134,369 research outputs found

    Measures on the square as sparse graph limits

    Get PDF
    We study a metric on the set of finite graphs in which two graphs are considered to be similar if they have similar bounded dimensional "factors". We show that limits of convergent graph sequences in this metric can be represented by symmetric Borel measures on [0, 1](2). This leads to a generalization of dense graph limit theory to sparse graph sequences. (C) 2019 Elsevier Inc. All rights reserved

    Extended Learning Graphs for Triangle Finding

    Get PDF
    We present new quantum algorithms for Triangle Finding improving its best previously known quantum query complexities for both dense and sparse instances. For dense graphs on n vertices, we get a query complexity of O(n^(5/4)) without any of the extra logarithmic factors present in the previous algorithm of Le Gall [FOCS\u2714]. For sparse graphs with m >= n^(5/4) edges, we get a query complexity of O(n^(11/12) m^(1/6) sqrt(log n)), which is better than the one obtained by Le Gall and Nakajima [ISAAC\u2715] when m >= n^(3/2). We also obtain an algorithm with query complexity O(n^(5/6) (m log n)^(1/6) + d_2 sqrt(n)) where d_2 is the variance of the degree distribution. Our algorithms are designed and analyzed in a new model of learning graphs that we call extended learning graphs. In addition, we present a framework in order to easily combine and analyze them. As a consequence we get much simpler algorithms and analyses than previous algorithms of Le Gall based on the MNRS quantum walk framework [SICOMP\u2711]

    Cover Time and Broadcast Time

    Get PDF
    We introduce a new technique for bounding the cover time of random walks by relating it to the runtime of randomized broadcast. In particular, we strongly confirm for dense graphs the intuition of Chandra et al. (1997) that ``the cover time of the graph is an appropriate metric for the performance of certain kinds of randomized broadcast algorithms\u27\u27. In more detail, our results are as follows: begin{itemize} item For any graph G=(V,E)G=(V,E) of size nn and minimum degree deltadelta, we have mathcalR(G)=mathcalO(fracEdeltacdotlogn)mathcal{R}(G)= mathcal{O}(frac{|E|}{delta} cdot log n), where mathcalR(G)mathcal{R}(G) denotes the quotient of the cover time and broadcast time. This bound is tight for binary trees and tight up to logarithmic factors for many graphs including hypercubes, expanders and lollipop graphs. item For any deltadelta-regular (or almost deltadelta-regular) graph GG it holds that mathcalR(G)=Omega(fracdelta2ncdotfrac1logn)mathcal{R}(G) = Omega(frac{delta^2}{n} cdot frac{1}{log n}). Together with our upper bound on mathcalR(G)mathcal{R}(G), this lower bound strongly confirms the intuition of Chandra et al.~for graphs with minimum degree Theta(n)Theta(n), since then the cover time equals the broadcast time multiplied by nn (neglecting logarithmic factors). item Conversely, for any deltadelta we construct almost deltadelta-regular graphs that satisfy mathcalR(G)=mathcalO(maxsqrtn,deltacdotlog2n)mathcal{R}(G) = mathcal{O}(max { sqrt{n},delta } cdot log^2 n). Since any regular expander satisfies mathcalR(G)=Theta(n)mathcal{R}(G) = Theta(n), the strong relationship given above does not hold if deltadelta is polynomially smaller than nn. end{itemize} Our bounds also demonstrate that the relationship between cover time and broadcast time is much stronger than the known relationships between any of them and the mixing time (or the closely related spectral gap)

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Exact Distance Oracles for Planar Graphs

    Full text link
    We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation S[nlglgn,n2]S\in[n\lg\lg n,n^2], we show how to construct in O~(S)\tilde O(S) time a data structure of size O(S)O(S) that answers distance queries in O~(n/S)\tilde O(n/\sqrt S) time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever k[n,n)k\in[\sqrt n,n). * We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+eps)O(n^{1/2+eps}) for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space O~(n)\tilde O(n) such that for any pair of nodes at distance D the query time is O~(minD,n)\tilde O(min {D,\sqrt n}). Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with c=O(n)c = O(\sqrt n) nodes, we can preprocess G in O~(n)\tilde O(n) time to produce a data structure of size O(nlglgc)O(n \lg\lg c) that can answer the following queries in O~(c)\tilde O(c) time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For σ(1,4/3)\sigma\in(1,4/3) and space S=nσS=n^\sigma, we essentially improve the query time from n2/Sn^2/S to n2/S\sqrt{n^2/S}.Comment: To appear in the proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 201
    corecore