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MEASURES ON THE SQUARE AS SPARSE GRAPH LIMITS

DÁVID KUNSZENTI-KOVÁCS, LÁSZLÓ LOVÁSZ, BALÁZS SZEGEDY

Abstract. We study a metric on the set of finite graphs in which two graphs
are considered to be similar if they have similar bounded dimensional “factors”.
We show that limits of convergent graph sequences in this metric can be rep-
resented by symmetric Borel measures on [0, 1]2. This leads to a generalization
of dense graph limit theory to sparse graph sequences.

1. Introduction

It was proved in [10] that if all subgraph densities converge in a growing graph
sequence then there is a natural limit object in the form of a symmetric measurable
function W : [0, 1]2 → [0, 1] called graphon. If the edge density converges to 0 then
all other subgraph densities converge to 0 and the limit object is the constant 0
function. Such graph sequences are called sparse. Many naturally occurring graph
sequences are sparse and capturing their limiting structure remains one of the great
challenges in graph limit theory.

In the very sparse case, when the maximum degree is uniformly bounded in
the sequence, one can use the so-called Benjamini-Schramm convergence [1] or
a refinement of it called local-global convergence [4],[7]. The limit object can be
represented by a bounded degree Borel graph (called graphing) satisfying a certain
measure preserving property.

Both in the dense case and in the bounded degree case the limit object can
be equivalently viewed as a symmetric Borel measure µ on [0, 1]2. (Symmetry
of µ means that it is invariant under the map τ : [0, 1]2 → [0, 1]2 given by
τ(x, y) = (y, x).) In the dense case the graphon W is the Radon-Nikodym de-
rivative of some Borel measure µ on [0, 1]2. In the bounded degree case the edge set
of the graphing (when represented on the vertex space [0, 1]) is essentially equal to
the support of some Borel probability measure on [0, 1]2 which is uniquely determ-
ined by the property that it is uniform on the edge set. The goal of this paper is to
develop a limit theory for graphs in which an arbitrary graph sequence has an ap-
propriately convergent subsequence with a limit object of the form of a symmetric
Borel measure on [0, 1]2.

Our main tool is a variant of Szemerédi’s regularity lemma [13] for sparse graphs
that allows us to approximate the set of all possible bounded (say k) dimensional,
normalized factor matrices (called k-shape) of a given graph. (Other sparse versions
of the regularity lemma were proved in [8],[9].) The study of k-shapes goes back to
dense graph limit theory where it was observed that the k-shape of a graph (when
the factor matrices are normalized with the square of the number of vertices) de-
termines the density matrix of a Szemerédi partition with precision depending on k
and thus it determines the densities of small subgraphs (an even stronger theorem
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was proved in [5]). This implies that one can equivalently define dense graph con-
vergence through the convergence of all k-shapes in the Hausdorff metric. However
if the factor matrices are normalized with the number of edges (multiplied by 2
for technical reasons) then the convergence of k-shapes leads to a non-trivial limit
notion (we call it s-convergence) for sparse graph sequences. Informally speaking
our main result is the following.

If all the (edge number normalized) k-shapes converge in a graph sequence then
the limit can be represented by some symmetric Borel probability measure on [0, 1]2

(called an s-graphon). Furthermore every s-graphon arises this way.
Our main theorem (see Theorem 4.2) is actually slightly more general. It deals

with the limits of weighted graphs (non-negative symmetric matrices). It is im-
portant to mention that most of our statements and arguments use the cantor set
C = {0, 1}N instead of the unit interval [0, 1] and the equivalence between the two
is proved in Chapter 8. The advantage of using the Cantor set in the proofs is due
to its more combinatorial nature.

Our limit theory can also be considered as a generalization of the so-called Lp

theory of sparse graph convergence (see [2] and [3]). Roughly speaking, If a graph
sequence converges in the Lp theory (for some fixed p) then the sequence also
converges in our language and the limit object appears as the Radon-Nikodym
derivative of the limit object measure on [0, 1]2. The only feature that we lose
in general is the connection to subgraph densities. This is the price that we pay
for the generality of the limit concept. In exchange we get a representation of all
graphs in a compact space which detects non-trivial structure in arbitrarily sparse
graphs. This tradeoff is justified in Chapter 9, where we investigate in detail how
this gained compactness impacts the limit results pertaining to limit objects that
are Lp graphons. We relate our approach to the theory developed by Borgs et al.,
highlighting that both bring important added value to the understanding of graph
limits in the non-dense case.

In our theory, there are examples of convergent graph sequences such that the
limit measure on [0, 1]2 is not absolutely continuous with respect to the uniform
measure and in these cases we can’t associate a measurable function with the limit
object. We can get limit objects that are measures concentrated on fractal like
subsets in [0, 1]2. We propose a possible dimension notion accompanying our limit
theory that associates fractional dimensions between 0 and 2 with measures on
[0, 1]2.

The paper is structured as follows. The definition of graph convergence is intro-
duced in Chapter 4. In the same chapter we state two versions of the main theorem:
Theorem 4.2 and Theorem 4.5. Chapter 6 contains the statement and the proof of
our general regularity lemma. The main theorem is proved in Chapter 7. Chapter
9 and Chapter 10 deals mostly with the connections to Lp limit theory. Chapter 11
investigates various aspects of our limit theory and Chapter 12 has examples for
interesting sparse sequences.

2. Basics

On the Cantor set: Let C = {0, 1}N be the power of the discrete topological space
{0, 1}. The space C carries a natural probability measure ν, namely the product
measure of the uniform measure on {0, 1}. The elements of C can be represented by
infinite pathes in an infinite rooted binary tree B. A node x ∈ V (B) of B represents
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an open-closed subset Sx of C by collecting all the pathes going through x. These
sets form a basis for the topology on C. By Tychonoff’s theorem, C is a compact
space, and so the subsets Sx are compact too. In fact, even stronger properties hold.

Proposition 2.1. Both C and C × C are compact Polish spaces, and equipped with
their Borel σ-algebra, they are Radon spaces (i.e., any finite Borel measure is auto-
matically inner regular, and so a Radon measure).

Lemma 2.2. Let µ : V (B) → R
+ ∪ {0} satisfy µ(x) = µ(x1) + µ(x2) for all

x ∈ V (B) where x1 and x2 are the two children of the node x. Then the map
Sx 7→ µ(x) extends to a Borel measure on C.

Proof. Let S be the ring generated by the set system {Sx | x ∈ V (B)}. It is easy to
see that every element of S can be expressed as a finite disjoint union ∪i∈ISxi

where
the nodes xi are at the same level of the tree B. Using the additivity condition, µ
extends to S as a finitely-additive function. We claim that µ is σ-additive on S. Let
s ∈ S be a disjoint union of countably many elements from S. Since s is a compact
set and each element of S is open, this union has finitely many non-empty terms.
Now we can use Caratheodory’s extension theorem to obtain that µ extends to the
σ-algebra generated by S as a measure. Since S is a basis for the topology, we get
that µ extends to a measure on the Borel sets. �

Limits of tables: Let {Tn}∞n=0 be an infinite sequence of nonnegative real matrices
such that Tn is of size 2n × 2n. The rows and columns of Tn are indexed by the
nodes from the n-th level of the rooted binary tree B. We denote by Tn(x, y) the
entry of Tn in the intersection of the row x and column y.

Definition 2.3. The system {Tn}∞n=0 is called consistent if

Tn(x, y) = Tn+1(x1, y1) + Tn+1(x1, y2) + Tn+1(x2, y1) + Tn+1(x2, y2),

for all n = 0, 1, 2, . . ., and x, y where x1, x2, and y1, y2 are respectfully the children
of x and y.

Lemma 2.4. If {Tn}∞n=0 is consistent, then there is a measure µ on C2 such that

µ(Sx × Sy) = Tn(x, y)

where x and y are at the n-th level of the binary tree B.

Proof. Let us introduce the product tree B×B whose nodes are ordered pairs (x, y)
where x and y are at the same level in B. The node (x, y) has 4 children:

(x1, y1), (x2, y1), (x1, y2), (x2, y2)

where x1, x2, and y1, y2 are the children of x and y, respectfully. A consistent
sequence {Tn}∞n=0 defines a function µ : B×B → R

+∪{0} by µ : (x, y) 7→ Tn(x, y).
This function is analogous to the one in Lemma 2.2, and using the same proof as
in Lemma 2.2, the function

µ : (Sx × Sy) → µ(x, y)

extends to a Borel measure on C × C. �
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3. Balanced partitions

Let Ω be a finite set of n elements. We say that Ω = ∪ki=1Ωi is a balanced
partition of Ω, if |Ωi| ∈ {⌈n/k⌉, ⌊n/k⌋} for all 1 ≤ i ≤ k. It is easy to see that every
finite set has a balanced partition for every natural number k, and the multi set
{|Ω1|, |Ω2|, . . . , |Ωk|} is uniquely determined by n and k. Each partition of Ω has
a characteristic k × |Ω| matrix M whose rows are the characteristic vectors of the
partition sets. Each column sum of M is 1, and if n divides k and the partition
is balanced, then each row sum is n/k. We denote the set of all balanced k × n

partition matrices by K̂(k, n).
Let S be a non-negative matrix whose rows and columns are indexed by a finite

set Ω with n elements and let k be a fixed natural number. For a balanced partition
P = {Ω1,Ω2, . . . ,Ωk} of Ω, we define a matrix P(S) whose ij-th entry is

∑

x∈Ωi,y∈Ωj

Sx,y.

We denote by “C(S, k) the set of all matrices that can be obtained as P(S) for some
balanced partition P with k sets.

Let K(k, n) denote the set of all nonnegative k-by-n matrices with each row sum
equal to n/k and each column sum equal to 1. For an arbitrary n×n matrix S and
a natural number k we define a shape C(S, k) in R

k×k in the following way:

C(S, k) := {MSMT | M ∈ K(k, n)}.

Since K(k, n) is compact, we have that C(S, k) is a compact subset of the set of real
k by k matrices. It is also important to mention that the set C(S, k) is invariant
under conjugation with permutation matrices. For an arbitrary set of matrices S ,
we define C(S , k) as

C(S , k) :=
⋃

s∈S

C(S, k).

If S is a compact subset of n × n matrices, then C(S , k) is also a compact set
which depends continuously on S .

We can define an analogy of C(S, k) for a Borel measure µ on C × C with finite
total measure. Let f1, f2, . . . , fk be nonnegative (Borel) measurable functions on
C with the property that their sum is the constant function 1 and that for all
1 ≤ i ≤ k, ∫

C

fi dν = 1/k.

For such a sequence of functions, we define a k × k matrix M by setting

M(i, j) :=

∫

(x,y)∈C×C

fi(x)fj(y)dµ.

Sometimes we denote this matrix by M(f1, f2, . . . , fk). Let so C0(µ, k) be the
set of all matrices M(f1, f2, . . . , fk) for all possible choices of suitable functions
f1, f2, . . . , fk. We denote by C(µ, k) the topological closure of C0(µ, k).

In addition to these measurable shapes, it will sometimes be more convenient
to work with continuous functions only. Let therefore Cc(µ, k) denote the set of all
matrices M(f1, f2, . . . , fk) where the functions fi are in addition continuous on C.
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Lemma 3.1. For any symmetric finite Borel measure µ on C × C we have that
C0(µ, k) ⊆ Cc(µ, k) for every natural number k. If µ is absolutely continuous with
respect to ν × ν, then for every natural number k, the set C0(µ, k) is closed, and so
C0(µ, k) = C(µ, k).

Proof. For the first part, let X ∈ C0(µ, k), and suppose that f1, f2, . . . , fk are
corresponding measurable witnesses. Further, let µ1 denote the marginal of µ on C
(since µ is symmetric, its two marginals are equal). Now, since by Proposition 2.1
(C,B(C), µ1) is a Radon measure space on a compact set, by Lusin’s theorem we can
for any ε > 0 find a compact set E ⊂ C with µ1(C\E) < ε and ν(C\E) < ε, together
with continuous functions g1, g2, . . . , gk on C taking values in [0, 1] such that for each

1 ≤ i ≤ k we have gi|E = fi|E . It is not hard to see that since
∑k
i=1 fi ≡ 1 is a

continuous function, we may assume that we also have
∑k

i=1 gi ≡ 1. Since each gi
differs from the corresponding fi on a set of small measure only, we have that

∣∣∣∣
∫
gidν −

1

k

∣∣∣∣ =
∣∣∣∣
∫
(fi − gi)dν

∣∣∣∣ ≤ ε

for each i. We would like to turn the family g1, g2, . . . , gk into a witness for an ele-
ment in Cc(µ, k), but their integrals still don’t quite match up. We shall therefore
iteratively change the gi-s in such a way that they remain continuous and nonneg-
ative, and also their sum is still the constant 1 function, but after each step at least
one additional function will have integral exactly 1/k. Thus in at most k − 1 steps
we shall end up with a witness family.
Given a continuous function F : C → [0, 1] and a parameter α ∈ [0, 1], define the
continuous function

Fα(x) := min{α, F (x)}.

This has the property that the integral
∫
C
Fαdν is a continuous, monotone increas-

ing function of α. Suppose now that for some 1 ≤ ℓ ≤ k the function gℓ has an
integral greater than 1/k (unless all are exactly 1/k, at least one such ℓ exists).

Since

ν([gℓ > α]) + α(1 − ν([gℓ > α])) ≥

∫

C

gαℓ dν ≥
1

k
,

we have

ν([gℓ > α]) ≥
1
k − α

1− α
,

and so ∫

C

g2kεℓ dν ≥ 2kε
1
k − 2kε

1− 2kε
= ε

2− 4k2ε

1− 2kε
> ε

for whenever ε < 1
4k2 . Then, by continuity of the integral as a function of α, there

exists a 0 < β < 2kε such that
∫

C

gβℓ dν =

∫

C

gℓdν −
1

k
,

whence g′ℓ := gℓ− g
β
ℓ is a nonnegative function with integral exactly 1/k. Replacing

gℓ by g′ℓ, and one of the other gi-s with integral not equal to 1/k – say gj – by

gj + gβℓ , we obtain a new family of functions with the desired properties. Note that
during one such step, no function changed by more than 2kε in ‖ · ‖∞-norm.
Thus at the end of the process – after at most (k − 1) steps – we obtain a family
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of nonnegative continuous functions (g̃1, g̃2, . . . , g̃k) that generate the element Y :=
M(g̃1, g̃2, . . . , g̃k) ∈ Cc(µ, k), and such that for each 1 ≤ i ≤ k we have

‖gi − g̃i‖∞ < (k − 1) · 2kε < 2k2ε.

This means that for any pair of indices j1, j2, we have with the notationDj1,j2(x, y) :=
fj1(x)fj2 (y)− g̃j1(x)g̃j2 (y) that

|Xj1,j2 − Yj1,j2 | =

∣∣∣∣∣

∫

(x,y)∈C2

Dj1,j2(x, y) dµ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

(x,y)∈E2

Dj1,j2(x, y) dµ

∣∣∣∣∣

+

∫

(x,y)∈(C\E)×E

|Dj1,j2(x, y)| dµ+

∫

(x,y)∈(E×C\E)

|Dj1,j2(x, y)| dµ

≤ µ(E2) · ‖fj1 − g̃j1‖∞ · ‖fj2 − g̃j2‖∞ + 2µ(E × (C\E))

≤ 4k4ε2 + 2µ1(E)
(
1− µ1(E)

)
≤ ε(4k4 + 2),

hence ‖X − Y ‖∞ ≤ ε(4k4 + 2). Since ε can be chosen to be arbitrarily small, we

obtain that indeed X ∈ Cc(µ, k).
Let us now turn to the second part. Suppose that the sequence (Xi) ⊂ C0(µ, k)
is convergent. Then for every natural number i we have a family of nonnegative
witness functions f1,i, f2,i, . . . , fk,i with

∑k
j=1 fj,i = 1 ,

∫
C
fj,i dν = 1/k such that

for each pair j1, j2, as i goes to infinity, the integrals
∫

(x,y)∈C2

fj1,i(x)fj2,i(y) dµ

converge to some fixed value.
We can choose an infinite sequence r1, r2, . . . from the natural numbers such that

for all j, ℓ the sequences fj,ri and fj,ri(x)fℓ,ri(y) are weak-* convergent in L∞(ν)
and L∞(ν × ν), respectively. Now let gj be the weak-* limit of fj,ri , and gj,ℓ that

of fj,ri(x)fℓ,ri(y). Note that clearly
∫
C
gj dν = 1/k, but also

∫
A

∑k
j=1 gj dν = ν(A)

for all A ∈ B(C), and so
∑k
j=1 gj = 1. Thus this family induces a matrix X :=

M(g1, g2, . . . gk) ∈ C0(µ, k). Our aim is to show that X is the limit of the matrices
Xi.
Consider the Radon-Nikodym derivative W ∈ L1(ν × ν) of the measure µ, which is
nonnegative and symmetric by the assumption on µ. First, we show that gj,ℓ(x, y) =
gj(x)gℓ(y) holds ν × ν-almost everywhere. Since the characteristic functions χA×B

with A,B ∈ B(C) generate a dense subspace in L1(ν×ν), this amounts to the weak
evaluations

〈χA×B , gj,ℓ〉L1(ν×ν),L∞(ν×ν)

and

〈χA×B, gj ⊗ gℓ〉L1(ν×ν),L∞(ν×ν)

being equal. But this follows from

〈χA×B , gj ⊗ gℓ〉L1(ν×ν),L∞(ν×ν) = 〈χA, gj〉L1(ν),L∞(ν) · 〈χB , gℓ〉L1(ν×ν),L∞(ν×ν)

and taking the limit in the equalities

〈χA×B, fj,ri ⊗ fℓ,ri〉L1(ν×ν),L∞(ν×ν) =

∫

A×B

fj,ri ⊗ fℓ,ridν × ν

=

Å∫
A

fj,ridν

ã
·

Å∫
B

fℓ,ridν

ã
= 〈χA, fj,ri〉L1(ν),L∞(ν) · 〈χB, fℓ,ri〉L1(ν),L∞(ν)
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But then we have

X(j, ℓ) =

∫

C×C

gj ⊗ gℓdµ =

∫

C×C

gj,ℓdµ =

∫

C×C

gj,ℓ ·Wdν × ν

= lim
i→∞

∫

C×C

fj,ri ⊗ fℓ,ri ·Wdν × ν = lim
i→∞

∫

C×C

fj,ri ⊗ fℓ,ridµ = lim
i→∞

Xri(j, ℓ),

concluding the proof. �

4. The notion of convergence and the representation of the limit

Since the sum of the entries of matrices S will play an important role, we
introduce the short hand notation γ(S) for this quantity. It is easy to see that
γ(S) = γ(X) for all k and X ∈ C(S, k).

Definition 4.1. Let c > 0 be a constant and {Si}
∞
i=1 be a sequence of non-negative

matrices that satisfy γ(Si) < c for every i. We say that the sequence {Si}∞i=1 is
convergent if for every natural number k, the shapes C(Si, k) are converging to
some fixed closed set in [0, c]k×k with respect to the Hausdorff topology.

Note that when speaking of the Hausdorff distance of compact subsets of Rk×k,
we mean the metric dist(·, ·) induced by the ℓ1 norm of Rk×k. Now we can formulate
our main theorem regarding the global limits.

Theorem 4.2. If {Si}∞i=1 is a convergent sequence of non-negative symmetric
matrices then there exists a symmetric Borel measure µ on C × C such that for
all natural numbers k, the limit shape of C(Si, k) is C(µ, k).

As a corollary (For a detailed proof see Chapter 8) we get the following statement.

Corollary 4.3. If {Si}∞i=1 is a convergent sequence of non-negative symmetric
matrices, then there exists a symmetric Borel measure µ on [0, 1]2 such that for all
natural number k, the limit shape of C(Si, k) is C(µ, k).

For a finite graphG (with non empty edge set) we define C0(G, k) to be ‖AG‖
−1
1 C(AG, k)

where AG is the adjacency matrix of G. Note that if G has no loop edges than
‖AG‖1 = 2|E(G)|.

Definition 4.4. We say that the sequence {Gi}∞i=1 of graphs is s-convergent if for
every fixed natural number k, the shapes C0(Gi, k) are converging in the Hausdorff
metric.

It is clear that the above convergence notion puts all non-empty graphs into a
compact space since every sequence has an s-convergent sub-sequence. The following
theorem is an immediate consequence of Theorem 4.2.

Theorem 4.5. If {Gi}∞i=1 is an s-convergent sequence of graphs, then there is a
Borel probability measure µ on [0, 1]2 such that the limit shape of C0(S, k) is C(µ, k)
for all natural number k.

Motivated by Theorem 4.5 we introduce the following notion.

Definition 4.6. An s-graphon is a symmetric Borel probability measure on [0, 1]2.

We will prove that every s-graphon is a limit of some graph sequence.
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Theorem 4.7. Let µ be an s-graphon. then there is a graph sequence {Gi}∞i=1 such
that it is s-convergent and its limit is µ.

Corollary 4.8. Let µ be an arbitrary symmetric Borel measure on [0, 1]2 (or on
C2). Then there is a sequence of non-negative symmetric matrices {Si}∞i=1 with
γ(Si) = µ([0, 1]2) such that the limit of {Si}∞i=1 is µ.

Proof. Let µ′ = µ/µ([0, 1]2). We have by theorem 4.7 that µ′ is the limit of the
matrices AGi

/‖AGi
‖1 for some graph sequence {Gi}∞i=1. It follows that µ is the

limit of the matrices AGi
µ([0, 1]2)/‖AGi

‖1. �

5. Some lemmas

Lemma 5.1. Let S be a nonnegative n × n matrix. There is a measure µ on C2

such that C(µ, k) = C(S, k) for every natural number k.

Proof. First we represent S by a measurable function g on C2 in the following way.
We partition C into n subsets P1,P2, . . . ,Pn each of measure 1/n. For a point
x ∈ Pi × Pj, we define g(x) to be n2Si,j . Now the function g defines a measure µ
on C2 by

µ(H) =

∫

H

g d(ν × ν).

It is easy to see that C(µ, k) = C(S, k) for every natural number k. �

Lemma 5.2. Let µ be a measure on C2 and let X be an element of C0(µ, k) for
some natural number k. Then C(X, r) ⊆ C(µ, r) for every natural number r.

Proof. Let Y be an arbitrary element of C(X, r). We know by definition that Y =
MXMT for some nonnegative real r× k matrix M ∈ K(k, n). Let X1, X2, . . . be a
sequence of matrices in C0(µ, k) converging to X , and for each natural number n,
let fn,1, fn,2, . . . , fn,k be a systems of measurable functions on C that is a witness

for Xn ∈ C0(µ, k). That is Xn = M(fn,1, fn,2, . . . , fn,k), the sum
∑k

i=1 fn,i is the
constant function 1 and for all 1 ≤ i ≤ k,∫

C

fn,i dν = 1/k.

Define

gn,i =
k∑

j=1

Mi,jfn,j

and let Gn be an r × r matrix with entries

Gn(i, j) =

∫

(x,y)∈C2

gn,i(x)gn,j(y) d(ν × ν).

Since Gn = MXnM
T , we get that the sequence Gn is converging to Y . On the

other hand, the definition of Gn shows that Gn ∈ C0(µ, r). This proves that Y ∈
C(µ, r). �

This result has the following consequence for shapes pertaining to the same
measure/matrix.

Corollary 5.3. Let µ be a measure on C2 of finite total measure. Then for all
natural numbers k and r we have that C(C(µ, k), r) ⊆ C(µ, r). In particular we get
that C(C(S, k), r) ⊆ C(S, r) for every nonnegative matrix S.
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Proof. The result follows from the continuity properties of C(·, r) on the space of
k × k matrices. �

Lemma 5.4. Let {Ti}∞i=1 be a sequence of nonnegative symmetric consistent tables
and let µ be the symmetric measure constructed as in Lemma 2.4. Then for every
natural number k, the set C(µ, k) is the topological closure of

⋃

n∈N

C(Tn, k).

Proof. For a node x ∈ V (B) in the binary tree B, let χx be the characteristic
function of the set Sx. Let h : V (B) → N correspond to the levels of the nodes of
B. The system of functions

{χx | h(x) = n}

show that Tn ∈ C0(µ, 2
n). Then Lemma 5.2 shows that C(Tn, k) ⊆ C(µ, k) for all

n and k.
For the other direction, we shall prove that every element X ∈ Cc(µ, k) can be

approximated by elements from C(Tn, k). Let f1, f2, . . . , fk be continuous functions

on C such that
∑k

i=1 fi = 1,
∫
C
fi dν = 1/k and X = M(f1, f2, . . . , fk). Since C is

compact, these functions are actually uniformly continuous, and hence we can for
a given ε > 0 find an n ∈ N

+ and functions g1, . . . , gk with values in [0, 1] such that
each gi is constant on sets Sx with h(x) = n, and

‖fi − gi‖∞ < ε.

Let now Y ∈ C(Tn, k) be generated by the family (g1, . . . , gk). Then we clearly have

‖X − Y ‖∞ ≤ (2ε+ ε2) · µ(C × C).

�

Lemma 5.5. Let c be a positive number and let k and t be natural numbers. Then
for any nonnegative n× n matrix S with γ(S) = c, we have

dist(C(C(S, t), k), C(S, k)) ≤
2ck

t

Proof. Let X be an arbitrary element of C(S, k) and let M ∈ K(k, n) be a matrix
with MSMT = X . Let mk + r = t for some natural numbers m and r < k. Now
we construct a t× n matrix M1 from M with the following operations:
1.) we multiply M by k/t
2.) we replace each row v by an m× k matrix whose rows are all equal to v.
3.) we add r copies of the everywhere 1/t row of length n. (These are the last rows
of the resulting matrix.)

The matrix M1 is an element of K(k, n) and thus Y =M1SM
T
1 ∈ C(S, t).

Let M2 be a k×tmatrix described as follows. The i-th row ofM2 has a block of 1-
s of length m starting at the im+1-st place, it has a block of 1/k of length r starting
at the mk + 1-st place and every other place is 0. It is clear that M2 ∈ K(k, t).

For technical reasons we construct a t × n matrix M3 by putting zeroes to the
last r rows of M1. Let Z = M2M1SM

T
1 M

T
2 = M2YM

T
2 ∈ C(C(S, t), k). From

M3 < M1 we obtain
mk

t
X =M2M3SM

T
3 M

T
2 ≤ Z.

Using that γ(mkt X) = cmk
t and that γ(Z) = c we get that dist(Z, mkt X) ≤ cr

t and

thus dist(Z,X) ≤ 2cr
t < 2ck

t . Finally, Lemma 5.3 concludes the proof. �
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Lemma 5.6. Let X and Y be two nonnegative matrices of the same size n such
that ‖X − Y ‖1 ≤ ε and let M ∈ K(k, n) for some natural number k. Then

‖MXMT −MYMT ‖1 ≤ ε.

Proof. Let us express X − Y as A− B with two nonnegative matrices A,B where
A is the positive part of X − Y and B is the negative part. Now ‖X − Y ‖1 =
γ(A) + γ(B) ≤ ε. It follows that

‖MXMT −MYMT‖1 = ‖M(A−B)MT ‖1 = ‖MAMT −MBMT ‖1 ≤

≤ ‖MAMT‖1 + ‖MBMT ‖1 = γ(MAMT ) + γ(MBMT ) = ε.

�

The previous lemma has the following immediate corollary:

Lemma 5.7. Let X and Y be two nonnegative matrices of the same size n such
that ‖X − Y ‖1 ≤ ε. Then dist(C(X, k), C(Y, k)) ≤ ε for every natural number k.

Lemma 5.8. Let X and Y be two nonnegative matrices such that γ(X), γ(Y ) ≤ c
and dist(C(X,n), C(Y, n)) ≤ ε. Then dist(C(X, k), C(Y, k)) ≤ ε+ 4ck/n.

Proof. Using Lemma 5.7, from dist(C(X,n), C(Y, n)) ≤ ε, we get that

dist(C(C(X,n), k), C(C(Y, n), k)) ≤ ε.

Now Lemma 5.5 completes the proof. �

Lemma 5.9. Let k1 < k2 < . . . be an arbitrary strictly increasing infinite sequence
of natural numbers and let S1, S2, . . . be a convergent sequence of matrices with
γ(Si) ≤ c. Let furthermore X1, X2, . . . be a sequence of matrices with γ(Xi) ≤ c
such that

dist(C(Xi, ki), lim
n→∞

C(Sn, ki)) ≤ 1/i

for every natural number i. Then the sequence Xi is convergent with

lim
n→∞

C(Xn, k) = lim
n→∞

C(Sn, k)

for every natural number k.

Proof. From the above conditions we get that for each index i there is an index ni
such that

dist(C(Xi, ki), C(Sn, ki)) ≤ 2/i

for all n > ni. From Lemma 5.8 it follows that

dist(C(Xi, k), C(Sn, k)) ≤ 2/i+ 4ck/ki

if n > ni. This means that

dist(C(Xi, k), lim
n→∞

C(Sn, k)) ≤ 2/i+ 4ck/ki.

Consequently

lim
i→∞

C(Xi, k) = lim
n→∞

C(Sn, k).

�
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6. A regularity lemma for measures

Lemma 6.1. Let c, ε be positive numbers and let k1, k2 . . . , kr be positive integers
for some r ∈ N

+. Then there exists a positive integer

m < max

(
4c (
∏r
i=1 ki)

2

ε
,

r∏

i=1

ki

)

that can be expressed as (
∏r
i=1 ki)

α for some natural number α with the following
property.

Let S be a nonnegative n×n matrix with γ(S) ≤ c. For any system {X1, X2, . . . , Xr}
of matrices with Xi ∈ C(S, ki) for all 1 ≤ i ≤ r and some ki ∈ N we can find a mat-

rix Z ∈ C(S,m) such that for every 1 ≤ i ≤ r, there exists a matrix Mi ∈ K̂(ki,m)
with ∥∥MiZM

T
i −Xi

∥∥
1
< ε.

Proof. For all 1 ≤ i ≤ r, let Mi be an element of K(ki, n) such that MiSM
T
i = Xi.

The initial idea is to create some sort of a joint “blow-up” M of these matrices that
can be used to generate Z. In other words, M should have column sums all equal
to 1, and all row sums also equal. At the same time, we would need M to have
the property that grouping and adding up its rows in different (equitable) ways, we
obtain each of the Mi-s.
To deal with our second goal, we first create a k1k2 . . . kr × n matrix T whose
rows are indexed by sequences (a1, a2, . . . , ar) with 1 ≤ ai ≤ ki such that the j-th
element of the row corresponding to every such sequence is

∏r
i=1Mi(ai, j). Note

that given 1 ≤ j ≤ r, adding up the rows with the same corresponding aj yields
Mj. We denote by g(a1, . . . , ar) the sum of the elements in the row corresponding
to (a1, a2, . . . , ar).
The issue with this matrix is that although it is a blow-up of the Mi-s, and all its
column sums are 1, the row sums do not match up. To correct this, we want to
further blow-up each row according to its weight g(·). However, the row sums need
not have ratios that allow for this, and so we shall scale down T , do some rounding
in the number of blow-ups of each row, and use uniform rows to compensate. The
actual error in approximating the Xi-s will come from this step.
Let ~1 denote the all 1 vector of length n. We introduce a new matrix Tp,q for two
natural numbers p, q with p + k1k2 . . . kr ≤ q, which is obtained from T by the
following operations:

• For every possible sequence (a1, a2, . . . , ar) we replace the corresponding
row ~w of T by

p

q⌈g(a1, a2, . . . , ar)p/n⌉
~w +

Å
1

q
−

pg(a1, a2, . . . , ar)

qn⌈g(a1, a2, . . . , ar)p/n⌉

ã
~1.

(If g(a1, a2, . . . , ar) = 0, then we replace ~w by 1
q
~1.)

• Next, for every possible sequence (a1, a2, . . . , ar), we replace the corres-
ponding row by ⌈g(a1, a2, . . . , ar)p/n⌉ identical copies of the same row. Let

us denote the resulting matrix by T̂p,q.

• Next, we add q − ℓ copies of 1
q
~1 as new rows where ℓ denotes the number

of rows in T̂p,q. (We shall show below that q − ℓ ≥ 0.)
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Since ∑

1≤ai≤ki

g(a1, a2, . . . , ar) = n,

we get that the number of rows in T̂p,q is
∑

1≤ai≤ki

⌈g(a1, a2, . . . , ar)p/n⌉

which is at most p + k1k2 . . . kr. This means that T̂p,q has indeed at most q rows.
The matrix Tp,q has q rows, each with element sum n/q. Furthermore a simple
calculation shows that Tp,q is a nonnegative matrix and in each column the sum of
the elements is 1. Consequently Tp,q ∈ K(q, n).

Let us fix an index 1 ≤ j ≤ r and t ∈ [kj ]. Let Ft denote the collection of those

rows in T̂p,q which are coming from a row in T indexed by a sequence (a1, . . . , ar)
with aj = t. The equation

∑

ae=f,1≤ai≤ki

g(a1, a2, . . . , ar) = n/ke

shows that p/kj ≤ |Ft| ≤ p/kj + (k1k2 . . . kr)/kj ≤ q/kj. This means that in Tp,q
we can enlarge the row sets Ft (where 1 ≤ t ≤ kj) in such a way that we obtain a
balanced partition Ωj of the row set of Tp,q into ki sets.

Let Yj be the kj × q matrix which is the characteristic matrix of the previous
partition. Let T̄p,q be the matrix constructed from T the same way as Tp,q but using
~0 instead of ~1 everywhere. It is easy to see that for this matrix

Yj T̄p,q =
p

q
Mj .

Let Z = Tp,qST
T
p,q ∈ C(S, q). We have that

p2

q2
Xj = Yj T̄p,qST̄

T
p,qY

T
j ≤ YjTp,qST

T
p,qY

T
j = YjZY

T
j .

If γ(S) = c1 ≤ c then γ(p
2

q2Xj) = c1
p2

q2Xj and γ(YjZY
T
j ) = c1. It follows that

∥∥∥∥
p2

q2
Xj − YjZY

T
j

∥∥∥∥
1

≤ c1

Å
1−

p2

q2

ã
.

From ‖Xj −
p2

q2Xj‖1 ≤ c1
Ä
1− p2

q2

ä
we obtain that

∥∥Xj − YjZY
T
j

∥∥
1
≤ 2c1

Å
1−

p2

q2

ã
≤ 4c1

Å
1−

p

q

ã
.

Let d = k1k2 . . . kr and q1 be the largest integer power of the product d which is not
larger than 4cd2/ε and let m := q = max(q1, d). Let p = q− d. Since q > 4cd/ε, we

obtain that 4c1
Ä
1− p

q

ä
< ε, meaning that Z satisfies the required properties. �

Remark 6.2. Note that the above choice of m lets us improve the approximation
by a constant, i.e., instead of the upper bound < ε, we actually have ≤ 4cd/m.

The same statement as in the previous lemma holds if we replace S by a conver-
gent sequence Si. More precisely, we have the following result.
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Corollary 6.3. Let Si be a shape-convergent sequence of nonnegative matrices with
γ(Si) ≤ c, and for each k ∈ N

+ let C(k) := limC(Si, k). Let ε be a positive number,
let k1, k2, . . . , kr be positive integers, and let m be the positive integer yielded by
Lemma 6.1. Then for any system {X1, X2, . . . , Xr} of matrices with Xi ∈ C(ki) for
all 1 ≤ i ≤ r, there exists a matrix Z ∈ C(m) such that for every 1 ≤ i ≤ r, there

is a matrix Mi ∈ K̂(ki,m) with
∥∥MiZM

T
i −Xi

∥∥
1
< ε.

Proof. Let again d := k1 . . . kr, and recall that m > 4cd/ε. Thus we may choose a
positive number

δ <
1

2
(ε− 4cd/m).

Now choose an Sℓ such that d(C(Sℓ, k), C(k)) ≤ δ for all 1 ≤ k ≤ m. Then we

can find matrices ‹Xi ∈ C(Sℓ, ki) with ‖‹Xi −Xi‖1 ≤ δ (1 ≤ i ≤ r), and apply the

previous lemma to obtain matrices Z̃ ∈ C(Sℓ,m) and Mi ∈ K̂(ki,m) with
∥∥∥MiZ̃M

T
i − ‹Xi

∥∥∥
1
< ε

for each 1 ≤ i ≤ r. Now choose a Z ∈ C(m) with ‖Z̃ − Z‖1 ≤ δ. Then by Lemma
5.6 we obtain for each 1 ≤ i ≤ r that

∥∥MiZM
T
i −Xi

∥∥
1
≤
∥∥∥MiZM

T
i −MiZ̃M

T
i

∥∥∥
1
+
∥∥∥MiZ̃M

T
i − ‹Xi

∥∥∥
1
+
∥∥∥‹Xi −Xi

∥∥∥
1

≤ δ + 4cd/m+ δ < ε.

�

Lemma 6.4. Let S be a nonnegative matrix with γ(S) = c. Then for every natural
number k and positive number ε there is a set H ⊂ C(S, k) such that
1.) dist(H,S(S, k)) ≤ ε

2.) |H | ≤ (⌈ck2/ε⌉)k
2

.

Proof. Since every element X of C(S, k) is a nonnegative matrix with γ(X) = c

we have that C(S, k) is contained in the cube C = [0, c]k
2

. Let us divide C into
small cubes of side length ε/k2. We construct H such that from each small cube,
which intersects C(S, k) we choose a point which is contained in the intersection.
Since the diameters of the small cubes (measured in ℓ1) are ε the set H satisfies
the required properties. �

Proposition 6.5. Let S be a nonnegative matrix with γ(S) = c, let k be a natural
number and let ε be a positive number. Then there is a natural number

m < (4c/ε)k(2ck
2/ε)k

2

which is a power of k and an element X ∈ C(S,m) such that dist(C(X, k), C(S, k)) ≤
ε.

Proof. We apply Lemma 6.4 for S with ε/2 and then Lemma 6.1 for the resulting
set H with ε/2. �
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7. Proof of Theorem 4.2 and Theorem 4.7

Throughout this section S1, S2, . . . is a convergent sequence of nonnegative matrices.
Using the convergence, we can assume that γ(Si) < c for all i. We denote by C(k)

the limit limi→∞ C(Si, k) which is a closed subset of [0, c]k
2

. Using Corollary 5.3
and Lemma 5.7, it follows that for an arbitrary r we have that C(C(r), k) ⊆ C(k).

Lemma 7.1. For every positive number ε and natural number k, there is a natural
number q which is a power of k and an element X ∈ C(q) such that

dist(C(X, k), C(k)) ≤ ε

.

Proof. By Proposition 6.5, we have a sequence of natural numbers mi and Xi ∈
C(Si,mi) such that dist(C(Xi, k), C(Si, k)) ≤ ε where the numbers mi are all
powers of k and furthermore they are all smaller than a value depending only
on c, k and ε. This means that there is only finitely many possible values for the
numbers mi and thus there is an infinite sequence t1 < t2 < . . . of natural numbers
with mti = r for some fixed number r and all i. Now the elements Xti are all in

[0, c]r
2

and so there is a convergent subsequence Xai whose limit is X . Lemma 5.7
implies that X satisfies the required property. �

Lemma 7.1 shows that there is a sequence of elements X1, X2, . . . such that Xi ∈
C(2ti) and dist(C(Xi, 2

i), C(2i)) ≤ 1/2i. We create another sequence Y1, Y2, . . . of
matrices recursively. Let Y1 = X1 and Yi ∈ C(2gi) be a matrix constructed in

Lemma 6.3 for Yi−1 and Xi with ε = 1/10i. Let MiK̂(2gi−1 , 2gi) be the sequence
of balanced partition matrices (guaranteed by Lemma 6.3) for which ‖MiYiM

T
i −

Yi−1‖1 ≤ 1/10i. For two natural numbers i, j with i > j we introduce matrices Yi,j
defined by

Yi,j =Mj+1Mj+2 . . .MiYiM
T
i . . .M

T
j+2M

T
j+1.

An iterated use of Lemma 5.6 implies that

‖Yi,j − Yj‖1 ≤ 10−j + 10−j+1 + · · ·+ 10−i−1 < 2 · 10−i−1.

Now we can choose an increasing sequence di from the natural numbers such that
Ydi,j converges to some Ȳj for all fixed number j. We have that

‖“Yj − Yj‖1 < 2 · 10−j−1

and that for i > j

Ȳj =Mj+1Mj+2 . . .MiȲiM
T
i . . .M

T
j+2M

T
j+1.

From the construction of the sequence Yi it follows that there is a matrix Ni ∈
K̂(2ti , 2gi) with ‖NiYiNT

i −Xi‖1 < 10−i. By Lemma 5.6 we get that

‖NiȲiN
T
i −Xi‖1 < 3 · 10−i.

Using that C(Ȳi, 2
i) ⊇ C(NiȲiN

T
i , 2

i) and Lemma 5.7 we obtain that

dist(C(Ȳi, 2
i), C(2i)) < 1/2i+ 3 · 10−i < 1/i.

Applying Lemma 5.9 it follows that

lim
n→∞

C(Ȳn, k) = C(k)

for all natural numbers k.
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Now the construction of the sequence Ȳi shows that it can be refined to a con-
sistent sequence of matrices T̄i ∈ C(2i). Corollary 5.3 and Lemma 5.4 complete the
proof.

Now we enter the proof of Theorem 4.7. Let µ be an s-graphon represented on the
cantor set C. Using that µ arises from a sequence of consistent tables and Lemma
5.4 we have that µ is the limit of non-negative symmetric matrices {Si}∞i=1 with
γ(Si) = 1. Each matrix Si can be represented by an s-graphon Qi whose Radon-
Nikodym derivative Wi is is a step function. We know from dense graph limit
theory [10] that Wi/‖Wi‖∞ is the limit (according to the limit notion for dense
graph sequences) of some graph sequence {Gij}

∞
j=1. This implies that a constant

multiple of Qi is the limit of {Gij}
∞
j=1 according to s-convergence. This constant

must be 1 because Qi is already a probability measure. Using that µ is the limit of
{Qi}∞i=1 the proof is complete.

8. Cantor set versus [0, 1]

Lemma 8.1. There exists an invertible measure preserving map Φ : C → [0, 1]
between the measure spaces (C,B(C), ν) and ([0, 1],B([0, 1]), λ).

Proof. Let ψ : C → [0, 1] be the standard representation of the Cantor set on [0, 1],
and denote by B0 ∈ [0, 1] the countable set of points whose ternary representation
is eventually constant 0 or 2 (in particular B0 ⊂ ψ(C)). Clearly ψ is an invertible
measure preserving map between C and ψ(C), where the latter is equipped with
the push-forward measure νπ. Now consider the surjective map ϕ0 : ψ(C) → [0, 1]
given through ϕ0(x) := νπ([0, x] ∩ ψ(C)). It can easily be seen that the restriction
ϕ0|ψ(C)\B0

is a measure preserving bijection.

Then the map Φ̂ := ϕ0|ψ(C)\B0
◦ ψ−1(ψ(C)\B0) will be an invertible measure pre-

serving map between C\B and [0, 1]\A, where B := ψ−1(B0) and A := ϕ0(B0).

Both of the sets A and B are countably infinite, and hence Φ̂ may be extended to
an appropriate Φ : C → [0, 1]. �

The above lemma has the following useful consequences.
Through the invertible map Φ of Lemma 8.1 there is a one-to-one correspondence

between graphons defined on [0, 1]2 and graphons defined on C2. Indeed, given a
graphon W : [0, 1]2 → R, we obtain an (almost everywhere defined) graphon (W ◦
Φ)(x, y) := W (Φ(x),Φ(y)) on C2, and vice-versa using Φ−1. This correspondence
preserves the Lp-norm of the graphons for all 1 ≤ p ≤ ∞, and also leaves the cut
norm and cut distance invariant.
In particular, for any two graphons W1,W2 on C2, we have that

δ�(W1,W2)

= inf {‖W1 −W2 ◦ ϕ‖�|ϕ : C → C is invertible and measure preserving }

and

‖W1‖� = max

∣∣∣∣
ß∫

C2

W1(x, y)f(x)g(y)dν × ν

∣∣∣∣ f, g : C → [0, 1]

™∣∣∣∣

= max

∣∣∣∣
ß∫

S×T

W1(x, y)dν × ν

∣∣∣∣S, T ∈ B(C)

™∣∣∣∣
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9. α-shapes

Definition 9.1. Let L ∞(C) denote the vector space of bounded measurable func-
tions on C. For a positive integer k, let

F
(1)
k :=

{
f ∈ L

∞(C)k

∣∣∣∣∣

k∑

i=1

fi(x) = 1 ∀x ∈ C

}
.

Given a positive real vector α ∈ R
k, let

Fα :=

ß
f ∈ F

(1)
k

∣∣∣∣
∫

C

fjdλ = αj and fj ≥ 0 ∀ 1 ≤ j ≤ k

™
.

As a short-hand notation, we shall also use

Fk :=

ß
f ∈ F

(1)
k

∣∣∣∣
∫

C

fjdλ = 1/k and fj ≥ 0 ∀ 1 ≤ j ≤ k

™

Let M+
c be the space of symmetric Borel measures on C × C with µ(C × C) ≤ c.

Each symmetric matrix S with γ(S) ≤ c and Sij ≥ 0 naturally induces a meas-
ure on [0, 1]2, and thus through Φ−1 an element µS ∈ M+

c , and we clearly have
C(S, k) = C(µS , k). Also, each non-negative symmetric function W ∈ L1(C × C,R)
with ‖W‖1 ≤ c induces a measure µW ∈ M+

c , and we shall define C(W,k) :=
C(µW , k).

Further, given a positive integer k, let Ek :=
{
α ∈ [0, 1]k

∣∣∣∑k
i=1 αi = 1

}
. Given a

closed set A ⊂ [0, 1]k with A ∩ Ek 6= ∅, let ‹C0(µ,A) ⊂ R
k+k2 denote the setß

(α,M) ∈ (A ∩ Ek)× R
k×k

∣∣∣∣∃ f ∈ Fα : Mi,j =

∫
fi ⊗ fjdµ

™
,

and ‹C(µ,A) ⊂ R
k+k2 its closure.

Note that with a small abuse of notation, we shall define

‹C0(µ, α) :=
{
M ∈ R

k×k
∣∣∣(α,M) ∈ ‹C0(µ, {α})

}
,

‹C(µ, α) :=
{
M ∈ R

k×k
∣∣∣(α,M) ∈ ‹C(µ, {α})

}

for α ∈ [0, 1]k ∩ Ek. With this notation, we have

C(µ, k) = ‹C
Ç
µ,
~1

k

å
.

Lemma 9.2. For each m ∈ N
+ and ε ∈ (0, 1/m], the functions

‹C(µ, ·) : (ε, 1]m ∩ Em → K(Rm×m)

given by α 7→ ‹C(µ, α) are uniformly equicontinuous on M+
c . In fact, they are

Lipschitz continuous with constant 2c(m− 1)/ε.

Proof. Fix an η ∈ (0, ε/m) and consider α, β ∈ [ε, 1]m∩Em such that ‖α−β‖∞ ≤ η.
Given any f ∈ Fα, there always exists a g ∈ Fβ such that for each 1 ≤ i ≤ m we
have ‖fi − gi‖∞ ≤ (m − 1)η/ε. Then we obtain for all 1 ≤ i, j ≤ m and µ ∈ M+

c

that

|M(µ, f)i,j −M(µ, g)i,j| =

∣∣∣∣
∫
fi ⊗ fjdµ−

∫
gi ⊗ gjdµ

∣∣∣∣
≤ ‖fi ⊗ fj − gi ⊗ gj‖∞ · ‖µ‖ ≤ 2(m− 1)η/ε · c.
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Consequently, ‹C(µ, α) and ‹C(µ, β) have an ℓ∞-Hausdorff distance of at most 2c(m−
1)η/ε whenever ‖α − β‖∞ ≤ η, independently of µ, and the claimed Lipschitz
continuity follows. �

As an easy consequence of this uniform Lipschitz continuity, we have the following
result.

Corollary 9.3. For any sequence (µn)N+ ⊂ M+
c , size k ∈ N

+ and compact set

A ⊂ (0, 1]k, the convergence of ‹C(µn, A) implies the convergence of any section

sequence ‹C(µn, α) where α ∈ A ∩ Ek.

The above results exclude the cases when any coordinate of α is zero, so our next
aim is to investigate what results still hold if we do allow for degenerate families of
functions. Defining the set

“C(µ, k) :=
⋃

ε∈(0, 1k ]

‹C(µ, [ε, 1]k),

the question is how this compact set relates to ‹C(µ, [0, 1]k) and to the sets
Ä
β, ‹C(µ, β)

ä
where some coordinate of β is zero.

Proposition 9.4. For any µ ∈ M+
c , we have

‹C(µ, [0, 1]k) = “C(µ, k).

If µ is absolutely continuous with respect to ν × ν, we actually have

‹C(µ, [0, 1]k) =
⋃

α∈[0,1]k,
∑

k

i=1
αi=1

Ä
α, ‹C(µ, α)

ä
.

Proof. For the first part it is enough to show that if β ∈ [0, 1]k,
∑k

i=1 βi = 1, and
βℓ = 0 for some 1 ≤ ℓ ≤ k, then for any family of functions f ∈ Fβ and small enough

ε > 0 we can find a family of functions g ∈ Fα with α ∈ (0, 1]k and
∑k

i=1 αi = 1
such that

‖M(µ, f)i,j −M(µ, g)i,j‖∞ < cε.

Suppose ε < min(1, c/4) and define the functions

gi :=

Å
1−

ε2

2c

ã
fi +

ε2

2ck
.

Clearly each gi is positive, their sum is the constant 1 function, and thus they form
a family g ∈ Fα for some appropriate α with no zero entries. It remains to be shown
that the corresponding matrix is close enough to the one pertaining to the family
f .

Given indices 1 ≤ i, j ≤ k we have

|M(µ, f)i,j −M(µ, g)i,j | =

∣∣∣∣
∫
fi ⊗ fjdµ−

∫
gi ⊗ gjdµ

∣∣∣∣

=

∣∣∣∣
∫ Å

fi ⊗ fj −

ÅÅ
1−

ε2

2c

ã
fi +

ε2

2ck

ã
⊗

ÅÅ
1−

ε2

2c

ã
fj +

ε2

2ck

ãã
dµ

∣∣∣∣

=

∣∣∣∣
∫ ÅÅ

ε2

c
−

ε4

4c2

ã
(fi ⊗ fj)−

Å
1−

ε2

2c

ã
ε2

2ck
(fi ⊗ 1)

−

Å
1−

ε2

2c

ã
ε2

2ck
(1⊗ fj) +

ε4

4c2k2
1⊗ 1

ã
dµ

∣∣∣∣ ≤ ε2 +
2ε2

2k
+

ε4

4ck2
< cε,
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and we are done.
For the second part, we wish to show that if µ is absolutely continuous with respect
to ν × ν, then for any β ∈ [0, 1]k ∩ Ek with βℓ = 0 for some 1 ≤ ℓ ≤ k, whenever

(β,M) ∈ “C(µ, k), then also M ∈ ‹C(µ, β). Fix an ε ∈ (0, 1), and consider the set
B := {1 ≤ ℓ ≤ k|βℓ = 0}. Then we may find an α ∈ (0, 1]k∩Ek and a family f ∈ Fα

such that ‖M −M(µ, f)‖∞ ≤ ε and 0 < αj(1− ε/ck) < βj for all j /∈ B.
For j /∈ B let now xj := max{0, (αj − βj)/αj} < ε/ck and yj := max{0, βj − αj}.
Consider the following family of functions.

gi := 0 if i ∈ B;

gi := (1− xi)fi +
yi∑
ℓ/∈B yℓ

∑

b∈B

xbfb if i /∈ B.

Then we have g ∈ Fβ and it remains to be shown that M(µ, g) is close to M . Note
that by absolute continuity of µ we obtain M(µ, g)i,j =Mi,j = 0 whenever at least
one of i and j are in B. Let us therefore now assume i, j /∈ B, in which case we
have

(1− ε/ck)fi ≤ gi ≤ fi + ε/c

yielding

M(µ, g)i,j −M(µ, f)i,j =

∫
gi ⊗ gj − fi ⊗ fjdµ

≥

Å(
1−

ε

ck

)2
− 1

ã
M(µ, f)i,j ≥ −

2ε

k

and

M(µ, g)i,j −M(µ, f)i,j =

∫
gi ⊗ gj − fi ⊗ fjdµ

≤
ε2

c
+
ε

c

∫
(fi ⊗ 1 + 1⊗ fj) dµ ≤

ε2

c
+ ε.

Thus if ε < c, we have |M(µ, g)i,j−Mi,j| ≤ 2ε whenever i, j /∈ B, and so ‖M(µ, g)−

M‖∞ ≤ 2ε, meaning that indeed M ∈ ‹C(µ, β). �

Lemma 9.5. Given any measure µ ∈ M+
c , positive integers k < m, a vector

β ∈ Em with exactly m− k vanishing coordinates and β0 ∈ Ek denoting the vector

obtained from this β by erasing the 0 coordinates, we have that ‹C(µ, β0) can be
obtained from

“K :=
¶
(β,M) ∈ “C(µ,m) |βiβj = 0 ⇒Mi,j = 0

©

by deleting the rows and columns pertaining to 0 coordinates of β. The same can
be achieved starting from the set

‹K :=
¶
(β,M) ∈ ‹C(µ, [0, 1]m) |βiβj = 0 ⇒Mi,j = 0

©
.

Proof. Just as in the proof of Proposition 9.4, it can be shown that any element of
“K or ‹K can be obtained as the limit of points coming from families f ∈ Fβ with
βi = 0 ⇒ fi = 0. �

In other words, if we allow degenerating families of functions in our shapes, then
lower dimensional shapes are retrievable from higher dimensional ones.
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Different use of shapes to define convergence of measures may lead to different
topologies, but the following result shows that in many cases, we obtain equivalent
notions of convergence.

Theorem 9.6. Let (µn)N+ ⊂ M+
c . The following are equivalent:

(1) C(µn, k) converges for every k ∈ N
+;

(2) ‹C(µn, [ε(k), 1]
k) converges for every k ∈ N

+ for one/all 0 < ε(k) ≤ 1/k;

(3) ‹C(µn, α) converges for every m ∈ N
+ and α ∈ (0, 1]m ∩Em.

Proof. First note that in (2), given a positive integer k, convergence for an ε0(k)
implies convergence for any larger ε(k) by application of Lemma 9.2.
The implications (3) ⇒ (1) and (2) ⇒ (1) are clear.
Let us now show (2) ⇒ (3) with ε(k) = 1/2k. Given an m ∈ N

+ and α ∈ (0, 1]m ∩
Em, let

k := ⌈1/min{αi : 1 ≤ i ≤ m}⌉.

Then we can find an α′ ∈ [1/2k, 1]k that is a refinement of α, i.e., there exists
a surjection P : {1, . . . , k} → {1, . . . ,m} with

∑
j∈P−1(i) α

′
j = αi. To this sur-

jection there corresponds a natural surjection ‹C(µ, α′) → ‹C(µ, α) with Lipschitz

bound max{|P−1(i)|2 : 1 ≤ i ≤ m}. Consequently, ‹C(µn, α) is convergent whenever
‹C(µn, α′) is, but this holds true by Corollary 9.3.
Finally, let us look at the implication (1) ⇒ (2). Fix a positive integer k, a δ ∈ (0, 1]
and an ε(k) ∈ (0, 1/k]. Let η := δε(k)/4ck, and suppose K is a finite η-net in
[ε(k), 1]k ∩Ek. Then by Lemma 9.2, if for some ν1, ν2 ∈ M+

c we have

dist
Ä‹C(ν1, α), ‹C(ν2, α)

ä
< δ

for each α ∈ K, then

dist
Ä‹C(ν1, [ε(k), 1]k), ‹C(ν2, [ε(k), 1]k)

ä
< δ + 4c(k − 1)η/ε(k) < 2δ.

Now set m := 2k2⌈4c/δε(k)⌉, and let

K :=
{
α ∈ [ε(k), 1]k ∩ Ek

∣∣mαi ∈ N
+ ∀ 1 ≤ i ≤ k

}
.

Then m > 2k/η, and K is an η-net in [ε(k), 1]k ∩ Ek. Thus to show convergence

of ‹C(µn, [ε(k), 1]
k), it suffices to show that for each α ∈ K, the sequence ‹C(µn, α)

converges. But note that each such α is refined by β := (1/m, . . . , 1/m) ∈ R
m,

and by the arguments used in (2) ⇒ (3), this follows from the convergence of the

sequence C(µn,m) = ‹C(µn, β). �

Definition 9.7. A set (µi)i∈I of measures in M+
c is said to be uniformly absolutely

continuous with respect to the measure ν × ν if for any ε > 0 there exists a δ > 0
such that whenever H ⊂ C × C satisfies ν × ν(H) < δ, we have µi(H) < ε for any
index i ∈ I.

Remark 9.8. Note that the above definition is equivalent to each element of the
set being absolutely continuous and the family of Radon-Nikodym derivatives being
uniformly integrable with respect to ν×ν. Also, by the de la Vallée-Poussin theorem,
if the Radon-Nikodym derivatives form a bounded set in Lp for some p > 1, then
the sequence is automatically uniformly integrable.

For such families of measures, we have the following variant of Lemma 9.2.
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Proposition 9.9. Let U ⊂ M+
c be a family of uniformly absolutely continuous

measures w.r.t. the measure ν × ν. Then the maps

‹C(µ, ·) : Em → K(Rm×m)

are uniformly equicontinuous on U .

Proof. By Lemma 9.2 it is enough to show equicontinuity in points β ∈ Em with at
least one vanishing coordinate. Let again B := {1 ≤ ℓ ≤ m|βℓ = 0}, and ε ∈ (0, 1),
to which there by uniform absolute continuity corresponds a δ > 0. We may assume
ε < c. Let h := min{βi|i /∈ B}, η := min(δ, εh/cm), and α ∈ Em such that ‖α −

β‖∞ < η. Choose a measure µ ∈ U . Our aim is to show that dH
Ä‹C(µ, β), ‹C(µ, α)

ä

is small regardless of this choice. Clearly 0 < αi(1 − ε/cm) < βi for i /∈ B. Thus,
using the construction presented in the proof of the second part of Proposition 9.4,
given any family of functions f ∈ Fα, we can find a family g ∈ Fβ such that for any
i, j /∈ B we have |M(µ, f)i,j −M(µ, g)i,j | < 2ε. Whenever at least one of i, j is in
B – say j –, we have by absolute continuity that M(µ, g)i,j =M(µ, g)j,i = 0, while

|M(µ, f)j,i| = |M(µ, f)i,j | =

∫
fi ⊗ fjdµ ≤

∫
1⊗ fjdµ.

However
∫
1⊗ fjdν× ν = αj < η ≤ δ, and also 0 ≤ 1⊗ fj ≤ 1, thus by the uniform

absolute continuity ∫
1⊗ fjdµ < ε.

For the other approximation, consider a family g ∈ Fβ , and let A := {1 ≤ ℓ ≤
m|βℓ > αℓ}. Clearly A ∩B = ∅. Define the following family of functions f ∈ Fα:

fi : =
αi
βi
gi if i ∈ A;

fi : = gi +
(αi − βi)∑
j /∈A αj − βj

∑

ℓ∈A

βℓ − αℓ
βℓ

gℓ if i /∈ A.

Note that by the choice of η, we have αℓ/βℓ ∈ (1− ε/cm, 1) for all ℓ ∈ A. Therefore
for all 1 ≤ i ≤ m we have

(1− ε/cm)gi ≤ fi ≤ gi + ε/cm,

which again yields ‖M(µ, f)−M(µ, g)‖∞ < 2ε (cf. the calculations at the end of the

proof of Proposition 9.4). This means that dH(
Ä‹C(µ, β), ‹C(µ, α)

ä
) < 2ε whenever

‖α− β‖∞ < η, with no dependence on µ ∈ U . �

Combining this with Theorem 9.6, we obtain the following result.

Theorem 9.10. Let U ⊂ M+
c be a uniformly absolutely continuous set of measures

with respect to ν × ν. Then for any sequence (µn)n∈N+ ⊂ U , the following are
equivalent:

(1) C(µn, k) converges for every k ∈ N
+;

(2) ‹C(µn, [ε(k), 1]
k) converges for every k ∈ N

+ for one/all 0 ≤ ε(k) ≤ 1/k;

(3) ‹C(µn, α) converges for every m ∈ N
+ and α ∈ [0, 1]m ∩ Em.

Finally, let us mention some easy observations regarding the topology induced
by shape convergence.

Lemma 9.11. Shape convergence in M+
c is metrizable.
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Proof. For each k ∈ N
+, consider the Hausdorff metricDk on the space K

(
[0, c]k×k

)

of compact sets. Note that the k-shapes of M+
c form a subset therein with Dk-

diameter 2c. Then the shape metric

dS(µ1, µ2) :=
∞∑

k=1

1

2k
Dk(C(µ1, k), C(µ2, k))

induces shape convergence on M+
c . �

Proposition 9.12. We have that dS is a pseudo-metric on the set M+
c . If we

factor out by the equivalence relation ∼ given by 0 distance then M+
c / ∼ equipped

with the shape metric dS is a compact Hausdorff space.

Proof. The space (M+
c / ∼, dS) is a topological subspace of the compact Hausdorff

space
∏∞
k=1

(
K
(
[0, c]k×k

)
, Dk

)
. It is also closed, as any convergent sequence of

matrices has a limit measure and any measure has a sequence of matrices converging
to it (see Corollary 4.8). �

10. Some closed subsets of the shape spaces

In this section we take a closer look at some subsets of shape spaces, and show
that they are closed sets. Since the space M+

c is compact for the shape convergence
(and equivalent notions), these closed subsets are automatically compact them-
selves. Our aim is to rephrase the results presented in [2, 3] on Lp graphons and
uniformly/Lp-upper regular sequences of graphons to the shape setting, in which
compactness then is an easy corollary to the compactness of the whole space. Since
the shape metric is defined on a countable product space, a sufficient condition for
a set to be closed is for it to have the form(

∞∏

k=1

Kk

)
⋂

M+
c ,

where each Kk is a closed subset of K
(
[0, c]k×k

)
.

Lemma 10.1. Let µ1, µ2 ∈ M+
c be two absolutely continuous measures with dS(µ1, µ2) =

0. Then also δ�(W1,W2) = 0, where Wi is the Radon-Nikodym derivative of µi
(i = 1, 2).

Proof. By Theorem 9.10 two absolutely continuous measures with the same shapes

(‹C(·, k))k∈N+ also have the same quotients (‹C(·, [0, 1]k))k∈N+ . But it was shown
in [3] that two absolutely continuous measures with the same quotients have δ�
distance zero hence the result follows. �

Lemma 10.2. Let p > 1 be fixed. A measure µ ∈ M+
c is absolutely continuous

with respect to ν × ν with Radon-Nikodym derivative h ∈ Lp(ν × ν) if and only if

there exists s ≥ 0 such that for each positive integer k the shape ‹C(µ, k) ⊂ R
k×k

lies within the closed s/k2-ball of Rk×k.

Proof. On the one hand, if h has finite Lp norm, then by contractivity and in light

of the scaling used, each ‹C(µ, k) lies within the closed ‖h‖p/k2-ball of Rk×k.
On the other hand, consider the consistent 2n × 2n tables Tn obtained from µ by
restricting ourselves to the σ-algebras on C induced by the levels of the binary

tree representation. Clearly Tk ∈ ‹C(µ, k). The functions Wn defined by n2Tn are
thus all in the closed s-ball of Lp(ν × ν). Let h be a weak-* accumulation point
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of {Wn|n ∈ N
+}. Then ‖h‖p ≤ s, and it can easily be seen that the measure

h · (ν × ν) generates the same consistent tables Tn as µ (the characteristic function

of any Borel subset of C × C lies in Lp
′

). Since the σ-algebras of the tree levels
generate the Borel σ-algebra on C ×C, these consistent tables extend uniquely, and
so µ = h · (ν × ν). �

Corollary 10.3. For each s ≥ 0 and p > 1 the closed s-ball of Lp(ν × ν) within
M+

c is compact in the dS metric.

This result also implies that on the unit ball in Lp (p > 1), the shape and δ� to-
pologies are equivalent. Indeed, for absolutely continuous measures, δ� convergence
implies dS convergence, so the former induces a stronger topology. By Lemma 10.1,
the two topologies separate the same elements, so the quotient metric spaces live on
the same sets. Then both metrics induce a compact Hausdorff topology, and since
they are comparable, they are in fact identical.

The above does not hold for the case p = 1, where an additional regularity is
needed of families of L1 functions to yield compactness results. This regularity is
uniform integrability, or uniform absolute continuity if we speak of the correspond-
ing measures. Therefore we next wish to show that this uniform absolute continuity
can also be encoded in shapes.

Recall that a family Φ of finite measures on (Ω,B) is said to be uniformly
absolutely continuous with respect to the finite measure τ on (Ω,B) if for each
ϕ ∈ Φ we have φ ≪ τ , and the Radon-Nikodym derivatives {Wϕ|ϕ ∈ Φ} satisfy
that for any ε > 0, there exists a δ > 0 such that

B ∈ B, τ(B) < δ ⇒

∫

B

Wϕdτ < ε.

In our case, when (Ω,B) is in fact C × C with its Borel σ-algebra, and τ = ν × ν,
we may simply require

B ∈ B, τ(B) < δ ⇒ ϕ(B) < ε,

from which absolute continuity and the existence of the Radon-Nikodym derivative
follows.

This definition however will not directly be useful when looking at shapes, and
we shall resort to an equivalent form. By the de la Vallée-Poussin theorem, a family
U ⊂ M+

c of measures is uniformly absolutely continuous with respect to ν × ν
if and only if there exists s ≥ 0 and a non-negative increasing convex function
G : [0,∞) → [0,∞) such that for any µ ∈ U , its Radon-Nikodym derivative Wµ

satisfies ∫
(G ◦Wµ)dν × ν ≤ s.

To simplify notation, let us write G(µ) :=
∫
G ◦Wµdν × ν, and for any matrix

M ∈ R
m×m, let G(M) :=

∑
1≤i,j≤mG(m

2Mi,j). Let further Us,G ⊂ M+
c denote

the family of absolutely continuous measures for which the above inequality applies.

Lemma 10.4. For any s ≥ 0 and non-negative increasing convex function G :
[0,∞) → [0,∞), we have that µ ∈ Us,G if and only if for all positive integers k and

M ∈ ‹C(µ, k), we have G(M) ≤ s.

Proof. By convexity of G, if µ ∈ Us,G, then for any positive integer k, the inequality

G(M) ≤ G(µ) ≤ s
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holds for each M ∈ ‹C(µ, k).
For the other direction, consider again the sequence of consistent tables Tn ∈
‹C(µ, n) induced by the binary tree. We know that G(Tn) ≤ s, and by the de la
Vallée-Poussin theorem, the measures they define on C×C are uniformly absolutely
continuous. Their Radon-Nikodym derivativesWTn

then form a weakly compact set
in L1(ν × ν) by the Dunford-Pettis theorem, and thus have a weak accumulation
point h ∈ L1(ν × ν) which also satisfies

∫
(G ◦ h)dν × ν ≤ s

Since each Borel subset of C ×C has a characteristic function in L∞, it follows that
h · (ν × ν) induces the same consistent tables as µ, and as in the previous Lemma,
we may conclude that µ = h · (ν × ν). �

Corollary 10.5. For each s ≥ 0 and non-negative increasing convex function
G : [0,∞) → [0,∞), the family Us,G ⊂ M+

c is compact in the dS metric.

Proof. Since G is convex and increasing, it is automatically continuous, hence for
each positive integer m, the set

Hm :=
{
M ∈ R

m×m |G(M) ≤ s
}

is closed. But then Km :=
¶‹C(µ,m) ⊂ Hm

©
⊂ K ([0, c]m×m) is closed as well, and

since

Us,G =

(
∞∏

k=1

Kk

)
⋂

M+
c ,

we are done �

In other words, even though the closed unit ball of L1 is not compact in this
topology, families of uniformly absolutely continuous measures are relatively com-
pact, and thus have accumulation points in the dS metric, each taking the form of
a graphon.

The next steps take us beyond bounded balls in Lp or uniformly absolute con-
tinuous families. The aim is to describe how singular measure sequences can be if
they are to converge in shape to an Lp or L1 graphon.

We recall the following definitions from [2].

Definition 10.6. A graphon W : [0, 1]1 → R is called (C, η)-upper Lp regular if
for any partition P of [0, 1] into measurable sets each of size at least η we have that
‖WP‖p ≤ C.
A sequence (Wn)n∈N+ of graphons is called C-upper Lp regular if for any η > 0
there exists an index N ∈ N

+ such that for any n ≥ N the graphon Wn is (C+η, η)-
upper Lp regular.

We introduce a further regularity notion connected to shapes, better tailored to
our purposes. Let 1k denote the k × k matrix with all entries equal to 1.

Definition 10.7. Given a positive integer k, an α ∈ (0, 1]k and a matrix M ∈
R
k×k, define

‖M‖α,p :=

Ñ
∑

1≤i,j≤k

Å
Mi,j

αiαj

ãp
αiαj

é1/p

.
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Note that for a family of 0-1 valued functions f ∈ Fα defining the partition P and
a graphon W we then have

‖M(µW , f)‖α,p = ‖WP‖p.

A measure µ ∈ M+
c is called shape (C, η)-upper Lp regular if for any positive

integer k, α ∈ [η, 1]k ∩ Ek and family f ∈ Fα we have that ‖M(µ, f)‖α,p ≤ C.
A sequence (µn)n∈N+ ⊂ M+

c of measures is called shape C-upper Lp regular if for
any η > 0 there exists an index N ∈ N

+ such that for any n ≥ N the measure µn
is shape (C + η, η)-upper Lp regular.
These notions naturally extend to graphons through their induced measures.

Clearly shape regularity is stronger, as the functions in the family f need not
be 0-1 valued. However, it turns out that for sequences of absolutely continuous
measures (graphons), these notions are actually equivalent.

We shall first prove the following strengthening of [2, Proposition 2.10].

Theorem 10.8. A sequence (Wn)n∈N+ of graphons on [0, 1]2 that converges in
δ�-metric to an Lp graphon W is shape ‖W‖p-upper Lp regular.

Proof. Fix η ∈ (0, 1), and an integer k ≤ 1/η. For any pair of functions h1, h2 : C →
[0, 1] and n ∈ N

+, we haveÅ∫
C×C

(W −Wn) · (h1 ⊗ h2)dν × ν

ã
≤ ‖Wn −W‖�

Thus for any family f ∈ Fα with α ∈ [η, 1]k ∩ Ek and 1 ≤ i, j ≤ k we have that

|M(µW , f)i,j −M(µWn
, f)i,j | ≤ ‖W −Wn‖�,

whence

‖M(µWn
, f)‖α,p ≤ ‖M(µW−Wn

, f)‖α,p + ‖M(µW , f)‖α,p

≤ ‖W −Wn‖� · ‖1k‖α,p + ‖W‖p.

Thus, if we choose N ∈ N
+ such that ‖W −Wn‖� ≤ η/‖1k‖α,p for all n ≥ N , the

graphons Wn (n ≥ N) will be shape (‖W‖p + η, η)-upper Lp-regular. �

This now allows us to prove the equivalence of the notions for sequences of
graphons.

Corollary 10.9. A sequence (µn) of absolutely continuous measures in M+ is
C-upper Lp regular if and only if it is shape C-upper Lp regular.

Proof. Since the sequence is C-upper Lp regular, it is eventually shape (C + 1, 1)-
upper Lp regular. If it isn’t shape C-upper Lp regular, we may find an ε > 0 and
a subsequence µnk

such that none of these measures is shape (C + ε, ε)-upper Lp

regular. However by [2, Theorem 2.9], this subsequence has a further subsequence
that converges to an Lp graphon W with ‖W‖p ≤ C. By Theorem 10.8 however,
this second subsequence is then shape ‖W‖p-upper Lp regular, leading to a contra-
diction. �

Lemma 10.10. The set RC,p,η ⊂ M+
c of shape (C, η)-upper Lp regular measures

is compact in the dS metric. Its interior is given by
⋃

0<ε<C

RC−ε,p,η.
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Proof. By definition, a measure µ ∈ M+
c is shape (C, η)-upper Lp regular if and

only if for any positive integer k ≤ 1/η, we have for all (α,M) ∈ ‹C (µ, [η, 1]k) that

‖M‖α,p ≤ C. The space of compact subsets of the closed C-ball of ℓp(Rk×k) is
compact with respect to the corresponding Hausdorff metric, and so if we consider
M+

c as a topological subspace of the compact metric space
∞∏

n=1

(
K
(
[ε(n), 1]n × [0, c]n×n

))

with ε(n) := min{1/n, η}, then the convergence on M+
c is the one induced by

the shapes (‹C(·, [ε(n), 1]n))n∈N+ . In this topology RC,p,η ⊂ M+
c is clearly closed.

However, by Theorem 9.6, this topology on M+
c is equivalent with the one induced

by the metric dS , implying the compactness. For the representation of the interior,
note that it follows from the corresponding representations within in each fiber

K
(
[ε(n), 1]n × [0, c]n×n

)

with n ≤ 1/η. �

Lemma 10.11. Denoting the C-ball of Lp(ν × ν) within M+
c by VC,p, we have

VC,p =
⋂

η>0

RC+η,p,η.

Proof. Clearly VC,p is contained in the intersection. Assume now that µ ∈ RC+η,p,η

for each η > 0. Since RC+η′,p,η′ ⊂ RC+η′,p,η ⊂ RC+η,p,η for any η > η′ > 0, we
have

µ ∈
⋂

η′>0

RC+η′,p,η = RC,p,η

for each η > 0. By Lemma 10.2, we conclude that µ = h · (ν × ν) for some function
h with ‖h‖p ≤ C. �

This result, with the fact that the sets RC+η,p,η contain each other in their interi-
ors, highlights the geometric reason why (shape) Lp-upper regularity is the correct
property for shape convergence of measures (not necessarily absolutely continuous!)
to an Lp graphon.

Finally, let us turn our attention to uniform upper regularity, the L1 analogue
of the above. Recall the following definition from [3].

Definition 10.12 ([3, Definition 5.1]). Given a function K : (0,∞) → (0,∞), a
graphon W is said to have K-bounded tails if for each ε > 0 we have∫

χW≥K(ε) ·Wdν × ν ≤ ε.

The graphon W is said to be (K, η)-upper regular, if for any partition P of C into
sets of measure at least η, the step function WP has K-bounded tails. A sequence
of graphons Wn is called uniformly upper regular if there exists a function K and
a sequence ηn → 0 such that for each n, the graphon Wn is (K, ηn)-upper regular.

Note that the required upper regularity means that the family of functions

W :=
{
(Wn)P |n ∈ N

+, P is a partition of C with all sets of measure at least ηn
}

should have K-bounded tails. This however is just an equivalent formulation of
uniform integrability for this family of functions, and using the de la Vallée-Poussin
theorem, we can define the following shape analogue.
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Definition 10.13. A sequence of measures (µn)n∈N+ ⊂ M+
c is said to be shape

uniformly upper regular if there exist a non-negative increasing convex function
G : [0,∞) → [0,∞), a constant s ≥ 0 and a sequence ηn → 0 such that for any
n ∈ N

+, the familiy

Hn :=
{
M(µn, f) ∈ R

k×k
∣∣∣k ∈ N

+, α ∈ [ηn, 1]
k ∩ Ek, f ∈ Fα

}

satisfies G(M) ≤ s+ η for each M ∈ Hn. In this case the sequence is called (s,G)
shape upper regular.
A measure µ ∈ M+

c is said to be (s,G, η) shape upper regular if the set

Hµ,η :=
⋃

k∈N+

{
M(µ, f) ∈ R

k×k
∣∣∣α ∈ [η, 1]k ∩ Ek, f ∈ Fα

}

satisfies G(M) ≤ s for all M ∈ Hµ,η.

Let Us,G,η ⊂ M+
c denote the set of measures that are (s,G, η) shape upper

regular. This means that a sequence of measures in M+
c is shape uniformly upper

regular if and only if there exist G and s such that the sequence eventually lies in
Us+η,G,η for each η > 0.

Lemma 10.14. For any s ≥ 0, η > 0 and non-negative increasing convex function
G : [0,∞) → [0,∞), the set Us,G,η ⊂ M+

c is compact in the dS metric. Its interior
is given by ⋃

0<ε<s

Us−ε,G,η.

Proof. The proof goes essentially as that of Lemma 10.10, using the fact that for
each positive integer k, the set

{
M ∈ R

k×k |G(M) ≤ s
}

is closed by continuity of G, and thus its closed subsets form a compact space for
the Hausdorff metric, and that (s,G, η) shape upper regularity can be characterized

by the shapes ‹C(·, [η, 1]n) with n ≤ 1/η. For the interior, use that for 0 < t < s the
set {

M ∈ R
k×k |G(M) < t

}

is open, and so the closed sets that are contained in it form an open set in the
Hausdorff metric. �

However, we also have the following analogue of Lemma 10.11.

Lemma 10.15. For any s ≥ 0, η > 0 and non-negative increasing convex function
G : [0,∞) → [0,∞), we have

Us,G =
⋂

η>0

Us+η,G,η.

Proof. Clearly Us,G is contained in the intersection. If µ ∈ Us+η,G,η for each η, then
since

Us+η′,G,η′ ⊂ Us+η′,G,η ⊂ Us,G,η

for any η > η′ > 0, we have

µ ∈
⋂

η′>0

Us+η′,G,η = Us,G,η

for each η > 0. By Lemma 10.4 we then indeed have µ ∈ Us,G. �
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Since a single measure µ ∈ M+
c is uniformly absolutely continuous if and only if

it is absolutely continuous, the above lemma has the following consequence.

Corollary 10.16. Any sequence (µn)N+ ⊂ M+
c that converges to an absolutely

continuous measure µ ∈ Us,G is (s,G) shape upper regular. Also, any sequence
(µn)N+ ⊂ M+

c that is (s,G) shape upper regular for some s and G is relatively
compact in the dS metric, and each accumulation point is an element of Us,G.

11. Further directions and remarks

The graph limit space Xs: Every graph limit notion has a corresponding graph
limit space which consists of equivalence classes of convergent sequences. Let µ1 and
µ2 be two s-graphons. We say that µ1 and µ2 are isomorphic if C(µ1, k) = C(µ2, k)
holds for every k ∈ N. In other words µ1 and µ2 are isomorphic if they represent
the same limit object in the theory of s-convergence. The graph limit space Xs is
the set of isomorphism classes of s-graphons. The space Xs is compact with respect
to s-convergence. We can uniquely describe every element of Xs by the sequence
{C(µ, k)}∞k=1 of the shapes of an arbitrary representative µ of the isomorphism
class.

Partial order on Xs: We say that µ1 � µ2 if and only if C(µ1, k) ⊆ C(µ2, k) holds
for every k. It is clear that � gives a partial order on Xs. A possible interpretation of
� is that if µ1 � µ2 then µ2 represents a “sparser limit object” than µ1. For example
the smallest element with respect to � is represented by the uniform measure on
[0, 1]2 which is the limit of complete graphs. On the other hand we will see later
that among regular s-graphons (regularity will be defined later) there is a maximal
element which is the limit of the cycles Cn.

Uniqueness: It is natural to ask whether there is a more simple analytic charac-
terization of isomorphism between s-graphons. We don’t have a satisfying answer
to this question but it seems that the more singular µ1 and µ2 are the weaker state-
ment we can make about their isomorphism. For example if µ1 is isomorphic to
µ2 and they are absolutely continuous with bounded Radon-Nikodym derivatives
then there are measure preserving maps ψ1, ψ2 : [0, 1] → [0, 1] and a measure µ3 on
[0, 1]2 such that µi is the push forward of µ3 with respect to ψ2

i for i = 1, 2.
In general we don’t have such a strong statement. Let να denote the probability

measure on [0, 1]2 obtained by first choosing a uniform element x ∈ [0, 1] and then
choosing one of (x+α mod 1, x) and (x−α mod 1, x) with probability 1/2. Note that
να is a singular measure concentrated on a one dimensional set in [0, 1]2. Assume
that α and β are algebraically independent irrational numbers. Then one can check
that να and νβ are s-isomorphic but there is no ψ1 and ψ2 with the above property.

Convexity: A closed subset in Xs is given by the isomorphism classes of s-graphons
µ such that C(µ, k) is convex for every k. An interesting question is to understand
what it means for a graph G to be approximately convex in the sense that G is
close to Xs in some metrization of s-convergence.

Dimension: If an s-graphon is an absolutely continuous measure on [0, 1]2 then we
can think of it as a 2-dimensional object. This intuition is also related to the fact
that if the number of edges in a convergent graph sequence has quadratic growth in
the number of vertices then the sequence has always an absolutely continuous limit
object. However sparser sequences may show a fractal like behavior. We attempt
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to associate a fractal dimension with s-convergent graph sequences (or equivalently
with their limit objects) through the limiting shapes. Let µ be an s-graphon. Each
matrix M ∈ C(µ, k) is non negative and has entry sum 1. This means that we can
associate the entropy H(M) :=

∑
i,j − ln(Mi,j)Mi,j with every M ∈ C(µ, k). Let

Hk := minM∈C(µ,k) H(M) and let dim(µ) := lim infk→∞ Hk/ ln(k).

Graphons vs. s-graphons: A graphon (in the most restricted sense) is a symmet-
ric measurable function of the form W : [0, 1]2 → [0, 1]. The edge density t(e,W ) of
W is equal to the integral of W according to the Lebesgue measure λ2 on [0, 1]2. If
t(e,W ) 6= 0 then the function W/t(e,W ) is the Radon-Nikodym derivative of the
s-graphon µW defined by µW (A) := t(e,W )−1

∫
A
Wdλ2 where A is an arbitrary

measurable set in [0, 1]2. Let {Gi}∞i=1 be a graph sequence such that its limit in
the sense of [10] is the graphon W and assume that W 6= 0. We have that {Gi}∞i=1

is also s-convergent and its limit is µW . In other words, if {Gi}∞i=1 is a convergent
dense graph sequence then the limit graphon can be recovered from its limiting
s-graphon and the limiting edge density limi→∞ t(e,Gi).

Sampling and degree distribution: One of the handicaps of s-convergence is
that it does not seem to be naturally connected to any sampling procedure if the
limit object has a singular part. A “sampling type” information that we can still
recover in a greater generality is related to the degree distribution. Let µ be an
s-graphon. If the marginal distribution µ′ of µ on the first coordinate is uniform on
[0, 1] then we say that µ is regular. It is clear that regularity is isomorphism invariant
in our language as it can be completely recovered from the shapes. If µ′ is absolutely
continuous with respect to the Lebesgue measure then its value distribution is also
an isomorphism invariant and we call it the degree distribution of µ in this case.
Note that highly singular s-graphons can have an absolutely continuous marginal.
For example the s-graphons να defined above are regular.
S-convergence of bounded degree graphs:

It is clear from the definitions that for bounded degree graph sequences s-
convergence is weaker than local-global convergence. The relationship to the Benjamini-
Schramm limit is more complicated. None of them is weaker than the other. If a
graph sequence {Gi}∞i=1 is local-global convergent then the limit object (see also
[7]) is a bounded degree measurable graph G on the vertex set [0, 1] with the fol-
lowing measure preserving property. If A,B ⊆ [0, 1] are Borel measurable then∫
A
degB(x)dλ =

∫
B
degA(x)dλ where degU (x) denotes the number of neighbors of

x in U and λ is the usual Lebesgue measure on [0, 1]. Using this we have that the
measure µG that is uniquely defined by µG(A×B) :=

∫
A
degB(x)dλ is symmetric.

It is not hard to see that the s-graphon µG is the limit object of {Gi}∞i=1 in the
sense of s-convergence. This consistence between the two limit objects is an en-
couraging fact. However the other direction does not work. The local-global limit
cannot always be reproduced from the limiting s-graphon. It remains an interesting
question to understand what s-convergence and the corresponding metric sees from
bounded degree graphs.

Blow-up invariance:

It is useful to note that s-convergence is invariant with respect to the so-called
blow-up operation. The k blow-up of a graph G is obtained from G by replacing
each vertex by k vertices and each edge by a complete bipartite graph between
the corresponding k-tuples of vertices. Subgraph densities and thus dense graph
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convergence is insensitive to this operation. It is easy to see that shapes of graphs
are also invariant with respect to blow-up.

Relationship to other convergence notions for sparse graphs:

There are various limit notions for sparse graph sequences. We have already
investigated the relationship between Lp convergence ([2],[3]) and s-convergence.
Another related limit concept is the logarithmic convergence described in [12]. Log-
arithmic convergence shares some common properties with s-convergence. For ex-
ample logarithmic convergence is also blow-up invariant and it detects dense graph
limit theory almost completely. Both s-convergence and logarithmic convergence
loses a certain constant in the dense case but the meaning of these constants are
different. In s-convergence we basically lose edge density: A graphon W is equival-
ent with cW where c is any positive constant. In logarithmic convergence a graphon
W is equivalent with ⊗nW where ⊗nW is defined to be the unique graphon with
the property that t(H,⊗nW ) = t(H,W )n holds for every H . Note that logarithmic
convergence was introduced to study problems in extremal combinatorics (such as
Sidorenko’s conjecture) which are invariant with respect to the ⊗n operation. A
third limit concept for sparse graph sequences was introduced in [6] by P. E. Fren-
kel. The main idea in [6] is to use different normalizations of the homomorphsim
numbers depending on the sparsity of the sequence. A nice fact abut this type of
convergence is that it puts Benjamini-Schramm limits [1] and dense graph limits
into a unified language. For other type of limit concepts see also [11]. At this point
there is no “best” or “strongest” convergence notion for sparse graphs but there is
a zoo of limit concepts capturing different properties.
Stronger versions of s-convergence

The notion of s-convergence can be strengthened and modified is various mean-
ingful ways. One of the most obvious ones is the following. For two graphs H,G
we denote by Hom(H,G) the set of all graph homomorphisms from H to G. Since
Hom(H,G) is a set of functions from V (H) to V (G) we can consider Hom(H,G)
as a subset of V (G)V (H). The characteristic function Char(H,G) of Hom(H,G)
is a function of the form V (G)V (H) → {0, 1}. In particular if H is the single
edge e then Char(e,G) is the adjacency matrix of G. In general Char(H,G) is
a |V (H)| dimensional array. We say that Gn is strongly s-convergent if the arrays
Char(H,Gn)/|Hom(H,Gn)| are convergent for every fixed H is a similar sense as
Definition 4.1. Following the philosophy of this paper, the limit object should be a
collection of measures on the sets [0, 1]V (H) where H runs through all finite graphs.
It is a non-trivial question to decide which systems of measures arise this way.

12. Examples

Maximal regular s-graphon: A symmetric matrix is regular if all the row sums
(and thus the column sums) are equal. An s-graphon µ is regular if every M ∈
C(µ, k) is regular for every k ∈ N. We show that there is a maximal regular s-
graphon µmax with respect to the partial order �. Let Rk denote the set of all
non-negative symmetric k × k matrices with the property that all row sums are
equal to 1/k. It is clear that if µ is regular then C(µ, k) ⊆ Rk. It is enough to show
that there exists µmax with C(µmax, k) = Rk for every k. Let Cn denote the cycle
of length n.

We claim that for every k ∈ N the sequence {C0(Cn, k)}∞n=1 converges to Rk
as n goes to ∞ in the Hausdorff metric. To see this let M ∈ Rk. We have that
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kM is a doubly stochastic matrix and thus it represents a symmetric Markov chain
on [k] = {1, 2, . . . , k}. Let (a1, a2, . . . , an) ∈ [k]n be a random vector obtained by
running the Markov chain kM for n steps. Let qi,j denote the number of indices t
such that (at, at+1) = (i, j). We have that if n is large then qi,j/n is close to Mi,j

with probability close to 1 and the errors go to 0 with n. This means that if we color
the vertices of Cn consecutively by a1, a2, . . . , an then the number of edges between
the i-th and the j-th color class is roughly 2nMi,j. It follows that the matrix of the
partition normalized by 2|E(Cn)| = 2n is close to M . With small changes we can
make this partition balanced and thus our claim is proved.

Now let µmax be an s-graphon representing the limit of {Cn}∞n=1. We obtained
that C(µmax, k) = Rk. The reader can check that a concrete choice for µmax is the
s-graphon να (where α is irrational) constructed in Chapter 11.

Hypercubes and fat hypercubes: Let Hn denote the graph on the vertex set
{0, 1}n in which two vectors are connected if their Hamming distance is 1. It can
be proved that {Hn}∞n=1 is convergent and the limit object is the maximal regular
s-graphon µmax constructed above. The idea of the proof is the following. Let us
chose a natural number a such that 0 << a << n. We have that the map fn :
v → 〈v, 1n〉 mod a is a graph homomorphism from Hn to Ca where 1n is the all 1
vector of length n and v ∈ {0, 1}n. We also have that fn is roughly balanced in the
sense that preimages have similar size. From here we can use the preimages of the
partitions of Ca constructed above to show that limn→∞ C0(Hn, k) = Rk.

For 0 ≤ α ≤ 1 let Hα
n denote the graph on {0, 1}n in which two vectors are

connected if their Hamming distance is in the interval [αn, αn+3]. We call them fat
hypercubes. Fat hypercubes play an important illustrative role in the limit theory
proposed in [12]. They provide natural examples for graph sequences in which the
number of edges grows with a fixed power of the number of vertices which is between
1 and 2. There is a natural infinite version of Hα

n that we denote by Hα. Let us
choose a uniform random element x in the cantor set C = {0, 1}N and let y be
obtained from x such that coordinate-wise independently with probability α we
change the coordinate. The distribution Hα of the pair (x, y) is symmetric on C×C
and thus it is an s-graphon. We ask the following question: Is it true that for fixed
α the sequence {Hα

n}
∞
n=1 converges to Hα?

Product graphs: For two graphs G1 and G2 we denote by G1 × G2 the graph
with vertex set V (G1)×V (G2) such that (v1, v2) and (w1, w2) are connected if and
only if (v1, w1) ∈ E(G1) and (v2, w2) ∈ E(G2). For a fixed graph G the sequence
{Gn}∞n=1 is a natural example for a sparse but not too sparse graph sequence. The
limit object of this sequence is basically given by the uniform measure concentrated
on the edges of G∞. Note that V (G)∞ is a Cantor set and the edge set E(G∞) is
a subset of (V (G)∞)2. The uniform distribution on E(G∞) is defined by choosing
an infinite sequnce (v1, w1), (v2, w2), . . . of independent, uniform random directed
edges in G.

Subdivisions of complete graphs: Let K◦
n denote the 2-subdivision of the com-

plete graph Kn. The graphs K◦
n are highly non-regular and their limit is non-

trivial. We define a probability distribution µ◦ on C4 = (C2)2 in the following way.
We choose (a, b) ∈ C2 uniformly and then with probability 1/4 each we choose
one of ((a, b), (a, a)), ((a, b), (b, b)), ((a, a), (a, b)), ((b, b), (a, b)). It is clear that µ◦ is
symmetric with respect to exchanging the first two coordinates and the last two
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coordinates. Note that replacing C2 by C (using a continuous measure preserving
bijection) we can also represent µ◦ as a symmetric probability measure on C2. We
claim that the limit of the graphs K◦

n is µ◦.
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