partition sim-
plification scheme has not been attempted in previous work.

3. Overview

The proposed method generates models compatible with GIS from
point clouds typically generated from photogrammetry or laser
scanning. It uses an intermediate 2D arrangement to reconstruct
buildings as two-dimensional piecewise-linear functions over this
arrangement. This assumption of 2.5D geometry, very common
in urban reconstruction [MWA*13], can be applied to the large
majority of buildings and is a good compromise between fidelity
and simplicity of a building’s representation. Indeed, this mod-
elling paradigm does not apply to architecturally complex build-
ings, which require free-form reconstruction methods, but we
expect these buildings to form a very small fraction of the total num-
ber of buildings in large urban scenes. In addition, some details such
as overhangs cannot be represented. However, this level of detail is
often not required for GIS applications. In fact, the proposed out-
put reconstruction complements the LOD2 formalism of CityGML

[Sta12] widely used in GIS, which models buildings as prismatic
blocks with differentiated roof structures.

The next sections of this paper follow the main steps of our re-
construction method, illustrated in Figure 2. Sections 4 and 5, which
describes the extraction of 3D line segments from the input point
cloud and the creation of a 2D polygonal partition from these line
segments, highlight important properties of the arrangements that
have guided the conception of the simplification method. Section 6
is the key contribution of our work, formulating a partition simpli-
fication scheme that maintains a satisfactory balance between low
complexity, high regularity and high fidelity. The last step of the
reconstruction process consists of lifting the resulting partition in
3D to create a concise polygonal surface mesh (Section 7). Finally,
Section 8 is dedicated to describing the results and comparing them
with other simplification methods.

4. Extraction of 3D Line-segments

Planar primitives and their adjacency relationships are first detected
in the original point cloud using a k-nearest neighbours algorithm
and a region-growing approach [FTK14, HB12, RVDHV06]. For
all adjacent planes, intersection lines are computed and 3D seg-
ments are generated from the points located near each intersection
line. Because missing segments are a lot more detrimental to the
reconstruction pipeline than adding duplicate or unnecessary seg-
ments, detection parameters are chosen to perform over-detection.
Note that, when available, this detection can also be augmented by
existing GIS information such as building footprints.

5. Kinetic Cell Arrangement

In order to obtain a parsimonious two-dimensional polygonal par-
tition from projected segments, we now describe a method coined
kinetic framework [Gui04, BL18]. By extending all line segments,
intersection events are used to decide whether to stop one of the
two lines forming the intersection. More specifically, for a segment
S, any point I on its supporting line can be assigned a Time of Ar-
rival, which equates to the distance to the segment for a constant
unit speed movement:

TS(I) = d(I, S)

The kinetic framework can be seen as a set of rules dictating the
segment’s progression. In its simplest form, the progression of a
segment in one direction is stopped at an intersection event when
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it arrives last on the intersection. For instance, a segment S1 will be
stopped at its intersection I with S2 if TS1 (I) > TS2 (I). All intersec-
tion events I′ concerning S1 in the same direction as I and verifying
TS1 (I

′) > TS1 (I) can then be discarded, as segment S1 will not cross
segment S2. Additional rules can be designed to improve the con-
nectivity of the arrangement, such as setting a custom speed for each
segment, allowing a fixed number of crossings or even allowing a
crossing if the time of arrival to the next intersection is lesser than a
threshold value.

Arrangements resulting from the kinetic framework exhibit sub-
stantially fewer intersections than the complete line arrangement
containingO(n2) intersections. They also preserve details, as small
segments are kept in the arrangement but are likely stopped by larger
features and therefore will only have a local impact on the arrange-
ment. Finally, initial segments spanning large distances are often de-
composed into multiple smaller segments in the arrangement, while
still sharing the same supporting line. As will be shown later, this is
a key insight for the design of our proposed simplification method.

6. Simplification of 2D Partitions

The following section introduces an optimization method for sim-
plifying 2D partitions. We start the discussion by justifying our
choice of using homogeneous line coordinates within the optimiza-
tion scheme (Section 6.1). An energy on these line coordinates is
then described as a trade-off between fidelity to the initial partition
and simplification objectives (Section 6.2). We then detail the com-
putation required to perform a gradient descent step (Section 6.3).
In particular, we choose to derive a Riemannian metric between
line coordinates that better describes the distance between lines for
our problem. Finally, a global algorithm is presented (Section 6.4),
which interlaces continuous gradient descent iterations with discrete
simplification operations.

6.1. Projective duality: line movement versus point movement

We use the point-line projective duality to describe a partition. Each
element is described as a 3D vector representing:

• The coefficients (a, b, c) of an oriented line ax+ by+ c = 0;
• The homogeneous coordinates (x, y, w) for a 2D point ( x

w
,
y
w
).

This duality is especially visible in the symmetry of the roles played
by points and lines in the line equation written as an inner product:

(
a b c

)
⎛
⎝ x
y
w

⎞
⎠ = 0

A comprehensive description of projective duality can be found in
Berger [Ber09].

We summarize two possible representations of 2D partitions, dual
to one another in projective geometry:

• Point representation: points of the partition are given explicit co-
ordinates and lines are implicitly defined from two of those points.
This representation makes it possible to encode in the combina-
torial structure the situation where multiple lines share the same

point, but not the situation where a single line supports more than
two points.

• Line representation: lines of the partition are given explicit coor-
dinates, and points are implicitly defined as the intersection of two
of those lines. This dual representation, symmetrically, encodes in
the combinatorial structure the situation where a line carries mul-
tiple points but not the dual configuration for which more than
two lines intersect at the same point.

In terms of optimization, dealing with point coordinates is sim-
pler than line coordinates, as the Euclidean metric associated with
the distance between 2D points is natural. Optimizing via line co-
ordinates is slightly more involved as no natural metric describes a
distance between lines, which is invariant under arbitrary Euclidean
isometries. Drawn to this apparent simplicity, we tried using the
point representation in a first attempt. However, two arguments jus-
tify the choice to optimize lines instead of points in our specific
context and were confirmed by this first experiment.

First, the initial data for our problem consist of a set of detected
line segments, while points are only secondary data constructed
from the initial segments by the kinetic framework. Measuring data
fidelity with respect to the initial segments seems therefore more
natural to our problem than data fidelity with respect to point coor-
dinates.

Second, by construction, many segments of the partition exhibit
collinearity relationships that ought to be preserved for the sake of
keeping the partition as simple as possible. In a point-based rep-
resentation, this requires optimizing under collinearity constraints.
However, as depicted in the inset, configurations close to edge
collapses, which would be our objectives in a point-based repre-
sentation, are also configurations where collinearity constraints are
unstable: constraining three points to be aligned when two of them
are indistinguishable from one another is not a well-posed prob-
lem. In our first experiments, these frequent configurations resulted
in numerical instabilities whose robust treatment was problematic.
In contrast, in the line representation model, these collinearities
are preserved in the structure and the robustness issues can be
soundly managed.

The homogeneous line coordinates are initialized via Euclidean
normalization, also referred to as its normal form: a2 + b2 = 1. Al-
though the spherical normalization (a2 + b2 + c2 = 1) is often used
for its ability to represent all projective lines, our problem does not
require representing the line at infinity, so we adhere to Euclidean
normalization. We will further justify this choice when giving a ge-
ometrical meaning to the regularity term of our optimization energy.
Figure 3 depicts the unit cylinder structure of the line coordinates
with Euclidean normalization.

6.2. Energy formulation

We denote by L = (L1, . . . , Ln) ∈ R
3n the set of lines, represented

in their normal forms. Our simplification problem is formulated as
a trade-off between a fidelity term Efidelity, describing the attach-
ment of the partition to the initial configuration, and complexity
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Figure 3: Illustration of Euclidean normalizations. Left: the Eu-
clidean normalized coordinates of a projective point X correspond
to the intersection of the w = 1 plane and the line passing through
O3 and X. Right: the Euclidean normalized coordinates le of the
projective line l lies on the cylinder verifying a2 + b2 = 1. Image
taken from Gerke [Ger17].

terms Econcurrent and Eorthogonality, respectively, measuring edge col-
lapses and orthogonality objectives on the lines of the partition:

E(L) = Ef idelity(L)+ λ1 Econcurrent (L)+ λ2 Eorthogonality(L) (1)

We now provide details on each term of this objective function.

Fidelity term. As mentioned previously, no metric defines a dis-
tance between lines, which is invariant under Euclidean isometries.
Indeed, the only discrepancy measures on lines that are preserved
by Euclidean isometries are the angle between two lines and the
distance between two parallel lines.

In our problem, we have the additional information that
each line L is associated with an initial detected segment S =
((x0, y0), (x1, y1)). This can be used to define a distance from the
initial configuration. Consider a point P = (x, y) on a line L param-
eterized by (a, b, c).

ax+ by+ c = 0 (2)

Under line movement δL = (δa, δb, δc), the squared distance of
the point P to the line L+ δL can be written as:

d(P,L+ δL)2 = (δa · x+ δb · y+ δc)2

= δLt

⎛
⎝x

2 xy x
yx y2 y
x y 1

⎞
⎠ δL

This quantity measures the first-order approximation of the
squared distance between point P and line L+ δL, which is exact
only when L+ δL satisfies the Euclidean normalization (a+ δa)2 +
(b+ δb)2 = 1.

For each line L associated with a segment S = ((x0, y0), (x1, y1)),
we consider the sum of these approximated squared distances be-
tween the line L+ δL with the two initial segment endpoints:

1

2

⎡
⎣ x20+x21 x0y0+x1y1 x0+x1
x0y0+x1y1 y20+y21 y0+y1
x0+x1 y0+y1 2

⎤
⎦

Figure 4: Illustration of a detected regularization configuration:
three lines Li, Lj, Lk form two intersections in the partition.

Note that by definition, the kernel of this matrix contains all
homogeneous coordinates of the line passing through the points
(x0, y0) and (x1, y1).

The quadratic form associated with this positive semi-definite
matrix offers a good balance between the translation and rotation
movements depending on the segment vertex locations: the rotation
of a line associated with a large segment will be more penalized
than the rotation of the same line associated with a shorter segment.
However, in the extreme case where the segment used for the defi-
nition of the quadratic form has zero length, the kernel of the matrix
contains all homogeneous coordinates of lines that pass through this
unique point (x0, y0) = (x1, y1). In optimization applications, this
means lines associated with very small segments can freely rotate,
which can cause numerical instabilities. We stabilize our quadratic
form by adding a small penalty l2min to the rotation part of all matrices
and finally define the matrixMi for each line Li in L:

Mi = 1

2

⎡
⎣x

2
0+x21+l2min x0y0+x1y1 x0+x1
x0y0+x1y1 y20+y21+l2min y0+y1
x0+x1 y0+y1 2

⎤
⎦ (3)

where ((x0, y0), (x1, y1)) denotes the segment associated with the
line Li, and lmin is a minimal length at which we consider segments
to be relevant.

The fidelity term on all lines Li of the arrangement is then defined
as follows:

Ef idelity(L) = 1

2

n∑
i=1

LtiMiLi (4)

Regularization terms. We consider triplets of lines (Li,Lj,Lk )
where Li, Lj and Li, Lk form intersection points in the partition, re-
spectively, denoted by Pi j and Pik. We define the following quantity
Di jk:

Di jk = | det(Li, Lj, Lk )| = |(Li × Lj ) · Lk|

We illustrate such a configuration in Figure 4 and provide a ge-
ometrical meaning to this quantity, when Li, Lj, Lk are (Euclidean)
normalized line coordinates. The point-line projective duality gives

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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that the cross product Li × Lj is a homogeneous vector representing
the intersection point Pi j = (xi j, yi j ) between two lines. Therefore,

Li × Lj = wi j

⎛
⎝xi jyi j

1

⎞
⎠

with, thanks to the choice of a Euclidean normalization for lines,

wi j =
∣∣∣∣ai a jbi b j

∣∣∣∣ = sinαi j

where αi j denotes the angle between Li and Lj.

The Euclidean normalization gives also that the inner product
of Li × Lj with the vector Lk yields the (two-dimensional) distance
from the point Pi j to the line Lk, multiplied by wi j:

Di jk = wi j

⎛
⎝xi jyi j

1

⎞
⎠ · Lk = wi j d(Pi j, Lk ).

The distance from Pi j to line Lk can be expressed with the angle αik
between the lines Li and Lk:

d(Pi j, Lk ) = ||Pi j − Pik|| sinαik.

We get finally:

Di jk = ||Pi j − Pik|| sinαi j sinαik (5)

where αi j and αik, respectively, denote the angles ∠(Li,Lj ) and
∠(Li,Lk ).

The invariance under isometries follows from Equation (5) while
the invariance under permutation is inherited from the determinant
expression, so that

Lemma 1. Under Euclidean normalization of the line coordinates,
Di jk is invariant under Euclidean isometries and permutations.

In the specific case of two parallel lines intersected perpendicu-
larly by a third line, this determinant is exactly the distance separat-
ing the two parallel lines. We can therefore define a largest allowed
distance ε to consider edge collapses. By denoting T the set of all
triplets (i, j, k) corresponding to lines (Li, Lj,Lk ) forming at least
two intersections in the partition, we define the following regularity
objective:

Econcurrent =
∑

(i, j,k)∈T
min

(
ε, |det(Li, Lj, Lk )|

)
(6)

We also favour orthogonality by adding an objective on the set P
of all pairs (i, j) corresponding to intersecting lines (Li,Lj ) in the
arrangement:

Eorthogonality =
∑

(i, j)∈P
min(sinαmax, |dot2d(Li,Lj )|) (7)

where dot2d denotes the inner product on the first two components
of the vectors Li and Lj, and αmax is a tolerance angle below which
we want to encourage lines to be orthogonal.

Figure 5: Impact of the metric on the gradient descent direction.
The same objective function is drawn in both images (high values
in yellow to low values in purple, with grey isolines) but for the Eu-
clidean (left) and a non-Euclidean (right) metric. We represent in
Euclidean space a step of a fixed length for both metrics: this cor-
responds to a circle for the Euclidean metric and an ellipse for our
choice of non-Euclidean metric. The direction of steepest descent
(white arrow) is orthogonal to the objective function isolines, where
orthogonality is defined by the underlying metric.

The choice of combining an L2 term for the fidelity objective and
L1 terms for simplification objectives is motivated by the need for
exact line concurrency or orthogonality when possible. Indeed, L1

regularization is known to lead to sparser solutions than L2 regular-
ization which, in our case, translates to a more efficient simplifica-
tion scheme.

Note that taking the minimum with some threshold in Equa-
tions (6) and (7) makes these objectives active in the minimization
only when the configuration is close to the satisfaction of the corre-
sponding exact constraint.

6.3. Gradient descent in a Riemannian manifold

We solve our optimization problem via a gradient descent algorithm.
Indeed, we are looking for local minima and, despite its apparent
simplicity, the gradient method has proven to be a reliable descent
method in particular for non-smooth and non-convex objective func-
tions.

While the gradient is merely the transpose of the objective’s first
derivative in a Euclidean context, working on the space of lines us-
ing homogeneous coordinates and accounting for the data fidelity
term lead to several changes in the standard expression of the gra-
dient.

Recall that each iteration of a gradient descent algorithm follows
the direction of steepest descent. This direction depends both on the
derivative of the objective function to be minimized and the ambient
metric. Indeed, as illustrated in Figure 5, the direction orthogonal to
the isosurface of the objective function depends on the isosurface
and the metric, which defines what ‘orthogonal’ means. Another
way to express the direction of steepest decent consists in finding the
direction minimizing the objective for a given (infinitesimal) step
length. Again the step length, and therefore the direction of steepest
descent, depends on the metric.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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In our context, with many local minima, the trajectory of the gra-
dient descent algorithm determines the local minimum reached at
convergence. For this reason, we account for the data fidelity term
in the metric associated to lines, inducing a steepest descent direc-
tion, which favours a trade-off between the objective minimization
and the data fidelity term. This explains our choice for the matrixM′i
below, whereas the matrix induced by the ambient Euclidean metric
on the embedded cylinder would have simply beenM′i = Ut

iUi.

We recall here a few notions of Riemannian geometry, more de-
tails being provided by Lee [Lee13]. Consider a differentiable real-
valued function f : M→ R, where (M, g) is a Riemannian man-
ifold with metric g. Denote by TpM the tangent space of M at a
point p ∈M. The directional derivative df and the gradient grad f
of f at a point p ∈M verify, for v ∈ TpM:

df (v) = 〈grad f , v〉g (8)

Given a system of coordinates for TpM at a given point p ∈M,
denote byG the symmetric matrix associated with the inner product
〈·, ·〉g defined by the metric g, and by D and ∇ f the matrices associ-
ated with the directional derivative df and the gradient grad f at the
given point p. Equation (8) translates to

∇ f = G−1Dt (9)

The manifold M specific to our optimization is the manifold of
oriented lines, seen as the submanifold of the space R

3 of homo-
geneous coordinates with Euclidean normalization. As illustrated
in Figure 3, this manifold corresponds to the cylinder with implicit
equation a2 + b2 = 1. The choice of the metric on this manifold re-
mains to be defined: we could for instance use the metric induced by
the ambient Euclidean metric ofR3, which corresponds to choosing
the identity matrix forG. However, we defined in Section 6.2 mean-
ingful quadratic forms Mi between line coordinates. We, therefore,
utilize those quadratic forms to define metrics tailored to the lines
of our problem.

The gradient descent is performed in the n-fold Cartesian product
manifoldM× · · · ×M, where n is the number of lines in L. Each
of these copies of M is associated with a line of L and a positive
semi-definite matrix defined by Equation (3). The gradient of each
line can be computed independently, and we consider the copy of
M associated with the ith line. Li = (a, b, c) andMi denote, respec-
tively, the current position in normalized homogeneous coordinates
and the matrix associated with this line, which depends on the ini-
tial configuration of the line. We also denote by Di the derivative of
the objective function E given by Equation (1) with respect to the
homogeneous coordinates of line Li:

Di =
(
dE

da
,
dE

db
,
dE

dc

)

The tangent space at Li corresponds to a two-dimensional vector
space written as:

TLiM = {v ∈ R
3, v · (a, b, 0) = 0} = UiR

2 (10)

Algorithm 1. Global simplification algorithm

with

Ui =
⎛
⎝−b 0
a 0
0 1

⎞
⎠

The quadratic form associated with the matrix Mi, restricted to
this two-dimensional vector space TLiM, is non-degenerate—it can
be seen as an actual Riemannian metric for the spaceM associated
with the ith line. We give the expression of the derivative D′i and the
matrix M′i associated with the quadratic form in TLiM:

D′i = DiUi

M′i = Ut
i MiUi

Using Equation (9), the expression of the gradient with respect to
line Li in the tangent space TLiM is

(∇E )TLiM = (M′i )
−1D′i

t

In order to update the coordinates of the line Li, one could in the-
ory apply the exponential map from TLiM to M. We use instead
a simpler procedure, which is equivalent at first order. The expres-
sion of the gradient ∇iE in homogeneous coordinates is obtained as
the product ofUi, mapping TLiM to the space R3 of homogeneous
coordinates, with (∇E )TLiM:

∇iE = Ui(M
′
i )
−1D′i

t (11)

For a given step α, the homogeneous coordinates are updated by
adding−α∇iE and normalized, which can be seen as an orthogonal
projection onto M.

Denoting normalize((a, b, c)t ), the Euclidean normalization of
vector (a, b, c)t , a gradient descent step consists of:

∀i, L(k+1)
i = normalize

(
L(k)
i −α∇iE

)
(12)

6.4. Global algorithm

The global simplification process is shown on Algorithm 6.4 where
C and L = (L1, . . . , Ln) ∈ R

3n, respectively, represent the combi-
natorial and numerical components of the line arrangement. Fig-
ure 6 illustrates how a polygonal partition typically evolves during
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8 J. Vuillamy et al. / Simplification of 2D Polygonal Partitions

Figure 6: Evolution of partitions during optimization. The global simplification algorithm progressively reduces the number of lines while
increasing the orthogonality between them (‘complexity’ and ‘orthogonality’ refer to the number of lines and the number of orthogonal pairs
of lines in the partition). The final partition (right) does not contain small or nearly collinear edges anymore and the angles around 90◦ are
exactly orthogonal (the histograms depict the angle deviation (left) and the distribution of edge length (right) for each partition).

the simplification process.

The instructionL← GradientStep(C,L, α) consists of one Rie-
mannian gradient step described in Equation (12) for each line Li in
which only the numerical data L is updated.

The instruction α← Update(α) governs the rate of decrease of
α. The analysis of the rate of convergence of gradient methods for
non-smooth, non-convex objectives [KW19] is a difficult question
that has not been studied in this work. Many techniques for improv-
ing the convergence speed [Nes83, Qia99] are taking on renewed
importance with the popularity of deep learning. Experimentally, a
geometric sequence αi = α0ri, where r is set to a value inferior yet
close to 1, is sufficient to successfully converge to local minima.
The parameter, αmin of the stopping criterion must be small enough
to allow the cancellation of regularization terms below a threshold
η, which will be described in Equation (13).

The instruction NbReductions, C,L← Reductions(C,L) in Al-
gorithm 6.4, applies the combinatorial reduction step that updates
both the combinatorial structure C, by decreasing the number n of
lines and updating the line intersection relations as well as the list
of coordinates L of new lines resulting from merge decisions. It re-
turns in the integer variable ‘NumberO fReductions’ the number of
achieved merges, which is used in the termination test.

Robustness of combinatorial reductions. It is well known that
optimization with L1 regularization leads to sparser solutions than
its L2 counterpart, which in our case translates into edge collapses,
orthogonalities and line fusions. The line representation does not
allow edges to be collapsed, as this would require multiple lines
to pass through the same point. However, it is useful to interlace
optimization iterations with combinatorial line merges, as shown
in Algorithm 6.4, and thus continue optimizing in a simplified
partition. Such an entanglement of numerical and combinatorial
processes may lead to what is known in computational geome-
try as robustness problems: combinatorial decisions require per-
fect consistency, whereas numerical computations produce only
approximations.

If the numerical gradient descent was able to perfectly cancel a
determinant formed by three lines (| det(Li, Lj, Lk )| = 0), then at
least one of the two following projective situations would occur: (a)
two lines are equal or (b) the three lines differ but meet at a single
point. In the language of affine geometry, situation (b) splits into the
case of three lines that meet at a single affine point (b1) and three
lines that meet at infinity, in other words, three parallel lines (b2).
The following question now occurs: what happens to this obser-
vation when replacing | det(Li, Lj, Lk )| = 0 by | det(Li, Lj, Lk )| < η

for a small η > 0?

In order to make the right combinatorial decisions when merging
lines, while using the finite accuracy from numerical computations,
we need a carefully quantified version of the previous ‘exact’ im-
plication of one of situations (a), (b1) and (b2) so that, when lines
(Li, Lj,Lk ) form a regularization term | det(Li, Lj, Lk )| smaller than
a threshold value η, we can guarantee that one of the following sit-
uations occur:

• Two (or more) lines of the triplet are indistinguishable up to some
quantified accuracy dL, corresponding to exact situation (a).

• Two (or more) points at the line intersections are indistinguish-
able up to some quantified accuracy dP corresponding to exact
situation (b1).

• The intersection points are outside a disk of radius R correspond-
ing to exact situation (b2).

In Appendix A, we relate this threshold η in the continuous opti-
mization to values used in discrete combinatorial operations: a min-
imal distance dP at which points are considered identical, a minimal
quantity between line vectors dL at which they are considered iden-
tical and the radius R of a disk centred at 0 containing the partition:

η = dP d2L
5(1+ R2)

(13)
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When working with 64-bit arithmetic, a typical numerical value
in Equation (13) would be η = 10−16, for R = 1 and dP = dL =
10−5. A discrete step in our optimization consists then in deciding
for each regularization term in Econcurrent below η the nature of the
simplification: point fusion (b1), line fusion (a) or removal of an
intersection point outside the area of interest (b2).

Propagation of reductions. The function Reductions(C,L)
must propagate the simplifications in the partition by verifying the
following geometric invariant of our structure: two lines cannot have
more than one common point and two points cannot have more than
one common line.

In a first step, for each triplet (i, j, k) for which | det(Li, Lj, Lk )| <
η one of the mentioned three alternatives (lines merge, points merge
or point deletion) is applied. When lines Li and Lj merge into line
Li j, if there is a point indexed by (Lj, Lk ), it is inherited by the pair
(Li j, Lk ). Along successive merges, the aforementioned geometric
invariant may be violated, breaking the validity of the arrangement.
Each time such a configuration is encountered, the indexes of the
faulty pair are pushed on a stack. Once the first step is achieved,
one either applies a lines merge or a points merge for each pair
popped from the stack. Again, these merges may push new pairs
on the stack. Since each pop operation induces a reduction of the
structure, the combinatorial simplification eventually ends.

Finally, when merging lines Li and Lj into Lf , we combine their
quadratic forms associated with both lines into a resulting fused
quadratic form:

Mf = Mi +Mj

This process ensures that the fidelity to original segments of the ar-
rangement is propagated throughout discrete operations. Indeed, the
quadratic forms are initialized with endpoints of initial segments
and compute the sum of squared distances to these endpoints. Dur-
ing the algorithm, quadratic forms still compute the sum of squared
distances, but the set of 2D points associated with each line has been
inherited by other lines through merges.

7. Piecewise-linear Model

Given a 2D polygonal partition and a point cloud P , the final model
could be created by assigning to each cell of the partition the plane
best fitting the point cloud of the cell. However, this approach is not
resilient to imprecise partitions or missing data and noise in the in-
put points. Instead, using the set of detected planes� in Section 4, a
discrete optimization is performed to obtain a coherent model. De-
note by C the set of cells of the partition. For a cell Ci ∈ C and a plane
equation z = �k(x, y), the following term computes the fidelity of
the lifted cell Ci along � with the subset of points P ∩ Ci whose
projection along z lies in the same cell Ci:

ECi (�k ) = ACi
Card(P ∩ Ci)

∑
p∈P∩Ci

min(ε, |pz −�k(px, py)|) (14)

where ACi denotes the cell area of Ci. A threshold ε is used on the
z-distance to the plane to improve the robustness of the plane fitting
in the presence of noise in the point cloud or slight errors in the
cell decomposition.

The regularity term between two cells (Ci, C j ) intersecting on an
edge e = Ci ∩ C j needs to penalize the height difference along e.

Given planes �k, �l ∈ � assigned to the cells on each side of
the edge e, a regularity term measures a mean vertical area along
the edge e:

Ve(�k, �l ) = pelength(e)ze(�k, �l ) (15)

where ze is given by, for e = ((x1, y1), (x2, y2)):

ze(�k, �l ) = |�k(x1, y1)−�l (x1, y1)| + |�k(x2, y2)−�l (x2, y2)|
2

For each edge, the parameter pe in Equation (15) denotes an a
priori probability that the edge is along a building facade and can,
for instance, be found by identifying segments at the intersection of
a vertical plane. We call labelling a map L : C �→ � that associates
to each cell of the arrangement a plane in �. The global energy
objective is expressed as follows:

E(L) =
∑
Ci∈C

ECi (L(Ci))+ μ
∑

e=Ci∩Cj
Ve(L(Ci),L(C j ))

The regularity parameter μ, homogeneous to a length, should be
understood as the smallest ‘feature’ sizewewant to distinguish. This
objective function, decomposed as a unary fidelity term and binary
regularity interactions on labels, belongs to a family of functions
where local minima can be reached efficiently using graph cut opti-
mization [BVZ01].

8. Experiments

Tradeoff between fidelity, complexity and regularity. The two
main parameters of our method are λ1 and λ2, which balance the
three energy terms in the simplification of the partition. As illus-
trated in Figure 7, these two parameters allow an intuitive control
on the accuracy, complexity and level of orthogonality of the parti-
tion. Note that, when increasing λ2, the number of lines usually stays
stable and the number of points decreases slightly: this decrease is
explained by the situation where two lines become orthogonal to a
third line and their intersection point is sent to infinity. The combina-
torial reduction will then remove this intersection from the partition.

In Figure 7, as the error is concentrated in small cells, reason-
able choices for concurrent lines and orthogonality parameters do
not introduce large distortions and therefore the increase in 3D fi-
delity error is controlled. Further simplifications with larger regular-
ity parameters degrade the partition gracefully: for instance, build-
ing contours can be identified in the most simplified example (top
right). These large distortions lead, however, to large errors in the
3D fidelity measure.

Flexibility and robustness. We test our reconstruction method
on different scales of urban scenes, from individual houses (Fig-
ure 10), to building blocks (Figure 8), and larger architectural struc-
tures (Figures 1 and 9). Our method produces concise and accurate
models as long as observed buildings can be represented by a piece-
wise planar and disk-topology geometry. We also test our algorithm
on input point clouds generated by different acquisition systems. As
illustrated in Figure 10, our method returns 3D models of similar
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Figure 7: Impact of parameters λ1 and λ2. Increasing λ1 reduces
the complexity of the partition, while increasing λ2 encourages the
presence of orthogonal lines (Orthos refers to the number of orthog-
onalities counted when the angle difference with π

2 is under 10
−4◦).

Increasing λ1 and λ2 simultaneously reduces the accuracy of the
partition as illustrated by the increasing presence of red polygons
towards the top-right diagonal (the root mean squared error of the
best-fit plane of the 3D input points projected in each polygon is
displayed from white (zero error) to red (high error)).

quality on both a Laser point cloud with missing data and occlu-
sions and a multi-view stereo point cloud with noise and outliers.
The importance of the partition simplification step, our main contri-
bution, is visible in this figure: without simplification, output results
are less accurate and less concise.

Performance. Our method is implemented in C++ (single-
thread) and uses the Eigen library [ GJ*10 ] for its ease of use when
dealing with homogeneous representations as well as solving small
linear algebra systems appearing in the computation of the Rieman-
nian gradient. All timings are recorded on a Lenovo 20EQS27P00
laptop with an Intel i7-6820HQ CPU model with 32GB of mem-
ory. Table 8 shows the processing times of the different steps of our
method on input data of various sizes. The creation and simplifica-
tion of 2D partitions are fast and scalable, typically a few seconds
for large urban scenes. By implementing the main geometric oper-
ations in the horizontal 2D plane, we avoid the time- and memory-
consuming issues arising from the creation and manipulation of 3D
polyhedral arrangements. Adding this simplification method greatly
improves the performance of the lift optimization step by reducing
the number of cells in the partition.

Metric propagation along combinatorial simplification. A
prime example of the usefulness of propagating metric information

Table 1: Performances of our algorithm on different input data. The pro-
cessing time for creating and simplifying 2D partitions are negligible com-
pared to those of 3D operations, i.e. line-segment extraction and output
mesh.

BarnMVS BuildingBlock Dublin
(Figure 10) (Figure 8) (Figure 1)

#input points 619,472 1000,000 6305,813
Scene area 400 m2 13,000 m2 19,000 m2

Line-segment extraction 6.7 s 8.9 s 37 s
#line-segments 213 813 1681
Kinetic partitioning 3 ms 4 ms 238ms
#polygons 330 1422 2724
Simplification 0.4 s 1.5 s 5.3 s
#polygons 61 288 1197
Lift optimization 0.9 s 3.1 s 87 s
#output faces 24 139 637

is depicted by Figure 6. In this example, the segment detection led
to an original partition containing a lot of small segments clustered
along the building’s facades. During simplification, lines carrying
those segments are merged in the first few iterations and their met-
ric information is thus accumulated by lines representing large parts
of the facades. When further simplifying, the fidelity term on those
lines leads to very little deviation from their original position and
they are therefore stabilized by the information of previous simpli-
fications. In the final partition, made of 44 lines—a 96% reduction
from its original counterpart—the outline of the building’s facades
is still visible and lines on this outline can carry the information of
up to 100 initial segments.

Comparisons. We compare our method with the piecewise-
planar reconstruction method [CLP10] and three mesh simplifica-
tion pipelines in which input points are first converted into a dense
surface mesh by the screened Poisson algorithm [KH13] before be-
ing simplified either by the popular Quadrics Error Metrics edge
contraction algorithm [GH97], by structure-aware edge decima-
tion [SLA15] or by variational shape approximation [CAD04]. As
illustrated in Figure 10, edge contraction-based methods [GH97,
SLA15] cannot produce very low complexity models (i.e. with one
or two dozen of facets for a standard house) without strongly de-
grading the geometric accuracy to input data. The mesh simplifica-
tion pipeline [CAD04] and the reconstruction method [CLP10] can
produce more accurate results but with a higher complexity. Our
method offers the best accuracy/complexity tradeoff as well as sta-
ble results for different acquisition systems (laser and multi-view
stereo). Moreover, only our method can deliver meshes in which or-
thogonalities are preserved. Contrary to previous algorithms [GH97,
SLA15], our method does not offer a direct control on the output
mesh complexity. This being said, our method has been designed
to produce highly concise meshes, departing from other algorithms
[CAD04, CLP10].

Limitations. We acknowledge a few limitations of our method.
First, the assumption that observed objects can be represented by a
2.5D disk-topology geometry, while true for many buildings, does
not hold for other urban objects. Openings and large overhangs
are also not correctly captured by this representation. Figure 11
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Figure 8: Result on a building block. The output 3D model (bottom
right) obtained from a multi-view stereo point cloud (bottom left)
preserves the main roof components while ignoring small elements
such as chimneys and dormer-windows.

illustrates this limitation. Indeed, in this example, points from the
roof and the window frames project onto the same 2D cells. The
piecewise-linear optimization described in Section 7 is unable to
correctly fit a single plane to all these projected points and decides
for a plane located at mid-distance between the roof and the window
frames. Therefore, this plane produces an undesirable representa-
tion.

Figure 9: Result on a large regular building. Our 3D output model
(bottom right) preserves the orthogonality existing between facade
and rooftop components. Note how the planimetric partition (top
right) aligns well with the aerial image (top left, not used).

Second, the geometric regularities taken into account by our
method are limited to orthogonalities and, by construction, to
collinearities. Considering other regularities such as symmetries
would probably improve the quality of our results: we could con-
ceivably extend our optimization formulation to take them into ac-
count. Finally, the simplification of partitions can, in some cases, de-
grade the accuracy of the output model. As illustrated in Figure 12,

Figure 10: Comparisons with existing methods. Mesh simplification algorithms QEM [GH97] and SAMD [SLA15] applied from Screened
Poisson dense meshes [KH13] cannot produce low complexity models without altering the geometric accuracy (‘complexity’and ‘error’ refer
to the number of facets in the output models and to the root mean square Hausdorff distance from input point clouds (left) to the output
models, the Hausdorff distance ranging from 0 m (red) to 0.2 m (black)). VSA [CAD04] and the piecewise-planar reconstruction method RPP
[CLP10] deliver more accurate results but with a higher complexity. Our method provides the best tradeoff between accuracy and complexity,
independently of the acquisition system used to generate the input point cloud. It is also the only one to preserve the orthogonality between
the walls of the building. Note how our results degrade when the simplification of the 2D partition is not activated. Input data from Knapitsch
et al. [KPZK17].
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Figure 11: When running the pipeline on a building that does not
verify the 2.5D hypothesis, the piecewise-linear modelling cannot
represent the building correctly and leads to overly complex repre-
sentations, as different heights of the building project on the same
2D cells (roof and opening for example).

Figure 12: Failure case. Our simplification process may degrade
the accuracy of the output model on curved structures. The left (re-
spectively right) model is obtained without (resp. with) simplifica-
tion of the 2D partition. Edges highlighted in red, corresponding to
facades in the 3D model, show the discrepancy between 2D regu-
larity and 3D fidelity.

this typically happens on curved structures, where small segments
in 2D play a large role in the quality of the facade, and the resulting
models can appear overly simplified.

9. Conclusion

We propose an automatic method to reconstruct urban scenes in
the form of concise and regular polygonal surface meshes. The key
ingredient is a simplification process of 2D polygonal partitions,
which seeks a balance between the fidelity to input partition, the
enforcement of canonical relationships between lines, and a low
complexity output. Lifted in 3D, the simplified partitions allow for
scalable generation of 3D models whose quality competes well
with existing methods. While our method is designed to reconstruct
buildings, the simplification process in itself is general and can be
useful in other geometric modelling problems.

In future work, we plan on designing operators able to locally
refine partitions a posteriori, where the lifted models do not ac-
count for the input data, as well as allowing for scalable and itera-
tive improvements of the reconstruction. Finally, investigating how
our simplification process can be extended efficiently to 3D polyhe-
dral arrangements could in turn lead to more scalable 3D piecewise-
planar reconstruction methods.
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Appendix A: From Continuous Optimization to Discrete
Combinatorial Operations

By translating the arrangement such that the originO is at its cen-
tre, we assume that all lines as well as all points of the arrangement
are at a distance from the origin O bounded by R, where R rep-
resents the half-size of the arrangement. We want to determine a
value η such that when a regularity criteria Di jk on a triplet of lines
(Li, Lj,Lk ) is smaller than η, we can guarantee that either two lines
L, L′ of the triplet are indistinguishable (i.e. verify ||L− L′|| < dL)
or that the two points at the intersection of (Li,Lj ) and (Li, Lk ) are
indistinguishable (i.e. have distance smaller than a chosen length
dP).

To that effect, we assume that Di jk < η and all pair of lines in the
triplet verify ||L− L′|| > dL and expect ||Pi j − Pik|| < dP.

Consider two lines L, L′ represented respectively by homoge-
neous coordinates (a, b, c) and (a′, b′, c′). Recall that the intersec-
tion point P has homogeneous coordinates:

P = L× L′ =
(∣∣∣∣b b

′

c c′

∣∣∣∣ ,
∣∣∣∣a a

′

c c′

∣∣∣∣ , sinα

)

where α denotes the angle between L and L′. Therefore, using the
normalization a2 + b2 = a′2 + b′2 = 1

OP2 sin2 α = (bc′ − b′c)2 + (ac′ − a′c)2

= (a2 + b2)c′2 + (a′2 + b′2)c2 − 2cc′(aa′ + bb′)
= (c′ − c)2 + 2cc′(1− cosα)

And finally

(c′ − c)2 = OP2sin2α − 4cc′sin2
α

2
(16)

The assumption that the point P as well as the lines L and L′ have
a distance to the origin upper bounded by R can be translated into:

⎧⎪⎨
⎪⎩
OP ≤ R
|c| ≤ R
|c′| ≤ R

Combined with Equation (A.1), we get:

(c′ − c)2 ≤ R2 sin2 α − 4cc′ sin2
α

2
≤ 5R2 sin2 α

From the assumption that ||L− L′|| > dL,

d2L < (a′ − a)2 + (b′ − b)2 + (c′ − c)2

< 4 sin2
α

2
+ 5R2 sin2 α

< 5(1+ R2) sin2 α
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The last inequality holds for α = αi j and for α = αik so that:

sinαi j sinαik >
d2L

5(1+ R2)
(17)

which is used to upper bound the distance between two points
from the regularity criteria. Indeed, if:

Di jk = ||Pi j − Pik|| sinαi j sinαik < η,

then Equation (A.2) gives:

||Pi j − Pik|| < 5η(1+ R2)

d2L

From the assumptions, we want ||Pi j − Pik|| < dP, which is veri-
fied if the following inequality is verified by η:

η ≤ dP d2L
5(1+ R2)
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