1,920 research outputs found

    Process planning for five-axis milling of sculptured surfaces

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    HAPTIC SCULPTING AND 5-AXIS PENCIL-CUT PLANNING IN VIRTUAL PROTOTYPING AND MANUFACTURING

    Get PDF
    ABSTRACT In this paper, a Two-phase approach to tool collision detection and local gouging elimination is proposed for haptic pencil-cut of sculptured surfaces. Pencil-cut is a special kind of machining operation, whose purpose is to use relatively smaller tools to remove rest material on the corners or highly curved regions that are inaccessible by bigger tools. Tool orientation determination and tool collision avoidance are critical issues for 5-axis pencil-cut tool path planning. Detailed techniques of haptic rendering and tool interference avoidance are discussed for haptic-aided 5-axis pencil-cut tool path generation. Hardware and software implementation of the haptic pencil-cut system with practical examples are also presented in this paper

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    IMECE2002-33598 CONFIGURATION-SPACE SEARCHING AND OPTIMIZING TOOL ORIENTATIONS FOR 5-AXIS MACHINING

    Get PDF
    ABSTRACT This paper presents a methodology and algorithms of optimizing and smoothing the tool orientation control for 5-axis sculptured surface machining. A searching method in the machining configuration space (C-space) is proposed to find the optimal tool orientation by considering the local gouging, rear gouging and global tool collision in machining. Based on the machined surface error analysis, a boundary search method is developed first to find a set of feasible tool orientations in the Cspace to eliminate gouging and collision. By using the minimum cusp height as the objective function, we first determine the locally optimal tool orientation in the C-space to minimize the machined surface error. Considering the adjacent part geometry and the alternative feasible tool orientations in the C-space, tool orientations are then globally optimized and smoothed to minimize the dramatic change of tool orientation during machining. The developed method can be used to automate the planning and programming of tool path generation for high performance 5-axis sculptured surface machining. Computer implementation and examples are also provided in the paper

    IC.IDO as a tool for displaying machining processes. The logic interface between Computer-Aided-Manufacturing and Virtual Reality

    Get PDF
    Abstract This scientific communication investigates the logic interface of a CAM solver, i.e., MasterCAM, into a Virtual Reality (VR) environment. This integration helps in displaying machining operations in virtual reality. Currently, to partially visualize the results of a simulation in an immersive environment, an import/export procedure must be done manually. Here, a software plugin integrated into IC.IDO (by ESI Group) has been realized and fully described. This application allows the complete integration of CAM solver into the VR environment. In particular, the VERICUT solver has been integrated into VR. This kind of integration has never been done yet

    IC.IDO as a tool for displaying machining processes. The logic interface between computer-aided-manufacturing and virtual reality

    Get PDF
    This scientific communication investigates the logic interface of a CAM solver, i.e., MasterCAM, into a Virtual Reality (VR) environment. This integration helps in displaying machining operations in virtual reality. Currently, to partially visualize the results of a simulation in an immersive environment, an import/export procedure must be done manually. Here, a software plugin integrated into IC.IDO (by ESI Group) has been realized and fully described. This application allows the complete integration of CAM solver into the VR environment. In particular, the VERICUT solver has been integrated into VR. This kind of integration has never been done yet

    Multiresolution analysis as an approach for tool path planning in NC machining

    Get PDF
    Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical controlled (NC) machining.;In this project, we investigate the applicability of multiresolution analysis using B-spline wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to the object boundary similar to conventional offsetting, while lower resolution curves, straight lines and circular arcs are used farther away from the object boundary.;Experimental results indicate that wavelet-based multiresolution tool path planning improves machining efficiency. Tool path length is reduced, sharp corners are smoothed out thereby reducing uncut areas and larger tools can be selected for rough-cuts

    Process Planning Optimization For Five-Axis Sculptured Surfaces Finishing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automatic tool path generation for numerically controlled machining of sculptured surfaces

    Get PDF
    This dissertation presents four new tool path generation approaches for numerically controlled machining of sculptured surfaces: TRI\sb-XYINDEX, FINISH, FIVEX\sb-INDEX, FIX\sb-AXIS\sb-INDEX. All of the above systems index the tool across the object surface in the Cartesian space so that evenly distributed tool paths are accomplished. TRI\sb-XYINDEX is a three-axis tool path generation system which uses a surface triangle set (STS) representation of the surface for tool position calculations. Surface edges are detected with local searching algorithms. Quick tool positioning is achieved by selecting candidate elements of polygons. Test results show that TRI\sb-XYINDEX is more efficient when machining surfaces which are relatively flat while the discrete point approach is faster for highly curved surfaces. FINISH was developed for generating three-axis ball-end tool paths for local surface finishing. It was based on the SPS. Given a surface with excess material represented by a set of discrete points, FINISH automatically identifies the undercut areas. Results show that FINISH provides significant improvements in machining efficiency. FIVEX\sb-INDEX is developed for generating five-axis flat-end tool paths. It uses an STS approximation. Contact points on the surface are derived from edge lists obtained from the intersections of vertical cutting planes with the polygon set. The distances between adjacent end points set an initial step-forward increment between surface contact points. To verify tool movements, some intermediate tool positions are interpolated. The key features of FIVEX\sb-INDEX are: (1) a polygon set representing an object which may be composed of multiple surfaces; (2) Surface contact point generation by cutting plane intersection; (3) simple tool incrementing and positioning algorithms; (4) minimal user interaction; (5) user controlled accuracy of resulting tool paths. FIX\sb-AXIS\sb-INDEX is a subsystem of FIVEX\sb-INDEX, generating tool paths for a tool with fixed orientations. Surface contact points are generated similar to FIVEX\sb-INDEX while tool positions are corrected with the highest point technique along the tool axis direction. Linear fitting is applied to output tool positions. FIX\sb-AXIS\sb-INDEX is preferred for machining surfaces curved in one direction, such as ruled surfaces. Test results show that FIX\sb-AXIS\sb-INDEX can serve as a three-axis tool path generation system but a five-axis machine is required to do it. (Abstract shortened by UMI.)

    Five-axis tool path generation using piecewise rational bezier motions of a flat-end cutter

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore