264 research outputs found

    A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies

    Get PDF
    This study presents an investment planning model that integrates learning curve information on renewable power generation technologies into a dynamic programming formulation featuring real options analysis. The model recursively evaluates a set of investment alternatives on a year-by-year basis, thereby taking into account that the flexibility to delay an irreversible investment expenditure can profoundly affect the diffusion prospects of renewable power generation technologies. Price volatility is introduced through stochastic processes for the average electricity price and for input fuel prices. Demand for peak-load capacity is assumed to be increasingly price-elastic, as the electricity market deregulation proceeds, and linearly dependent on the extent of market opening. The empirical analysis is based on data for the Turkish electricity supply industry. Apart from general implications for policymaking, it provides some interesting insights about the impact of uncertainty on the diffusion of various emerging renewable energy technologies.Dynamic programming, Investment planning, Renewable energy technology diffusion, Real options, Learning curve, Turkey

    Wind-driven ventilation improvement with plan typology alteration: a CFD case study of traditional Turkish architecture

    Get PDF
    Aligned with achieving the goal of net-zero buildings, the implementation of energy-saving techniques in minimizing energy demands is proving more vital than at any time. As practical and economic options, passive strategies in ventilation developed over thousands of years have shown great potential for the reduction of residential energy demands, which are often underestimated in modern building’s construction. In particular, as a cost-effective passive strategy, wind-driven ventilation via windows has huge potential in the enhancement of the indoor air quality (IAQ) of buildings while simultaneously reducing their cooling load. This study aims to investigate the functionality and applicability of a common historical Turkish architectural element called “Cumba” to improve the wind-driven ventilation in modern buildings. A case study building with an archetypal plan and parameters was defined as a result of a survey over 111 existing traditional samples across Turkey. Buildings with and without Cumba were compared in different scenarios by the development of a validated CFD microclimate model. The results of simulations clearly demonstrate that Cumba can enhance the room’s ventilation rate by more than two times while harvesting wind from different directions. It was also found that a flexible window opening strategy can help to increase the mean ventilation rate by 276%. Moreover, the room’s mean air velocity and ventilation rate could be adjusted to a broad range of values with the existence of Cumba. Thus, this study presents important findings about the importance of plan typology in the effectiveness of wind-driven ventilation strategies in modern dwellings

    Security of Energy Supply: Comparing Scenarios From a European Perspective

    Get PDF
    This paper compares different results from a set of energy scenarios produced by international energy experts, in order to analyze projections on increasing European external energy dependence and vulnerability. Comparison among different scenarios constitutes the basis of a critical review of existing energy security policies, suggesting alternative or complementary future actions. According to the analysis, the main risks and negative impacts in the long term could be the increasing risk of collusion among exporters due to growing dependence of industrialized countries and insufficient diversification; and a risk of demand/supply imbalance, with consequent instability for exporting regions due to insufficient demand, and lack of infrastructures due to insufficient supply. Cooperation with exporting countries enhancing investments in production capacity, and with developing countries in order to reinforce negotiation capacity of energy importing countries seem to be the most effective policies at international level.Energy security, Energy scenarios, Oil and natural gas markets

    Cost Calculation Algorithm for Photovoltaic Systems

    Get PDF

    Post-Kyoto policy implications on the energy system: A TIAM-FR long-term planning exercise

    No full text
    World Energy Council : http://www.worldenergy.org/documents/congresspapers/366.pdfInternational audienceThe aim of this study is to discuss the long term analysis of post-Kyoto commitments, with the modelling tool ETSAP-TIAM-FR. Through the specification of CO2 mitigation targets scenarios covering the period 2000-2050, this analysis focuses on the effects of these carbon constraints on several indicators such as global and regional CO2 emissions, the cost of the climate policy, carbon marginal costs, the primary energy consumption and the energy mix. This paper compares global efforts of CO2 mitigation with the cost of carbon and finally discusses the development of CCS technologies

    New insight into the causal linkage between economic expansion, FDI, coal consumption, pollutant emissions and urbanization in South Africa

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Springer in Environmental Science and Pollution Research on 13 March 2020.Available online: https://link.springer.com/article/10.1007%2Fs11356-020-08145-0acceptedVersio

    A scrutiny study on wave energy potential and policy in Turkey

    Get PDF
    Recently new and renewable energy sources began to become prominent as alternatives to fossil fuels. Among these are wind, solar, hydraulic, biomass, geothermal and wave energies. As for Turkey, the least accounted and less applied of these sources is wave energy. The government has established a short-term outlook on utilization of renewable energy sources, named “National Renewable Energy Action Plan” which is a part of Vision 2023 targets. Nonetheless, there is no planned utilization of and/or investment into wave energy in Turkey’s agenda up to the year 2023. This might be mainly because of the complex structure of wave energy conversion systems, marine conditions, mechanical difficulties and high initial investment costs. However, this type of energy is environmentally friendly, cheap and clean, and a great potential is available especially in Turkey which is surrounded on three sides by sea. Although Turkey has neither coasts to oceans nor a long stretch of west coastline, which have the highest energetic waves thanks to the prevailing west-to-east winds; the Black Sea basin, as well as the south-western Mediterranean region, may offer a good potential for development as an energetic regime, often comparable to oceanic sites in terms of wave heights, induced by strong wind patterns. In this study, wave energy potential in Turkey and recent studies made on determination of suitable sites for evaluation of wave energy in Turkey are discussed

    Technical and economic evaluation of energy production from wind in Istanbul and surrounds

    Get PDF
    Istanbul is located in the northwest part of Turkey and has the greatest population of any city in the country. Istanbul and its surroundings were researched for wind potential. Energy production from wind was evaluated technically and economically in this study. Çorlu, Kumköy and Şile sites were examined. Other sites in the same region (Göztepe, Kireçburnu, Bahçeköy, Florya and Kartal) were also evaluated but the results were not satisfactory, and for this reason, these sites were not examined in this study. When we checked daily, monthly and yearly wind speed values and frequency distributions, the wind energy potential of Çorlu, Kumköy and Şile were greater than other sites. Çorlu, Kumköy and especially Şile’s wind speed data are statistically decreasing. A Nordex N117 91m hub height wind turbine can produce 6099 MWh in Çorlu, 6459 MWh in Şile, 7265 MWh in Kumköy. A Nordex N117 140 m hub height wind turbine can produce 6471 MWh in Çorlu, 7439 MWh in Şile and 8175 MWh in Kumköy. The energy costs were calculated by the average of 36 years of wind measurement data using Nordex N117 turbines. Energy costs with Nordex N117 91 m and 140 m hub height in Çorlu, Şile and Kumköy are 0.025-0,027 US/KWh,0.0220,025US/KWh, 0.022-0,025 US/KWh, 0.020-0,023 US$/KWh, respectively

    Potential of Biofuel Usage in Turkey’s Energy Supply

    Get PDF
    Rapidly growing population and industrialization brought about the enormous need for energy, alongside the environmental problems. Since biofuel energy is inexhaustible, it is becoming increasingly important to address the energy problem. Today, it is possible to classify biomass energy into two classes: classical and modern. Classical biofuel utilization is the simple burning of wood obtained from tree cutting and animal wastes, where modern biofuel application consists of a variety of fuels produced from various sources. Turkey’s potential for biofuels is estimated to be around 45 Mg. As a renewable energy, it’s been under the Renewable Support Scheme by regulation for more than a decade now. By the end of 2016, installed biofuel electricity generation capacity had reached 468 MW with 2 billion kWh realized (~0.7% of national demand). The aim for 2023 is reaching at least 1000 MW (which will be around 1.3% by then). Many analysts believe that the potential for development is higher and realization therefore will surpass the official aims. Effective usage of biofuels for power generation may not be sizable but it’s critical and will make multilayer contributions to energy supply and dependence as well as to meeting climate and sustainability targets of the country
    corecore