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SUMMARY 

This thesis studies the automatic tool path generation for 5-axis machining of 

sculptured surfaces. An efficient approach that uses piecewise rational Bézier motion 

to generate 5-axis tool path for sculptured surface machining (finish cut) with a flat-

end cutter is presented.  

A method is proposed in which dual quaternion is used to represent spatial 

displacements of an object. The representation of kinematic motions for the cutter 

bottom circle of the flat-end cutter is then formulated. Based on that, a new approach 

for tool path generation using piecewise rational Bézier cutter motions is described, in 

which key issues such as gouging and collision avoidance and surface accuracy 

requirement are addressed. First, a set of cutter contact points on an iso-parametric 

curve of the designed surface are obtained based on a given fitting tolerance. The 

associated cutter locations (CLs) are then obtained by finding the suitable cutter 

orientations that avoid any interference. Based on these CLs, the rational Bézier dual 

quaternion curve for cutter motion is generated. The entire tool path is therefore 

established based on the cutter undergoing the rational Bézier motion.  Second, the 

whole tool path is checked to find (1) if there is any interference between the cutter 

bottom and the designed surface, and (2) whether the deviation between the surface 

generated by the cutter motion and the designed surface is larger than the given surface 

error tolerance. The problematic CLs, which cause gouging, collision or accuracy 

problem, are then modified and the tool path is updated accordingly. The process of 

tool path checking → CLs modification → tool path regeneration continues until the 

whole tool path is gouging-free and collision-free and meets the accuracy requirement. 



 viii

 After that, the effective cutting shape is represented accurately by intersecting 

the swept surface generated by the cutter undergoing the rational Bézier motion and 

the cutting plane. With this representation of the effective cutting shape, an iterative 

process to generate the adjacent tool path has been conducted. The candidate next tool 

path is generated with an estimated step size, and the scallop height between the 

current and this candidate next tool path is consequently calculated. If the scallop 

height is out of tolerance, the candidate next tool path is modified and the scallop 

height is recalculated. This process continues until we find the suitable scallop height 

between the current and candidate next tool path.   

Finally, computer implementation and illustrative example are presented to 

demonstrate the efficacy of the approach. 
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CHAPTER 1  

INTRODUCTION 

 
 
1.1 Sculptured Surface  

With the development of modern technology, the demand for complicated components 

such as dies, moulds, rotor and impellers has risen rapidly in recent years. The original 

design concepts of these products are often embodied in physical models, perhaps 

sculptured from the clay by skilled artisans or from which measurement data is 

scanned. After that, sculptured surfaces are fitted to the scanned data, and 

mathematically precise descriptions are then available for subsequent steps in the 

product-design process. A sculptured surface, also called a free form surface, is 

generally defined as a surface with variable curvature. Its representation consists of the 

mathematics and computational aspects of geometry.  Currently, the sculptured surface 

models are one of the main fields in computer-aided geometric design and 

manufacturing. Many systems have been developed for designing sculptured surface, 

and most of them are based on various mathematical expressions such as Coons, 

Bézier, B-spline, or recently NURBS (Faux and Pratt 1981, Piegl and Tiller 1995). 

Among these expressions, NURBS is the most powerful description for sculptured 

surface. In this expression, sculptured parts are represented by free-form surface 

patches, and each of these surface patches is made by a number of free-form curves.  

Each curve is controlled by a number of control points. Nowadays, sculptured surfaces 

begin to be used in a wide variety of applications in the automotive, aerospace and ship 

building industries. 



Chapter 1 Introduction 

 2 

Sculptured Surface Machining (SSM) plays a vital role in the process of 

bringing new products to the market place. A great variety of products, from 

automotive body-panels to mobile phones, rely on this technology for the machining of 

their dies and moulds. In general, to machine a finished die surface starting from a raw 

stock, the following sequences of metal removal operations are usually required: 

(1) Rough cutting, to remove most material of the initial cavity on a sequence of 

cutting planes. 

(2) Semi-roughing, to remove the shoulders left on the part surface after roughing. 

(3) Finishing, to finish the sculptured part surface 

(4) Scraping, polishing or grinding, to smooth the surface. 

However, since sculptured surfaces usually have free-formed geometry of complex 

shapes and irregular curvature distributions, machining sculptured surface is a 

challenging issue.  With growing industrial demand for design and manufacturing of 

free-form surface cavities, the more complex, able and accurate metal-cutting 

technology for sculptured surfaces is in great need. Traditionally, 3-axis Numerical 

Control (NC) machine tool with ball end mill is used to machine sculptured surfaces. 

Ball end mills are easy to position relative to the surface and generate simple 

machining programs. Also, the NC programmer has a relatively easy time to select a 

ball end mill for a particular surface. However, the whole ball end mill machining 

process is inefficient and the finish surface quality is inaccurate. To overcome these 

difficulties, 5-axis Computer Numerical Control machine tool with flat end mill is 

applied in the SSM.   
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1.2 Five-Axis Machining 

Followings are a number of important criteria for ideal NC machining (Li and Jerard, 

1994): 

(1) Accuracy:  the shape errors introduced by NC machining must be bounded, and 

machined surfaces must be interference-free. 

(2) Efficiency: there are three important measures of efficiency: (a) increased 

programmer productivity with a resultant speedup in the product development 

process. (b) Algorithm efficiency in terms of both CPU time and memory 

space. (c) The machining time required producing the finished part. 

(3) Robustness: a robust system is able to cope with the multiple surfaces, 

concavities and topological inconsistencies caused by gaps, overlapping 

surfaces and fillets. 

In 3-axis machining, a tool is positioned with three degrees of freedom, i.e., a 

3-axis NC machine tool can move a ball end tool with a fixed orientation to any point 

in its workspace. While in 5-axis machining, the tool axis can be arbitrarily oriented, 

and it is often oriented close to the surface normal. A flat end mill can be tipped at an 

angle so that the machined surface conforms closely to the designed surface.  The 

effect of a ball end cutter with an increased effective cutter radius in 3-axis machining 

can be realized by tilting a flat end cutter in a 5-axis NC machine tool. In theory, the 5-

axis machining of sculptured surfaces offers many advantages over 3-axis machining 

(You and Chu, 1997). First, with two additional degrees, it can be used to handle the 

complex and overlapped surfaces. Second, machining preparatory work such as set-up 

changes is reduced. In addition, the step-over between two adjacent tool paths is 

decreased, since the cutting end of the tool is able to match the shape of the machined 

surface. Therefore, the total manufacturing time from stock materials to finished part 
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can be greatly shortened in 5-axis machining. Vickers and Quan (1989) analysed the 

effective cutting edge of the fixed angle flat end milling and found a twenty-time 

higher materials removal rate in 5-axis machining than that in 3-axis machining using 

ball end-mills. As a result, faster material-removal rates, improved surface finish and 

the elimination of hand finishing in 5-axis machining are achieved. Recently, 5-axis 

machining has been used in more and more applications of the fields such as 

automotive, aerospace and tooling industries. 

 

 

 

 

 

 

 

 

 

Fig. 1.1 The flowchart of 5-axis NC code generation 

As shown in Fig 1.1, the basic procedure for 5-axis NC code generation is as 

follows (Choi et al., 1993): 

(1) Cutter contact (CC) path generation. A point on the part surface at which the 

cutter is planned to make contact is called CC point, and a series of CC points 

can form a CC path.  

(2) Cutter Location (CL) data generation. The location of a cutter is called CL data, 

which is completely specified by the cutter centre position and cutter axis 

vector. The CL data is generated from the CC data. 

CAM 
Tool path generation 

CL data file 

NC-postprocessor 

NC-program NC simulation NC machine 

Report 
(Collision message) 

Interactive avoidance of collisions 
by the user at the CAM system 
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(3) Tool position correction. This step includes gouging avoidance in concave 

areas and global collision avoidance.  

(4) NC code generation by post-processing the result CL data. 

However, despite its advantages, 5-axis machining tool path generation remains 

a difficult task due to the complicated tool movements and the irregular curvature 

distributions of sculpture surfaces. In 5-axis machining, while the orientation of the 

tool is adjusted by the two additional degrees of freedom so as to obtain efficient 

machining compared to 3-axis machining, it is often computationally expensive when 

specifying tool orientation for machining. Moreover, global tool interference and local 

cutter gouging are prone to occur during the machining process. Other problems also 

exist in 5-axis machining, such as expensive machinery, insufficient support by 

conventional CAD and CAM systems, highly complex algorithms for gouging 

avoidance and collision detection between the tool and the non-machined portion of 

the workpiece. To summarise, 5-axis machining has brought advantages and added 

flexibility as well as new problems. 

 

1.3 Literature Survey of 5-Axis Machining 

Five-axis machining is to machine the workpiece using three translation and two 

rotation degrees of freedom.  In order to improve the efficacy and solve the problems 

in 5-axis machining, many algorithms for the tool path generation, verification 

simulation and optimisation have been developed in recent years.  Following are some 

reviews on NC tool path generation: Dragomatz and Mann (1998) provided a classified 

bibliography of the literature on NC tool path generation including surveys, methods 

for tool path generation and verification. Choi and Jerard (1998) gave an extensive 

introduction of 5-axis machining, including the fundamental mathematics, the 
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machining process, simulation and verification of NC programs. Jensen and Anderson 

(1996) presented a mathematical review of methods and algorithms used to compute 

milling cutter placement for multi-axis finished surface milling. 

The commonly used tool path generation methods can be classified as follows: 

(1) Iso-parameter tool path 

This kind of the tool path generation is to use lines of constant parameter. The 

tool path distribution is determined by calculating, at each path, the smallest 

tool path interval and using it as a constant offset in the next tool path.  You 

and Chu (1997) presented a method for determination of the tool position and 

orientation for Iso parameter tool path generation. Elber and Cohen (1994) also 

developed an adaptive iso-curve extraction method for tool path generation of 

milling free form surface. Iso-parameter tool paths are computationally simple 

to generate, however, one serious problem of this method is the inefficient 

machining due to the non-predictable scallop remaining on the part surface. 

(2)   Iso-planar tool path 

Another approach for tool path generation is to use intersection curves between 

the parametric surface and series of vertical planes. The path interval or the 

distance between the vertical planes is also determined based on the scallop 

height limitation. Rao et al. (1996) planned the tool path using the principal 

axis method. In his approach, the feed direction at the CC point is consistent to 

the direction of the principal curvatures of the surface. Huang and Oliver 

(1994) implemented iso-planar machining on the parametric surface. Iso-planar 

tool paths are not optimal in general and the choice of a good plane is not at all 

obvious. 

(3)  Iso-scallop tool path 
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In this approach for tool path generation, the scallop height between the two 

neighboring tool paths is approximately constant. Suresh and Yang (1994) 

generated a constant scallop height tool path in 3-axis NC machine tool with 

ball end mill. Lo (1999) proposed an efficient algorithm in searching the iso-

scallop cutter paths and extended the algorithm to 5-axis machining with flat 

end cutter.  Sarma and Dutta (1997, 1998) presented the various type of scallop 

height functions and gave the part programmer direct control over the scallop 

height of the manufacture surface, and then used a novel technique for grinding 

tool path generation based on tracking the crest curves of the milled surface so 

as to maximize material removal and keep the scallop height constant. Pi et al. 

(1998) generated a grind free tool path that avoids gouging and has scallop 

height between adjacent tool paths indistinguishable from surface roughness.  

Lee (1998a) calculated the machining strip widths between the adjacent tool 

paths according to the scallop height tolerance and generated non-iso-

parametric and nearly constant scallop height tool path. Chiou and Lee (2002) 

furthered Lee’s work and implemented global optimisation of tool path 

distribution.  

Most of the work also focuses on finding the gouging and collision free tool 

path. Gouging, or local tool interference, is one of the most critical problems in 5-axis 

machining. It results when a high curvature surface is machined using too large of a 

cutter or by a cutter improperly oriented. The machining of objects, which are 

composed of multiple surfaces, can also cause gouging. Li and Jerard (1994) observed 

that tool movement affects only a small portion of the tessellated surface and 

suggested localized interference checking using a bucketing strategy. Once 

interference is detected, the tool is tilted away from the interference until it barely 
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touches the colliding triangle. Pi et al. (1998) and Jensen et al. (2002) proposed a 

gouging detection method, which uses polynomial resultants to calculate intersection 

conditions between the bottom of a cutter and the lower profile tolerance surface offset 

of the part. Cutter interference occurs if there exists intersection. Many other studies 

are using concepts of differential and analytic geometry such as local curvature 

properties to detect gouging. Lee (1997) found the admissible gouging free tool 

orientation by considering both local and global surface shapes. In his method, based 

on the local surface shape, a feasible tool orientation for gouging avoidance along two 

orthogonal cutting places is found firstly. Adjacent geometry is then taken into 

consideration for detecting possible rear gouging. Lee (1998b) presented a method for 

gouging avoidance by matching the effective cutting curvatures with the curvatures of 

the part surface at the normal and osculating planes. However, these papers used some 

rough approximations, such as the ‘effective cutting shape’ to determine a locally 

optimal cutter position. Sarma (2000) showed that the exact effective cutting shape, 

which is the intersection between the cutting plane and the swept surface of the base of 

the cutter, could be significantly different from the approximated effective cutting 

shape. This approximation may lead to unwanted collisions and has to be improved for 

machining high quality surfaces. In order to solve these problems, Rao and Sarma 

(2000) detected and avoided local gouging by matching the effective cutting curvature 

of the tool swept surface with the normal curvature of the part surface at the CC points. 

Yoon et al. (2003) furthered Rao’s work, but he did not compute a parameterisation of 

the swept surface of the moving cutter to derive its second order behaviour at the 

contact point of the cutter. This can be done in a simpler geometric way using concepts 

of classical constructive differential geometry. His work overcomes the weakness of 
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effective cutting shape methods and fully exploits the possibility of finding the locally 

optimal cutting positions for sculptured surface machining. 

Besides gouging, interference between the non-cutting portions of the tool and 

the surface is usually referred to as a collision or global gouging. The existence of 

collision problem would lead to not only the bad surface quality but also the damage of 

cutter and machine tool. Many researchers have studied collision avoidance. Some of 

them tried to find a collision-free tool path based on a trial and error process, where the 

provisional determination of tool posture is repeated until collision does not occur. Li 

and Jerard (1994) presented a method to generate the tool path in Cartesian space by 

triangulating the surface and finding the collision-free cutter locations by rotating the 

cutters until the cutter has no intersection with the triangulation of the surface. Lee and 

Chang (1995) used a two-phase approach for global tool interference avoidance. In his 

method, the tool position is checked for possible interference with the convex hull of 

the designed surface. If interference between the tool and the convex hull is detected, 

further calculation for checking interference between the tool and the designed surface 

is performed and the tool orientation is corrected if needed. The advantage of finding 

the collision-free tool path by gradually adjusting tool orientation is the computational 

efficiency. However, this method cannot achieve the optimal tool orientation and can 

cause the irregularity of the surface appearance. Recently, some researchers began to 

use the global automatic strategy to find the collision-free tool orientation. Morishige 

et al. (1997, 1999) used a C space, adapted from robot motion planning, to represent 

the tool orientation in an appropriate space in which the obstacles are mapped. Jun et 

al. (2002) further developed this work and applied the C space method to find the 

optimal tool orientation by considering the local gouging, rear gouging and global 

collision in 5-axis machining, and minimizing the scallop height between the adjacent 
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tool paths. Unfortunately, although intuitively and intellectually appealing, the C space 

approach has an obvious problem: mapping obstacles to the C space is often a 

computationally intractable task. Woo (1994) first demonstrated the use of visibility 

cones, which are an alternative representation of the C space, in collision detection and 

avoidance. A point on an object is visible from a point at infinity if the straight-line 

segment connecting these two points does not intersect with the object. Yang and 

Xiong (1999) developed a method of computing a visibility cone to analyse the 

machinability of the milling direction. Suh and Kang (1995) proposed an application 

based on visibility cones to aid the process planning for manufacturing a free form 

surface. Spitz and Requicha (1990) proposed an interesting algorithm for computing 

the access cones of a uniform diameter tool at a point in objects by computing the 

visibility of the point in the object. Balasubramaniam et al. 2003) used a discretized 

approach to check visibility, and took advantages of the rapid performance of graphics 

hardware to generate the visibility information. Visibility is a useful precursor for the 

more expensive accessibility computation. Although visibility approaches provided 

some simplification, they also tend to be computationally expensive in practice. Some 

approaches for collision avoidance also focus on possible collision between machine 

and part, machine and tool or between moving machining components (Lauwers et al. 

2002). Liu (1995) described tool interference avoidance using the side mill in 5-axis 

machining. 

Many other efforts focused on obtaining the optimal cutter orientations to 

improve the efficiency of the tool path generation process. Pure analytical methods 

described by Kruth and Klewais (1994), Lee (1997, 1998b) and Jensen and Anderson 

(1993) optimised the tool orientation based on the curvature information on the CC 

point. These methods do not take the surface anomalies in the neighbourhood for the 
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CC point into account. This may result in the occurrence of gouging. Other tool 

optimisation methods described by Redonnet et al. (1998) and Rao and Sarma (2000) 

fit the tool as close as possible to the part surface. These optimisation techniques use 

the entire surface definition to avoid the above problems. In contradiction to the pure 

analytical methods, most of these algorithms determine the optimal tool posture 

iteratively. Jensen et al. (2002) also used both 5-axis orientation and positioning 

algorithms in conjunction with tool selection procedures to provide a more efficient 

and accurate machining solution for complex surfaces. Some researchers developed 

various methods of predicting the real scallop height to generate optimal CL data in a 

multi-axis machine tool. Kim and Chu (1994) provided the effect cutter marks on the 

surface roughness and examined the scallop height in the milling process. Lee (1996b) 

presented an error analysis method for 5-axis machining which applied differential 

geometry technique to evaluate the scallop height between adjacent cutter locations. 

Choi et al. (1993) presented a method of generating optimal CL data for 5-axis NC 

contour milling by finding minimal scallop height distance given a fixed path interval. 

Other works concentrate on finding the relationship between the part surface geometry 

and the tool path machining efficiency. Wang and Tang (1999) suggested that the 

optimal tool paths are normally parallel to the longest boundary. Marciniak (1987, 

1991) and Kruth and Klewais (1994) analysed the cutting direction and the part surface 

geometry property. They concluded that the optimal cutting direction encompasses the 

largest cutting width when the tool path matches the smaller principal curvature 

direction of the part surface. 

One of the other challenging tasks for 5-axis machining is the automatic 

generation of tool path without depending on human interaction to machine the 

sculpture surface. Lee and Chang (1991) develop a methodology, which automatically 
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decides the machining procedure, selects the best possible cutters for machining a 

cavity with islands bounded by sculptured surfaces, and then generates gouging-free 

cutter paths for roughing and finishing steps. Choi and Jerard (1998) also presented a 

framework for developing sculptured surface machining software.   

In general, most of the reported tool path generation methods are numerical and 

discrete in nature. They basically follow a two-step approach:  

(1)  Given a surface description (either in NURBS representation or triangular 

polyhedral meshes), a set of CC points are generated based on a machining 

strategy and the given surface error tolerance. 

 (2) For each CC point, CL is determined that avoids gouging and collision and is 

within the machine’s axis limits. 

In order to satisfy the surface error tolerance, the number of CC points is generally 

very large. At the same time, algorithms that search for a feasible CL from a CC point 

are iterative in nature, which normally leads to extremely long computation time. A 

further drawback of this kind of approach is that the complete elimination of gouging 

or collision between the neighboring  CLs is not guaranteed. 

Instead of focusing on a particular instant of the tool motion and studying local 

geometric issues at the instant, tool path can be generated as envelopes of moving 

cutter. Wang and Joe (1997) presented that surfaces can be generated by sweeping a 

profile curve along a given spline curve. Juttler and Wagner (1996, 1999) proposed a 

method to generate rational motion-based surface emphasizing the special cases of a 

moving cylinder of cone of revolution. Ge an Srinivasan (1998) presented two 

algorithms for fine-tuning rational B-spline motions suitable for computer-aided 

design. Xia and Ge (1999,2001a, 2001b) provided the representation of the boundary 

surfaces of the swept surface undergoing rational Bézier and B-spline motions and 
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proposed a method for 5-axis tool path generation using rational Bézier and B-spline 

motions. This method can generate the tool path efficiently and, at the same time, 

allow an accurate representation of the swept surface generated by the cutter.  

However, their work has not yet explicitly dealt with the issue related to gouging and 

collision detection and avoidance. Their approach for generating the entire tool paths 

for the sculpture surface is also incomplete.  Hence, their work needs to be extended.  

 

1.4 Objective of the Project 

The objective of this work is to develop a method for tool path generation in 5-axis 

machining of the sculptured surface. The errors introduced by tool path generation 

algorithms must be bounded. Specifically, the tool path must be gouging-free and 

collision-free, and scallop height between two paths must be controlled with allowable 

tolerance. The algorithm must also be efficient in terms of both CPU time and memory 

space, and robust capable coping with the multiple surfaces including concave and 

convex surface with irregular curvatures.  

 

1.5 Organization of the Thesis 

This thesis contains six chapters, and the organization of this thesis is as follows: 

In chapter 1, the methods for the sculptured surface machining are introduced 

first. The previous researches on 5-axis tool path generation are then reviewed. After 

that, the objective and the organization of the thesis are introduced. 

In chapter 2, the fundamental mathematics required in developing the thesis is 

presented. The basic geometric modelling methods in computer aided geometric design 

are reviewed and the concepts of kinematic driven geometric modelling are introduced. 
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In chapter 3, an efficient approach to generate a single gouging-free and 

collision-free tool path for 5-axis sculptured surface machining using rational Bézier 

motion of the flat-end cutter is presented.  

In chapter 4, an iterative method to generate the adjacent tool path so that the 

scallop height between two neighboring  tool paths is within the allowable tolerance is 

presented. 

In chapter 5, the examples to illustrate the efficiency of the developed 

algorithm for tool path generation using the piecewise rational Bézier cutter motion is 

presented.   

Finally, in chapter 6, the conclusions are drawn and the recommendations for 

future works are discussed. 
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CHAPTER 2  

MATHEMATIC FUNDAMENTALS 

 
 

Computer-Aided Geometric Design (CAGD) deals with the problem of 

representation and manipulation of geometric shapes in a manner suitable for computer 

processing. Much of the existing work in CAGD for geometric shapes design is based 

on point geometry.  In recent years, geometric shape design techniques in CAGD such 

as Bézier and B-spline methods have been extended from pure geometric domain to 

kinematic domain (Ge and Ravani, 1991, 1993, 1994; Srinivasan and Ge, 1996, 1997 

and 1998b; Juttler and Wagner, 1996). Kinematics-Driven Geometric Modelling, once 

developed, would provide a new methodology for designing kinematically generated 

free-form surfaces. In this chapter, the basic geometric modelling methods in CAGD 

are reviewed and the concepts of kinematic driven geometric modelling are introduced. 

Comprehensive study of the subject can be found in CAGD texts such as Farin (1996),  

Faux (1981), Piegl and Tiller (1995).  

 

2.1 Geometric Modelling Based on Point Geometry 

2.1.1 Bézier curve and surface 

2.1.1.1 Bézier curve 

The Bézier curve representation is one that is utilized most frequently in computer 

graphics and geometric modelling. The curve is defined geometrically, which indicates 

that its parameters have geometric meaning. 
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Given the set of control points, {P0, P1, …Pn}, we can define a Bézier curve of 

degree n by either of the following two definitions:  an analytic definition specifying 

the blending of the control points, and a geometric definition specifying a recursive 

generation procedure that calculates successive points on line segments developed 

from the control point sequence.  

 

 

 

 

 

 

Fig. 2.1 The cubic Bernstein polynomials  

 
 

 

 

 

 

 

Fig. 2.2 Quadratic Bézier curve generated by de Casteljau method 

The Analytic Definition  

∑
=

=
n

i
ini uBu

0
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where ini
ni uu
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nuB −−
−

= )1(
)!(!

!)(,  are the Bernstein polynomials of degree n, and 

0 ≤ u ≤ 1. For example, the Bernstein polynomials of degree 3 are  
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Point on the curve 



Chapter 2 Mathematic Fundamentals 

 17 

3
3,0 )1( uB −= 2

3,1 )1(3 uuB −= 22
3,2 )1(3 uuB −= 3

3,3 uB =  

and can be plotted as in Fig. 2.1. 

Geometric Definition  

)()( )( uu n
nPP =  (2.2) 

where  


 >+−

=
−−

−

otherwise
juuuu

u
i

j
i

j
ij

i P
PP

P
0if)()()1(

)(
)1()1(

1)( and  u ranges between 

zero and one, i.e., 0 ≤ u ≤ 1. The algorithm of the generation of Bézier curves based on 

repeated linear interpolation as in Eq. (2.2) is called the de Casteljau algorithm. Fig. 

2.2 shows the quadratic Bézier curves constructed based on de Casteljau method. 

From Eq. (2.1) and Fig. 2.2, we can know that the tangent vector to the curve at 

the point P0 is the line 10PP and P& (0)=3(P1-P0). The tangent to the curve at the point 

Pn is the line nn PP 1− and P& (1)=3(Pn-Pn-1).  

Although Bézier curve offers many advantages, there exist a number of 

important curves such as circles, ellipses, etc, that cannot be represented precisely 

using Bézier curve. In order to solve this problem, rational Bézier curve is developed. 

The basic idea of rational Bézier curve is to define a curve in one higher dimension 

space and project it down on the homogenizing variable. For implementation, rational 

curve design assigns every control point of Bézier curve a weight to provide additional 

control over the curve shape. An nth-degree rational Bézier curve is given by: 

P(t)=∑
=

n

i
ini uR

0
, )( P     (2.3) 

Where 
∑

=

= n

j
jnj

ini
ni

wuB

wuB
uR

0
,

,
,

)(

)(
)( , Bi,n(u) are the Bernstein polynomials; Pi are the control 

points of the rational Bézier curve; the wi are scalars, called the weights. 
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The weights are typically used as shape parameters. If we increase wi, the curve 

is pulled toward the corresponding Pi. Fig. 2.3 shows that the rational cubic Bézier 

curve is pulled toward P1 when w1 is increased. 

 

 

 

 

 

 

Fig. 2.3 Rational cubic Bézier curve 

 
2.1.1.2 C1 and C2 continuity between two cubic Bézier curves 

In this section, we summarize the relationships between the control points of the two 

cubic Bézier curves in order to get C1and C2 continuity at the junction of these two 

curves (Kang, 1997). 

Given two cubic Bézier curves s0 and s1 with control points [P-3, P-2, P-1,  P0] 

and [P0, P 1, P 2,  P3], we can combine these two curves  into one composite curve, 

defined as the map of the interval [u0, u2] into E3. The left segment s0 is defined over 

an interval [u0, u1], while the right segment s1 is defined over [u1, u2]. 

 

 

 

 

 

 

Fig. 2.4 C2 continuity of two Bézier curve segments 
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The two Bézier curves are C1 continuous at u = u1 if 

11
|| 10

uuuu du
d

du
d

== =
ss

     (2.4) 

Set ∆0= u1 – u0 and ∆1= u2 – u1, and according to the properties of the Bézier curves, 

we have the simpler formula of Eq. (2.4) as: 

)(1)(1
01

1
10

0

PPPP −
∆

=−
∆ −      (2.5) 

This means that the three points P-1, P0, P1 must be collinear and also be in the ratio 

(u1- u0) : (u2- u1) = ∆0 : ∆1 so that the composite curve is C1 continuous at the junction 

point. The two Bézier curves are C2 continuous at u = u1 if in addition 

11
|| 2

1
2

2
0

2

uuuu du
d

du
d

== =
ss

     (2.6) 

 After the substitution of the second order derivatives, we obtain: 

dPPPPPP =−
∆
∆

+=−
∆
∆

+ −−− )()( 21
1

0
121

0

1
1     (2.7) 

Eq. (2.7) indicates that line 12 −− PP and 12PP  must intersect at a point d. Rearranging 

Eq. (2.7), we obtain 

dPP 1211 )1( tt +−= −−   2111 )1( PdP tt +−=     (2.8) 

where t1 = ∆0/( ∆0+ ∆1) and d is called the deBoor control point (Fig. 2.4). 

 

2.1.1.3 Tensor product Bézier surface 

Methods for generating Bézier curves can be extended to two dimensions to obtain 

tensor product Bézier surfaces. The tensor product method that uses basis functions 

and geometric coefficients is basically a bi-directional curve scheme. The basis 

functions are bivariate functions of u and v, which are constructed as products of 

univariate basis functions. The geometric coefficients are arranged in a bi-directional, 
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n×m net. For tensor product Bézier surfaces, the univariate basis functions are 

Bernstein polynomials. Thus, a tensor product Bézier surface has the form: 

S(u,v)=∑∑
= =

n

i

m

j
jimjni vBuB

0 0
,,, )()( P  where 0 ≤ u, v ≤ 1  (2.9) 

Where the net of the Pi,j is called the Bézier net or control net of the Bézier surface. 

The Pi,j are called control points or Bézier points. The surface can also be treated as the 

locus of a Bézier curve Si(v)= ∑
=

m

j
jimj vB

0
,, )( P  moving along u-direction and thereby 

changing its shape on its way. 

Tensor product Bézier surfaces can also be obtained by repeated application of 

bilinear interpolation according to the deCasteljau algorithm. Given a control net 

{Pi,j}with 0 ≤  i ≤ n and  0 ≤  j ≤ m and parameter u and v, the following algorithm 

generates a point on a surface according to deCasteljau algorithm: 
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S  (2.10) 

where 0 ≤ r ≤ n; 0 ≤ s ≤ m; 0 ≤ i ≤ n-r; 0 ≤ j ≤ m-s. 

The rational Bézier surface is defined to be perspective projection of a four-

dimensional polynomial Bézier surface: 

Sw(u,v)=∑∑
= =

n

i

m

j

w
jimjni vBuB

0 0
,,, )()( P     (2.11) 

Where w
ji,P = {Pi,j, wi,j}and wi,j are the weights of control point Pi,j. The corresponding 

three-dimensional rational Bézier surface is: 

S(u,v)= 
∑∑

∑∑

= =

= =
n

i

m

j
jimjni

n

i

m

j
jijimjni

wvBuB
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,,,

0 0
,,,,

)()(

)()( P
    (2.12) 
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S(u,v)is not a tensor product surface, but Sw(u,v) is. 

 

2.1.2 B-spline curve and surface 

The main advantage of B-spline curve is its performance in interactive shape design. 

Using B-spline curves, we can utilize both control point movement and weight 

modification to attain local shape control.  

A pth-degree B-spline curve is defined by: 

∑
=

=
n

i
ipi uNu

0
, )()( PP     0 ≤  u ≤ 1    (2.13) 

where the {Pi}are the control points, and the {Ni,p(u)} are the pth degree B-spline basis 

functions defined on the non-uniform knot vector 

U={u0, …, um}={ 321L
1

0,0
+p

,up+1, …um-p-1, {
1

1,1
+p

L } 

Where m=n+p+1. The ith B-spline basis function of p-degree, denoted by Ni,p(u) is 

defined as: 



 <≤
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otherwise
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−
−

=   (2.14) 

The B-spline basis function has the following properties:  

• Ni,p(u) is a step function, equal to zero everywhere except on the half-open 

interval u∈[ui, ui+1) 

• For p>0, Ni,p(u) is a linear combination of two (p-1)th degree basis functions. 

• The Ni,p(u) are piecewise polynomials, defined on the entire real line, generally 

only the interval [u0, um] is of interest. 
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• The computation of the pth-degree functions generates a truncated triangular 

table: 

 

 

 

 

 

The Non-Uniform Rational B-Spline (NURBS) curve can be represented as the 

perspective projection of a four-dimensional polynomial B-spline curve as: 

Pw(u)=∑
=

n

i

w
ipi uN

0
, )( P       (2.15) 

Where w
iP = {Pi,, wi}. 

A B-spline surface of degree p in the u direction and degree q in the v direction 

is a bivariate vector-valued piecewise rational function of the form: 

S(u,v)= ∑∑
= =

n

i

m

j
jijiqjpi wvNuN

0 0
,,,, )()( P     (2.16) 

where the {Pi,j}are the control points, the {wi,j}are the weights, and the {Ni,p(u)} are 

the pth degree B-spline basis functions defined on the non-uniform knot vector 

U={u0, …, us}={ 321L
1

0,0
+p

,up+1, …ur-p-1, {
1

1,1
+p

L } 

Where r=n+p+1; The {Nj,q(v)} are the qth degree B-spline basis functions defined on 

the non-uniform knot vector 
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Where s=m+q+1. The Non-Uniform Rational B-Spline (NURBS) surface can be 

represented as the perspective projection of a four-dimensional polynomial B-spline 

surface as: 

Sw(u,v)= ∑∑
= =

n

i

m

j

w
jijiqjpi wvNuN

0 0
,,,, )()( P    (2.17) 

Where w
ji,P = {Pi,j,, wi,j}. 

 

2.1.3 B-spline curve fitting 

Given a set of point {Qk}, k=0, …n, we can interpolate these points with a pth degree 

non-rational B-spline curve. If we assign a parameter value, uk, to each Qk, and select 

an appropriate knot vector U={u0, …um}, we can set up the (n+1)× (n+1) system of 

linear equations: 

Qk=P( ku~ )= ∑
=

n

i
ikpi uN

0
, )~( P      (2.18) 

The control points, Pi, are the n+1 unknowns. Note that the equation is independent of 

the number of the coordinates in Qk.  With n+1 equations, Pi can be solved out. 

The problems of choosing the uk and U remain, and their choice affects the 

shape and parameterisation of the curve. Basically, there are three methods of choosing 

the uk: equally spaced, chord length and centripetal method. In these methods, the 

chord length is most widely used and it is generally adequate. In this application, we 

adopt the chord length to calculate the parameter uk. Assume that the parameter lies in 

the range u∈[0,1] and let d be the total chord length 

d=∑
=

−−
n

k
kk

1
1QQ      (2.18) 

then  

u0=0 
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un=1 

uk= uk+ d
kk 1−− QQ

    k=1, …n-1   (2.19) 

The following technique of finding knots is recommended: 

u0=…= up=0 

um-p=…= um=0 

uj+p= ∑
−+

=

1
~1 pj

ji
iu

p
 and j=1, …n-p    (2.20) 

 

2.1.4 Changing from cubic B-spline curve to piecewise Bézier curve 

Let us consider a C2 cubic B-spline curve s(u) defined over L intervals u0<…< uL with 

deBoor control points d-1,d0, …, dL+1. We will compute the inner Bézier points b3i+1, 

b3i+2 according to the C2 condition and the junction points b3i with the C1 condition. 

The d-1,d0, …, dL+1 is called the B-spline  polygons. The C1 and C2 continuity of Bézier 

curve have been introduced in above section.  

Denoting the steps of knot sequence ∆i=ui+1-ui, we can compute the inner 

Bézier and junction points as follows: 

(1) At the start segment, we set  

b0=d-1, b1=d0,  1
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0
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1
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∆+∆
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∆
=   (2.21) 

(2)  At the end segment, we set 

b3L=dL+1, b3L-1=dL,  L
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(3)  Computing the inner Bézier points on the leg ii dd 1−  according to the C2 condition 
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i
ii

i
i

i ddb
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113    (2.23) 

where i=2,…L-1, and ∆=∆i-2+∆i-1+∆i. 

(4) Computing the junction points b3i on the leg of ii 313 bb −  according to C2 condition 

13
1

1
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1
3 +

−

−
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− ∆+∆
∆

+
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∆
= i

ii

i
i

ii

i
i bbb    (2.24) 

where i=1,…L-1. 

In this application, the number of the result composite Bézier curves is L+1.  

 

2.2 Geometric Modelling Based on Kinematics 

2.2.1 Dual number and dual vector 

According to Bottema and Roth (1873), a dual number is defined as: 

0aaâ ε+=      (2.25) 

 where a, a0 are real numbers known as the real part and the dual part respectively. The 

symbol ε represents the dual unit which has the property ε2=0. 

Let 0
111 aaâ ε+=  and 0

222 aaâ ε+=  be two dual numbers. The dual numbers 

have the following properties: 

• Addition and subtraction: )aa()aa(ââ 0
2

0
12121 ±+±=± ε  

• Multiplication: )aaaa()aa(ââ 0
12

0
212121 ++= ε  

• Division: 2
2

0
12

0
212121 )a/()aa-aa()/aa(â/â ε+=  

A dual vector û is defined as a vector whose components are dual numbers: 

)ˆ,ˆ,ˆ(εˆ 321
0 uuu=+= uuu    (2.26) 

where 0εˆ lll uuu += , l=1,2,3, ul and 0
lu  are real numbers, and u=(u1, u2, u3), 

u0=( 0
3

0
2

0
1 ,, uuu ) are vectors. 
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Let )ˆ,ˆ,ˆ(ˆ 321
0 uuuε =+= uuu  and )ˆ,ˆ,ˆ(ˆ 321

0 vvvε =+= vvv  be two dual vectors. 

The dual vectors have the following properties: 

• Dot product: 332211
00 ˆˆˆˆˆˆ)(ˆˆ vuvuvuvuvuvu ++=⋅+⋅+⋅=⋅ εvu  

• Cross product:  

       ))ˆˆˆˆ(),ˆˆˆˆ(),ˆˆˆˆ(()(ˆˆ 122131132332
00 vuvuvuvuvuvuvuvuvu −−−=×+×+×=× εvu  

• Wedge product: 

))ˆˆˆˆ(),ˆˆˆˆ(),ˆˆˆˆ(()(ˆˆ 122131132332
00 vuvuvuvuvuvuvuvuvu −−−=∧+∧+∧=∧ εvu  

 

2.2.2 Quaternion and dual quaternion 

According to Hamilton (1969), a quaternion is a hypercomplex number consisting of a 

real part and three imaginery parts: 

q=q1i+ q2j+ q3k+ q4     (2.27) 

where qi (i=1, 2, 3, 4) are real numbers, called the components of q, and four 

quaternion units 1, i, j, k satisfy the relations i2 = j2 = k2 = -1 and ij = -ji = k. A unit 

quaternion is a quaternion with 122 == ∑ iqq . Let  P and Q be two quaternions. The 

quaternion has the following properties: 

• Addition: p+q=(p1+ q1)i+ (p2+ q2)j+ (p2+ q2)k+ (p4+ q4) 

• Multiplication: 

pq=( p4q1+ p1q4+ p2q3- p3q2)i+( p4q2+ p2q4+ p3q1- p1q3)j+( p4q3+ p3q4+ p1q2- p2q1)k 

                +( p4q4-p1q1- p2q2- p3q3) 

The conjugate quaternion q* of the quaternion q is defined by: q* = -q1i-q2j-q3k+ q4. 

From quaternion multiplication, it follows that qq* = 2
4

2
3

2
2

2
1 qqqq +++  

A dual quaternion is the combination of dual number and quaternion, which has 

the form of:  
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4321
0 ˆˆˆˆˆ qqqq +++=+= kjiqqq ε   (2.28) 

where the real part q and the dual part q0 are both quaternions,  and 0εˆ lll qqq += , 

l=1,2,3,4, ql and 0
lq  are real numbers. The multiplication of two dual quaternions 

p̂ and q̂  is as follows: 

)(ˆˆ 00 qppqpq ++= εqp  

 

2.2.3 Representing a spatial displacement with a dual quaternion 

One basic problem in computer animation is to interpolate a given set of the positions 

of a rigid body so that the resulting animated motion looks smooth and natural. In 

general, there are two basic issues in design of motion interpolations. The first one is 

very basic to kinematics, which concerns with the representation of displacements. The 

second basic issue is computational geometric in nature and is related to 

parametrization and piecing of motion interpolations. 

The traditional approach for computer animation of 3D objects treats the 

interpolations of translations and rotations separately. The translation is represented by 

a vector d (point in Euclidean space) and the rotation is represented by an orthogonal 

matrix [A]. Thus, in a traditional approach, a spatial displacement in Euclidean three-

space E3 is expressed by [A] and d as: 

                                                         P~ = [ ]








1000
dA P   (2.29)                        

where P~  and P are homogeneous coordinates of a point measured in the fixed and 

moving reference frames.  

Dual quaternion 0ˆ qqq ε+= can also be used to represent spatial displacement 

and be an elegant tool to represent the interpolation of the rotations. The real part q is a 
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unit quaternion and the four components of q can be expressed by the homogeneous 

Euler parameters of rotation: 

q = (q1, q2, q3, q4) = (s1 sin(θ/2), s2 sin(θ/2), s3 sin(θ/2), cos(θ/2) ) (2.30) 

where 122 == ∑ iqq , and the parameters (s1, s2, s3) define the unit vector s along the 

axis of rotation and θ denotes the angle of rotation. The rotation matrix [A] of 

conventional spatial displacement can be expressed in terms of q as:  
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A  (2.31)  

Eq. (2.31) contains the information of rotational component of a spatial displacement.  

The four components of the dual part q0 form another quaternion whose 

components are defined as:  
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where d=(dx, dy, dz) is the translation vector. q0 includes the information of the 

translation of a spatial displacement. The translation vector d can be recovered from 

(q, q0) as: 
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Since the real part of the dual quaternion q̂  represents the rotation of a spatial 

displacement and the dual part of q̂  represents the translation of a spatial 

displacement, dual quaternion is capable of representing transformation. Therefore, a 

spatial displacement in Euclidean three-space E3 can be expressed by dual quaternion 

as: 
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P~ = [ ]









1000
),()( 0qqdqA P  (2.34)    

The matrix transformation of point coordinates as given above can be put in a compact 

form using quaternion algebra: 

     PqqqqqPqP )(~ 00
4

*** p −+=     (2.35) 

where”*”denotes the conjugate of a quaternion. 

To study the point trajectory of a rational motion defined by a dual quaternion 

curve, it is more convenient to use the dual-quaternion representation of point 

coordinate transformation.  The dual quaternion representation of spatial displacement 

offers many advantages over matrix representation. The representation of rotation 

using quaternion is more compact and faster than the rotation matrix. Moreover, dual 

quaternion representation can lead to coordinate-frame invariant formulation of motion 

synthesis problems. By representing a spatial displacement with a dual quaternion, we 

can also transform the motion design problem into a curve design problem in the space 

of dual quaternions. This makes it possible for applying curve design techniques in 

CAGD to the problem of synthesizing parametric motions.       

 

2.2.4 Representing point trajectory using piecewise rational Bézier 

dual quaternion curve  

Given a moving frame OM  - XMYMZM, a fix frame OF -XFYFZF, and a point P in the 

moving frame, one can get the point trajectory of P through the motion of the moving 

frame relative to the fix frame, as shown in Fig. 2.5. Points PA and PB are on the point 

trajectory and represent the intermediate position for point motion. Denoting P~  and P 

as homogeneous coordinates of a point measured in the fixed and moving frames at 

instant position, one can obtain the transformation between P~  and P using dual 
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quaternion q̂  according to section 2.2.3. Therefore, when point P moves to point PA, 

transformation between A
~P and PA can be represented by Aq̂ ; similarly, the 

transformation between B
~P  and PB can be represented by Bq̂ . 

 

 

 

 

 

 

 

Fig. 2.5 Point trajectory generated by the motion of frame  

Given a set of dual quaternion iq̂ that represents transformation between point 

P~  and P at different point positions as point P is undergoing motions, one can treat 

these dual quaternions as the point in CAGD and construct a piecewise rational cubic 

Bézier dual quaternion curve that represents the motions of point according to sections 

2.1.3 and 2.1.4. Therefore one can interpolate the transformation between point P~  and 

P at arbitrary position. As a result, according to Eq. (2.35) one can determine the 

coordinate of point P in the fix frame at arbitrary position.  

In order to construct the piecewise rational cubic Bézier dual quaternion curve 

that passes through a set of quaternions iq̂ (i = 0,…n), where iq̂  is the dual quaternion 

representation of transformation at ith position chosen for constructing dual quaternion 

curve, a set of control dual quaternions  
∧

b j (j = 0,…3(n-2)) need to be obtained first 

according to section 2.1.3 and 2.1.4. Denote ici c += 3
ˆ)(ˆ bp  (i=0,1,2,3 and c=0,…n-3), 
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then cth segment of the piecewise cubic rational Bézier dual quaternion curve is given 

as: 

∑
=

=
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3 )(ˆ)()(ˆ
j

jj ctBt pq     (2.36) 

where )(3 tB j denotes the Bernstein  basis functions. The dual quaternion curve q̂ (t) is: 

q̂  (t)=q(t) + εq0(t) 
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jj ctBt pq . Substitute the above into Eq. 

(2.35) and rearrange it, we can obtain the coordinate of point P in the fix frame as: 
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CHAPTER 3 

SINGLE ISO-PARAMETRIC TOOL PATH 

GENERATION USING RATIONAL BÉZIER 

MOTION 

 

In this chapter, an efficient approach to generate a single tool path for 5-axis 

sculptured surface machining using piecewise rational Bézier motion of a flat-end 

cutter is presented. Since gouging and collision are the main problems for the 5-axis 

tool path generation, the algorithms for gouging and collision detection and avoidance 

are also developed here. The problems of generating multi tool paths that deal with 

keeping the scallop height in tolerance will be discussed in next chapter.  

 

3.1 The Geometry of 5-axis Machining 

Generally, the sculptured surfaces are represented by free-form surface patches, such 

as Coons, Bézier, B-spline, or recently NURBS (Faux and Pratt, 1981, Piegl and Tiller, 

1997). In our application, the designed surface to be machined is a B-spline surface. 

The basic concepts of B-spline curves and surfaces are introduced in chapter 2. Also, a 

flat-end cutter is used for sculptured surface machining in our application.  

Fig. 3.1 shows the geometry of the designed surface and the cutter in 5-axis 

machining. OG-XGYGZG is the global coordinate system, which is fixed on the 

workpiece. OL-XLYLZL is the local coordinate system that is centred at the CC point. 
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The CL point is the centre of the bottom of the cutter, while a CL includes the CL 

point as well as the orientation of the cutter. XL is in the direction of the tangent vector 

at the CC point along current cutting direction. ZL is in the direction of the normal of 

the surface at the CC point. OT-XTYTZT is the cutter coordinate system that is obtained 

by first rotating angle λL around YL and second angle -ω L around ZL, and then 

translating –r along XL, where r is the cutter radius.  

 

 

 

 

 

 

 

 

Fig. 3.1 The geometry of 5-axis machining 

A point (xT, yT, zT) in the cutter frame can be expressed as point (xG, yG, zG) in the 

global frame as: 
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(3.1) 

where (xc, yc zc)  is the global coordinate of the CC point; (XL, YL, ZL) and (XG, YG, 

ZG) are three unit coordinate axis vectors of the local and global coordinate system 

respectively. 
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The transformation between the cutter frame and the global frame can also be 

represented by dual quaternion q̂  as: 

q̂ = trrrtrLG −− ⋅⋅⋅ qqqq ˆˆˆˆ ωλ                                                   (3.2) 

where trLGq̂  is the dual quaternion that represents the transformation between the 

global frame and the local frame; λrq̂ represents rotation of angle λL around YL; ωr−q̂ is 

the dual quaternion that represents rotation of angle -ω L around ZL; tr−q̂  represents the 

translation of –r along XL. Therefore, a point (xT, yT, zT) in the cutter frame can be 

expressed as point (xG, yG, zG) according to Eq. (3.2) and Eq. (2.35). 

 

3.2 Representation of Cutter Bottom Circle Undergoing Rational 

Bézier Motion 

The point trajectory undergoing piecewise rational Bézier motion is given by Eq. 

(2.37). We can determine the representation of the bottom circle of a flat-end cutter 

undergoing a piecewise rational Bézier motion by applying the similar principle. 

 

 

 

 

 

 

Fig. 3.2 Position of cutter bottom circle in the moving frame 

We firstly construct the cutter bottom circle in the moving frame and assume 

that the axis of the cutter is along the Z-axis, as shown in Fig. 3.2. Then, we use the 

rational Bézier curve to construct this cutter bottom circle. Generally, although non-
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rational curves can be used to represent most  curves and offer many advantages, there 

exist a number of important curve and surface types, such as circles, ellipses and 

spheres, which cannot be represented precisely using the polynomials. Therefore, in 

our case, rational Bézier curve is applied to represent the circle (Xia, 2001). The idea is 

to use homogenous coordinates to represent a rational curve in 3-dimensional space as 

a polynomial curve in 4-dimension space. Denoting r as the radius of the cutter bottom 

circle and taking P0=(r,0,0,1), P1=(0,-r,0,0), P2=(-r,0,0,1) as the homogeneous 

coordinates of three Bézier control points, we can obtain the expression of the half 

circle C1 below XM axis in XMYM plane as: 

∑
=

=
2

0

2 )()(
i

ii sBs PP      (3.3) 

Similarly, the circular arc C2 above XM axis in XMYM plane can be represented by the 

same formula except P1=(0,r,0,0). According to Eq. (2.37), the swept surface of 

circular arc of cutter bottom circle undergoing the rational cubic Bézier motion can be 

expressed as: 
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From Eq. (3.4), we know that the swept surface of cutter motion is a tensor product 

Bézier surface. 

 

3.3 A Single Iso-parametric Tool Path Generation Using Rational 

Bézier Cutter Motion  

Traditional methods for tool path generation suffer several disadvantages. First, 

because of the lack of compact representation of tool path, a huge number of discrete 

CC points need to be generated. Second, the possible gouging and collision need to be 

checked for each of these CC points. All of these would result in heavy computational 
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load. In order to overcome these disadvantages, we present a method for iso-

parametric tool path generation using rational Bézier cutter motion. The rational Bézier 

dual quaternion curve is constructed to obtain the mathematic forms of the cutter 

motion along the surface curve; thus, the computation of large number of discrete CC 

points is avoided. Since the swept surface of cutter bottom circle undergoing rational 

Bézier motion can be expressed in Eq. (3.4), gouging checking can be considered as 

finding interference between the swept surface of cutter bottom undergoing rational 

Bézier motion and the designed surface, while gouging avoidance can be considered as 

modifying the swept surface of cutter bottom motion so that the interference between 

the swept surface and the designed surface no longer exists. Collision checking and 

detection can also be performed based on the swept surface of cutter bottom 

undergoing rational Bézier motion. 

 The algorithm of tool path generation using rational Bézier cutter motion is 

implemented in four steps.  

(1) Given an iso-parametric curve on the design surface, the first step is to find 

several discrete CC points on the curve based on a fitting tolerance. The 

corresponding CLs that do not cause any gouging are then determined.  

(2) Secondly, we convert these CLs to the dual quaternion representation so 

that the rational Bézier dual quaternion curve can be constructed.  

(3) In the third step, the rational Bézier dual quaternion curve for the cuter 

motion is constructed and the swept surface generated by the rational Bézier 

motion of cutter bottom is obtained.  

(4) Finally, fitness and interference checking between the swept surface and the 

designed surface is performed and correction of the rational Bézier dual 
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quaternion curve is carried out if the tool path is unsatisfactory. Thus, a 

satisfactory tool path is obtained. 

 

3.3.1 Determining the cutter contact (CC) points  

In this section, the aim is to find a set of CC points along an iso-parametric curve on a 

sculptured surface such that the deviation between the tool path and the underlying 

curve is within a given fitting tolerance. Since the rational Bézier cutter motion yields 

the tool path, the more closed match between this tool path with the underlying curve 

on the designed surface, the more accurate the 5-axis machining is. Apparently, the 

selected CC points affect the fitting error between the tool path and the underlying 

curve on the designed surface. Therefore, the locations of these CC points, which are 

on the underlying curve, should represent the feature points of this curve, i.e., the 

number and distributions of these CC points depend on the curvature of the surface 

curve. In general, points should be dense for the part of the curve with higher 

curvature, while sparse with lower curvature. 

Given a sculptured surface S(u,v), a surface curve S(u0,v) can be obtained with 

u = u0. The first CC point is at v = 0. Then the other CC points on this curve need to be 

determined adaptively by considering the fitting error between the linearly linked CC 

points and S(u0,v).  Two steps are involved in determining the next CC point. First, a 

search for the adaptive step size Li is conducted, which is based on the local curvature 

of surface curve at the ith CC point and the pre-defined fitting tolerance τ. After that, 

the conversion from the step size Li to the increment of parameter ∆vi is performed and 

the next CC point is obtained. 

The fitting tolerance τ should be chosen based on the given surface error 

tolerance. However, if we use the surface error tolerance directly as τ, we will end up 
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with a large number of CC points. In our approach, these CC points only serve as a 

starting set and the final surface error will only be accurately checked and ensured 

after the whole tool path is generated. Therefore, we use a rather relaxed bound as the 

fitting tolerance. Based on our simulation experiments, the fitting tolerance is set 

between 5 to 10 times of the surface error tolerance. In this way, we found that the 

total number of the final CC points is normally much less than the number of CC 

points obtained using the surface error tolerance as the fitting tolerance. 

First, denote Su=∂S(u,v)/∂u, Sv=∂S(u,v)/∂v, n=(Su×Sv)/|Su×Sv)|, Suu=∂S(u,v)/∂u2, 

Svv=∂S(u,v)/∂v2, Suv=∂S(u,v)/∂u∂v. According to Faux and Pratt (1981) the first 

fundamental matrix G and the second fundamental matrix D of the designed surface 

are given as follows:  
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Fig. 3.3 Local surface curvature 

As shown in Fig. 3.3, the normal curvature κn of the surface in the direction of 

the tangent vector f is the curvature of the intersection curve between the surface and 

the plane containing the surface normal n and f. The definition of the normal curvature 

is given as:  

κn = 
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where F = [ fS ⋅u , fS ⋅v ]T. Expanding Eq. (3.6), define σ = fS ⋅u / fS ⋅v ,  we get 

κn = 
2212

2
11

2212
2

11

2
2

ggg
ddd

++
++

σσ
σσ                                                 (3.7) 

With this definition, the curvature κn is positive when the curve is turning towards the 

positive direction of the surface normal. Otherwise, κn is negative.  

Given the current CC point Ci, one needs to find the next CC point Ci+1 on 

S(u0,v) and  to ensure that the fitting error between two neighboring  CC points is 

within the fitting tolerance τ. The step forward size Li can be calculated based on the 

local surface curvature κn at Ci in the direction of cutting direction. The geometry of 

surface curve S(u0,v) at the vicinity of Ci can be considered as a circular curve, as 

shown in Fig. 3.4a, and the radius of the circle is the radius of curvature κn at Ci in the 

direction of cutter direction. Then the step forward size Li is given by: 

n

n
iL

κ
κττ 248 −

=       (3.8) 

The step forward size Li is then converted to the parameter increments ∆vi, so that we 

can get the next CC point S(u0,vi+∆vi). As shown in Fig. 3.4b, the conversion is 

determined by solving the following equation: 

iLviLui LS∆vS∆u =⋅+⋅ )()( XX  and  ∆ui = 0    (3.9) 

Then  

)/( Lvii SLv X⋅=∆      (3.10) 
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Fig. 3.4 The geometry of surface curve S(u0,v) at the vicinity of Ci 

The parameter increment ∆vi is only an approximated value since the surface 

curve S(u0,v) at the vicinity of Ci is considered as a circular curve.  Therefore, we need 

to calculate the maximum deviation dmax between the points on surface curve S(u0,v), 

where vi ≤ v ≤ vi,+ ∆vi, and the linear segment connected by S(u0, vi) and S(u0, vi,+ 

∆vi), as shown in Fig. 3.4c. If dmax is larger than τ, decrease the parameter increment 

∆vi, and recalculate dmax again until it is less than τ. The overall procedure for finding 

the CC points can be summarized as follows: 

(a) Add C0 (S(u0, 0)) to the CC point set C. Set the current CC point Ci = C0. 

(b) Calculate the curvature κi of Ci according to Eq. (3.7). 

(c) Obtain the step forward size Li according to Eq. (3.8). 

(d) Convert Li to the parameter increment of ∆vi using Eq. (3.10). 

(e) Calculate the maximum deviation dmax between S(u0,v), where vi ≤ v ≤ vi,+ ∆vi, 

and linear segment ),(),( 00 iii vvuvu ∆+SS . If dmax > τ, reduce ∆vi while ensuring 

dmax is no larger than τ. 

(f) If vi + ∆vi <1, add point Ci+1 = S(u0, vi + ∆vi) into the CC point set, and i = i + 1, 

then go back to step (b). Otherwise, add point Ci+1 = S(u0, 1) into the CC-point 

set, and stop. 

 

3.3.2 Obtaining the associated gouging–free and collision-free cutter 

locations (CLs) 

Given a set of CC points calculated in section 3.3.1, one can obtain the CLs if the 

orientations (the inclination angle λL and tilting angle ωL) of the cutter are given at 

each CC point. However, interference has to be avoided when we determine the 
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orientations of the cutter. There are three kinds of interference between the cutter and 

the designed surface as shown in Fig. 3.5: local gouging, rear gouging and collision. 

Generally, local gouging refers to the removal of excess material in the vicinity of the 

cutter contact point due to the mismatch in curvatures between the cutter and the 

designed surface at the CC point. Rear gouging occurs at a CC point when cutter 

bottom plane interferes with the designed surface at positions other than the CC point. 

To avoid local gouging, we need to adjust the inclination and tilt angles of the cutter to 

make sure that the curvature of the cutter is larger than the surface curvature in the 

cutting plane. To avoid rear gouging, we need to guarantee that the cutter bottom plane 

does not interfere with the designed surface. Collision is regarded as the global 

gouging that the cylindrical portion of cutter interferes with the part surface or the 

machine tool.  

 

 

 

 

 

Fig. 3.5 Three kinds of interference in 5-axis machining 

(a) Rear gouging  (b) Local gouging (c) Collision 

The proposed method to obtain the gouging-free and collision-free CLs follows 

a checking-correction approach. First, the default inclining and tilting angles are 

assigned. This is followed by a checking procedure to find whether there is any 

interference between the cutter (including the cutter bottom plane and the cylindrical 

surface of the cutter) and the designed surface. If interference exists, a correction 

(a) (b) (c) 
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procedure is applied to change these two angles. The checking and correction are 

repeated until no interference is found.  

 

 

 

 

  

 

 

 

   (a)       (b)     (c) 

Fig. 3.6 Interference checking of cutter bottom plane and designed surface 

Intersection checking between the cutter bottom plane and the designed surface 

is not a trivial task. Here, we simplify this problem by converting the cutter bottom 

plane into a limited number of circles (see Fig. 3.6a), and then checking the 

intersection between the circles and the designed surface. As shown in Fig. 3.2, the 

cutter bottom plane can be expressed in cutter frame as: xT = trcosθ, yT = trsinθ, zT = 0, 

where t varies from 0 to 1 and θ from 0 to 2π. If the increment of t between any two 

neighboring  circles is sufficiently small, this expression can be said to be sufficiently 

accurate. This expression is then transformed to the global frame according to Eq. 

(3.1) as (assuming XG=(1,0,0), YG=(1,0,0), ZG=(1,0,0), XL=(x1, x2, x3), YL=(y1, y2, y3), 

ZL=(y1, y2, y3)): 

xG=(x1cosωcosλ - y1sinω - z1sinλcosω)(trcosθ - tr)+ (x1cosλsinω + y1cosω- z1sinλ 

cosω)trsinθ + xc 
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yG=(x2cosωcosλ - y2sinω - z2sinλcosω)(trcosθ - tr)+ (x2cosλsinω + y2cosω- z2sinλ 

cosω)trsinθ + yc  

zG=(x3cosωcosλ - y3sinω - z3sinλcosω)(trcosθ - tr)+ (x3cosλsinω + y3cosω- 

z3sinλ cosω)trsinθ + zc    

(3.11) 

where 0 ≤  λL ≤ π/2, 0 ≤  ωL ≤ 2π, (xc ,yc ,zc) is the global coordinate of the CC point.  

We can also simplify the intersection checking between the cylindrical surface 

of the cutter and the designed surface by converting the cylindrical surface into a 

limited number of circles (see Fig. 3.7a), and then checking the intersection between 

the circles and the designed surface. According to Fig. 3.2, the cylindrical surface of 

the cutter can be expressed in cutter frame as: xT = rcosθ, yT = rsinθ, zT = h, where θ 

from 0 to 2π and h from 0 to the height of cutter. This expression is then transformed 

to the global frame according to Eq. (3.1) as: 

 

xG=(x1cosωcosλ - y1sinω - z1sinλcosω)(rcosθ -r)+ (x1cosλsinω + y1cosω- z1sinλ 

cosω)rsinθ +( x1sinλ+ z1cosλ)h+ xc 

yG=(x2cosωcosλ - y2sinω - z2sinλcosω)(rcosθ -r)+ (x2cosλsinω + y2cosω- z2sinλ 

cosω)rsinθ +( x2sinλ+ z2cosλ)h + yc  

zG=(x3cosωcosλ - y3sinω - z3sinλcosω)(rcosθ - r)+ (x3cosλsinω + y3cosω- z3sinλ 

cosω)rsinθ +( x3sinλ+ z3cosλ)h+ zc    

(3.12) 
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Fig. 3.7 Interference checking of designed surface and cutter cylindrical surface  

To check the possible intersection between a circle and the designed surface, 

we calculate the minimal distance between the circle and the surface. This problem is 

formulated as:  

   Minimise distance[P(xG, yG, zG), S(u ,v)] = f(θ, u, v) 

   Subject to: xG, yG, zG satisfies Eq. (3.11) or Eq. (3.18) 

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1  

Where P(xG, yG, zG) is a point on the circle, and S(u,v) is a point on the designed 

surface.  

Different search algorithms are available to solve this optimisation problem, such 

as Levenberg-Marquardt Algorithm, Downhill Simplex Algorithm, Simulated 

Annealing and Grid Search. Downhill Simplex method (Nelder and Mead, 1965) 

differs from the other methods in that it does not use derivatives, which confers safer 

convergence properties to the Simplex method since it is much less prone to finding 
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false minima. One of the more remarkable features of the Downhill Simplex algorithm 

is that no divisions are required. It uses linear adjustment of the parameters until some 

convergence criterion is met. We therefore apply Downhill Simplex algorithm to find 

the minimum distance: 

Denote the identified point on the cutter bottom as Q and the point on the 

designed surface as P, the existence of gouging is determined in the following 

scenarios: 

(1) If the minimum distance is closed to zero (|P – Q| < ρ, where ρ is a very small 

value) and Q is outside the vicinity of the CC point, gouging is said to occur.  

(2) If |P – Q| ≥ ρ, there are two possibilities. The first is that no interference exists 

(see Fig. 3.6b) and the second is that the cutter bottom is completely below the 

designed surface (see Fig. 3.6c). To distinguish these two scenarios, we calculate 

the angle, φ, between vector PQ and the normal vector at P, i.e., n. If φ ≤ 90˚, as 

shown in Fig. 3.6b, there will be no gouging. If, however, φ > 90˚, gouging will 

occur.  

Denote the identified point on the cutter cylindrical surface as Q and the point 

on the designed surface as P, the existence of collision is determined in the following 

scenarios (see Fig. 3.7b,c,d): 

(1) If the minimum distance is closed to zero (|P – Q| < ρ, where ρ is a very small 

value) collision is said to occur.  

(2) If |P – Q| ≥ ρ, we transform the point P on the designed surface in the global frame 

to the cutter frame. If the transformed PT is within the volume of the cutter, 

collision occurs. Otherwise, there is no collision. 
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Fig. 3.8 Finding the gouging-free and collision-free tool orientation 

If gouging or collision exists, the corresponding CL needs to be adjusted. The 

strategy for adjusting the inclining and tilting angles is given as follows (see Fig. 3.8 

for reference): 

(1) Increase λL by a small amount and keep ωL unchanged. Check the existence of 

gouging and collision. 

(2) If no gouging and collision exists, output λL and ωL, stop. Otherwise, check if the 

machine limit for λL is reached. If so, go to step (3). If not, go back to step (1). 

(3) Increase ωL by a small amount and keep λL at its default value. Go back to step 

(1). 

It is worth mentioning that in the above procedure, there is no checking for the 

machine limit for ωL. This is based on an assumption that for a given CC point, a 

gouging-free and collision-free pair of λL and ωL always exists.  

 

3.3.3 Constructing the dual quaternion curve of cutter motion for a 

single tool path 

Given a set of CLs, their dual quaternion representations iq̂  can be obtained using Eq. 

(3.2). In this section, we focus on constructing a piecewise rational cubic Bézier 
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motion that interpolates or approximates the arbitrary cutter location on one tool path 

using the dual quaternion representation iq̂  of these CLs. The problem can be 

described as follows: Given a set of dual quaternion iq̂ (0 ≤ i ≤ n) generated from the 

CLs for one tool path, and corresponding knot sequence iu  (0 ≤ i ≤ n), find a piecewise 

rational cubic Bézier dual quaternion curve Q determined by the knots sequence and a 

set of control dual quaternions 
∧

b j (j = 0,…3(n-2))  such that Q( iu )= iq̂ . In section 

2.2.4 of chapter 2, we have already presented the algorithm to solve this problem. 

Therefore, the swept surface of cutter bottom circle undergoing the piecewise rational 

cubic Bézier motion can be represented as a set of tensor product Bézier surface and 

each of these Bézier surfaces can be expressed in Eq. (3.4) with different [Hk]. 

 

3.3.4 Tool path verification and modification  

The piecewise rational Bézier dual quaternion curve for the motion of the cutter in 

section 3.3.3 represents a complete tool path. Over this tool path, however, the cutter 

positions between the neighboring  seed CLs may cause out-of-bound surface error 

and/or gouging and collision. Therefore, verification of the complete tool path on 

surface error, gouging and collision must be carried out. Here, we use the swept 

surface generated by the motion of cutter bottom and the underlying surface to check 

the existence of surface error and gouging. 
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Fig. 3.9 Two types of swept surfaces generated by rational motion of cutter bottom  

The swept surface of the bottom of a cylindrical cutter undergoing rational 

motion is considered to be formed by two types of surfaces: one is generated by the 

cutter bottom surface within the bottom circle (type-I) and the other by the rational 

motion of cutter bottom circle (type-II). Fig. 3.9a shows the type-I surface. The red line 

is part of swept surface generated by the motion of cutter bottom surface. Fig. 3.9b 

shows the type-II surface in which the green line is generated by the motion of cutter 

bottom circle.  

 To check whether there is any gouging over the tool path, we need to check 

whether there is any interference between the swept surface (both type-I and type-II) 

and the designed surface. For surface error checking, however, we only need to check 

the deviation between type- II surface and the designed surface. This is because the 

final generated surface must be the swept surface formed by the motion of the bottom 

circle if the tool path is gouging-free.  

 The surface fitness, gouging and collision checking are carried out on a number 

of selected CL points. The deviation between type-II surface and the designed surface 

is checked firstly. If the deviation is out of tolerance, the corresponding tolerance-

violation CLs are recorded. Gouging checking is subsequently carried out over the 

same set of CL points and the corresponding gouging CLs are also recorded. After 

that, collision checking is subsequently carried out over the same set of CL points and 
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the corresponding collision CLs are also recorded. These problematic CLs are then 

modified and the quaternion motion curve is reconstructed. Subsequently, fitness, 

gouging and collision checking are carried out again. This process goes on until a 

gouging-free and collision-free tool path with a satisfactory fitness is achieved. The 

algorithms are described in the following sections. 

 

3.3.4.1 Fitness checking 

To achieve a good fitness, the deviation between the swept surface generated by the 

motion of cutter bottom and the underlying surface should be within the user specified 

surface tolerance. The fitness checking is to calculate such deviation and find whether 

it is larger than the surface tolerance. If true, modification of piecewise rational cubic 

dual quaternion curve of cutter bottom motion is needed. Modification of dual 

quaternion curve is an iterative process. Some crucial CL points that yield violation of 

fitness requirements are added to the original set of cutter location points, and then the 

dual quaternion motion curve is reconstructed according to the algorithm in section 

3.3.3. Subsequently, the swept surface generated by the motion of cutter bottom is 

updated until a good fitness is achieved. 

 

 

 

 

 

 

 

Fig. 3.10 Two kinds of deviation estimation between swept and designed surface 
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The deviation between the swept surface and designed surface is defined as follows: 

(1) The projection of the surface curve S(u0, v) onto the swept surface generated by 

the motion of cutter bottom in the direction of the normal vectors of all the 

surface points on S(u0,v) yields a curve C on the swept surface. Then the 

deviation between curve C and the surface curve S(u0,v) can be an estimation as 

the deviation between the swept surface and the designed surface. 

(2) For any point P on the surface curve S(u0,v), the deviation between S(u0,v) and 

curve C is obtained by calculating the distance between point P and its projection 

point Q on curve C according to its normal direction. After the calculation of 

distances for all the surface points on curve S(u0,v), the largest distance is  

defined as the deviation between surface curve S(u0,v) and curve C. It is also the 

deviation between the swept surface and the designed surface curve (see Fig. 

3.10a).  

Obviously, the calculation of deviation according to this definition is time-consuming 

and complicated. A simplified method is needed to estimate the deviation between the 

swept surface generated by the motion of cutter bottom and the surface S(u, v). Instead 

of using the projection curve C, we can use another curve to estimate deviation 

between swept surface and the designed surface. As shown in Fig. 3.10b and Fig. 3.2, 

point c in cutter bottom circle is always the CC point corresponding to any location of 

surface S(u0,v). We can then use the curve formed by point c undergoing the rational 

Bézier motion to approximate curve C. After that, at any location of cutter undergoing 

the Bézier motion, we can obtain the minimal distance between point c at this location 

and the surface curve S(u0,v). If this minimal distance is larger than the surface 

tolerance, the deviation between the swept surface and designed surface must be out of 
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tolerance, and thus the modification of the dual quaternion motion curve needs to be 

performed. The detail implement procedure is as follows: 

(a) Find the curve generated by point c undergoing rational Bézier motion 

As shown in Fig. 3.2, since point c (CC point) is the start point of two circular arcs 

expressed in Eq. (3.3), the parameter s = 0. Thus, according to Eq. (3.4), the curve 

generated by point c undergoing the B-spline motion is given by P(0,t) as follows: 

∑∑∑
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==
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0
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ki

ii HBBBtHt PPP  (3.13) 

(b) Discrete the curve P(0, t) to find a set of instant points ci. on the curve. 

This step is to generate a set of CC points from P(0, t). For implementation, the 

method for CC point generation described in section 3.3.1 is adopted, in which the 

designed surface S(u,v) and surface curve S(u0,v) are replaced by the swept surface  

P(s, t) and  the curve P(0, t) respectively. The given surface error tolerance is used 

as the fitting tolerance for CC point generation.  The generated CC point set 

corresponds to a set of parameters {ti i = 1, 2, …, K} which also correspond to a set 

of CLs whose bottom circles are {P(s, ti), i = 1, 2, …, K}(see Fig. 3.11 for 

reference). 

 

 

 

 

 

 

Fig. 3.11 Finding a set of instant points ci. on the curve P(0,t) 

 (c) Calculate the distance between the point ci and the surface curve S(u0,v). 
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The calculation of the minimum distance between the CC point at ti and the 

underlying curve on the designed surface can, therefore, be defined as:  

   Minimise distance[P(0, ti), S(u0 ,v)] = g(v) 

   Subject to: 0 ≤ v ≤ 1  

This ensures that the surface error between the machined surface and the designed 

surface is within the surface error tolerance on the tool path curve S(u0, v).  

The Downhill Simplex algorithm is used here to solve this optimisation 

problem. The output gives a set of K points on S(u0,v), {S(u0, vi), i = 1, 2, …, K}, that 

corresponds to the minimum distances at the K CLs.  If the minimal distance at a CL is 

found to be larger than the surface error tolerance, the corresponding point, which 

belongs to {S(u0, vi), i = 1, 2, …, K}, that yields this distance is recorded into a 

supplementary CC-point set. The CLs that satisfy the tolerance are to be used for 

gouging and collision checking. 

 

3.3.4.2 Gouging and collision checking 

As shown in Fig. 3.12, the interference detection needs to be carried out at instant 

cutter locations. For simplicity, in our application, the instant cutter locations for 

interference detection are the same set of cutter locations determined in the process of 

checking the fitness. Therefore, interference detection for one tool path is decomposed 

to the detection of interference between cutter and the designed surface at all such 

instant cutter locations. This method is similar to the gouging and collision detection 

method introduced in section 3.3.2. However, there is still a little difference between 

them. The adjustment of the incline angle of cutter at instant location is no longer 

needed at this stage, since the adjustment will be done later by modifying the rational 

Bézier dual quaternion curve. 
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Fig. 3.12 Interference checking for one tool path 

Note that the minimal distance calculated for interference detection is between 

the cutter and the designed surface as a whole. If interference occurs at a CL (ti), the 

corresponding point on S(u0,v) should be found and added to the supplementary CC-

point set. The requirement for this point is that by using it as a CC point, a feasible CL 

can be found to avoid interference. Therefore, there should be more than one solution 

to this point. In our approach, we use the point on S(u0,v) that corresponds to the 

minimal distance between P(0, ti) and S(u0,v), i.e., from {S(u0, vi), i = 1, 2, …, K}, 

which is obtained during the above fitting checking procedure.  

Finally, the supplementary CC-point set is completed, which will be used to 

modify the curve that defines the cutter motion. 

 

3.3.4.3 Modification of the rational Bézier dual quaternion curve 

Having found the problematic CLs (on the dual quaternion curve), a direct 

modification of this approach is to use the points in the supplementary CC-point set to 

determine which of  their CLs are interference-free and have satisfactory fitting error. 

These CLs, together with the existing CLs, are then used to re-construct the dual 

quaternion curve.  
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Fig. 3.13 Points Reducing in the supplementary CC point set 

We have already recorded points on S(u0,v) corresponding to the problematic 

CLs. However, the number of these points is very large and these points may be 

clustered at specified locations (see Fig. 3.13). Moreover, it is possible that a point 

repeats to occur in the supplementary CC-point set. This can result in heavy 

computational load and inaccuracy for the construction of rational Bézier motion 

curve.  In order to solve this problem, the number of the recorded points on S(u0,v) 

needs to be reduced.  In our case, we firstly find the cluster that the points are located 

in, and then find a point which is nearest to the centre of the cluster to represent all the 

points in this cluster, and delete all other points in the cluster. In this way, our 

modification process becomes more efficient and effective.  

After the reduction, the points left in the supplementary CC-point set are 

considered as new CC points, and the corresponding cutter postures (CLs) at these 

positions are then obtained based on gouging and collision avoidance described in 

section 3.3.2. The newly generated CLs are converted to dual quaternion 

representation. Thus the control quaternions are modified and a new quaternion motion 

curve is generated from these modified quaternions. The swept surface of cutter 

undergoing the new quaternion motion will have more contact points with the 
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underlying curve. It is therefore expected that the new tool path will have less problems 

in terms of fitting error, gouging and collision. Fitness, gouging and collision checking 

will be carried out on the new tool path. This checking-modification-checking process 

is repeated until fitting test, gouging and collision test are satisfactory. However, if the 

number of iteration is larger than a pre-specified threshold value, the checking-

modification-checking process will stop and give user an alert message. 

 

3.3.5 The Summary of the whole algorithm 

The procedure of generating a single gouging-free and collision-free tool path using 

the piecewise rational Bézier motion of the cutter is summarized as follows: 

(1) Get an iso-parametric curve S(u0,v) from the designed surface S(u,v)  by fixing 

u=u0.   

(2) Obtain a set of cutter contact points S(u0,vj) on the surface curve S(u0,v), where 

j=0,..n, and find the  corresponding set of  centres of the cutter bottom circle 

CLj using the method mentioned in section 3.3.1 and 3.3.2 respectively. 

(3)  For each j, convert the cutter location CLj into the dual quaternion 

representation using Eq. (3.2). 

(4) Find the control quaternions and construct the rational Bézier quaternion 

curve )(ˆ tq  using the method mentioned in section 3.3.3.  

(5)  Get the swept surface P(s,t) of the cutter undergoing rational Bézier quaternion 

motion using Eq. (3.4)  

(6) Fitness checking and interference checking using the method mentioned in 

section 3.3.4. If the fitness meets the surface tolerance and the interference 

does not exist, stop. Otherwise, modify the control quaternions and go back to 

(4). 
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CHAPTER 4  

MULTI TOOL PATHS GENERATON 

 
 

In 5-axis machining, the generated tool path must be gouging-free and 

collision-free, and scallop height between the adjacent tool paths must be controlled in 

a pre-defined tolerance. In chapter 3, we have already presented an algorithm to obtain 

a single gouging-free and collision-free iso-parameter tool path, the main focus in this 

chapter is to generate the adjacent tool path such that the scallop height between two 

neighboring  tool paths is within the allowable tolerance.  

 

4.1 Scallop Height and Effective Cutting Shape 

Machining error occurs when an excess of material is left between adjacent 

overlapping cutter paths, as shown in Fig. 4.1. The volume of unremoved material is 

referred to as a scallop. It can be exactly described by subtracting the designed surface 

from the machined surface generated by the cutter. Scallop curve is a ridge protrusion 

formed at the intersection of the swept surface of the adjacent cutting paths. The 

distance of the scallop curve to the designed surface represents a local maximum of the 

unremoved materials extending above the designed surface. This distance is referred as 

scallop height. Controlling scallop height is a significant factor in 5-axis NC 

machining since scallop height influences the manufacturing efficiency and finish 

surface quality. The machined surface with small scallop height significantly reduces 

the manual grinding and smoothing required by the specified surface roughness design. 
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Some researchers introduced the local geometry of the surface and the cutter to 

estimate the scallop height. Choi (1993) presented a method that evaluates the scallop 

height by finding the intersection between two curves generated by projecting cutter 

bottom onto the cutting planes at the adjacent CC points on the current and the next 

tool paths. Lee (1996b) developed an error analysis method for 5-axis machining 

which applied differential geometry technique to evaluate the scallop height between 

adjacent cutter locations. Generally, in these algorithms, effective cutting shape is 

applied to evaluate the scallop height. However, their approximation of effective 

cutting shape is not highly accurate. 

 

 

 

 

 

 

 

Fig. 4.1 The illustration of scallop height 

The effective cutting shape is defined as the intersection between the cutting 

plane at the CC point under consideration and the swept surface formed by sweeping 

cutter bottom along the tool path (see Fig. 4.2a). However, in most of the researchers’ 

reports, the effective cutting shape is approximated by projecting the cutter bottom to 

the cutting plane at the CC point under consideration (see Fig. 4.2b). From Sarma’s 

work (2000), we can see that this approximation can be significantly different from the 

accurate effective cutting shape. The scallop height calculated using this 

approximation is consequently inaccurate. Since the scallop height determines the 
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finish surface quality, we need to seek a more accurate method to evaluate it. In our 

approach, since the swept surface generated by the rational Bézier motion of the cutter 

bottom circle can be determined analytically, the effective cutting shape can be 

represented accurately. Hence, the corresponding scallop height can also be calculated 

accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Effective cutting shape 

(a) The exact definition of effective cutting shape 

(b) Traditional method to estimate the effective cutting shape 
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4.2 Evaluating the Effective Cutting Shape 

In this section, our aim is to obtain the analytical expression of the effective cutting 

shape by intersecting the cutting plane at the CC point under consideration and the 

swept surface generated by the rational Bézier motion of the cutter bottom circle.  

We firstly represent the cutting plane mathematically. For the iso-parameter 

tool path, the cutting plane at CC point Ci is perpendicular to the cutting direction 

Sv(u0,,vi) and passes through Ci.  Denote the cutting plane as CP, we can obtain the 

homogeneous representation of the cutting plane as:  

CP=(n, -d)     (4.1) 

where n=(n1, n2, n3)=
),(
),(

0

0
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 is the unit normal vector of the plane CP; d= -(n1c1+ 

n2c2+ n3c3) is the distance from the origin to the plane CP; (c1, c2 c3) is the coordinate 

of Ci. 

The analytic expression of swept surface generated by the rational cubic Bézier 

motion of the cutter bottom circle is shown in Eq. (3.4). Therefore, the intersection of 

CP and the swept surface can be expressed as: 
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This yields a curve on the swept surface, which is the effective cutting shape. Eq. (4.2) 

is an implicit function of s and t. To get the explicit function, we can express the Eq. 

(4.2) as: 
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6 . Expend Eq. (4.3), we can obtain: 

G(s,t)=(1-s)2g0+2s(1-s)g1+s2g2 
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         =(g0+g2-2g1)s2+2(g1-g0)s+g0=0 

 

Solving the above quadratic equation, we can obtain the explicit function of parameter 

s and t on the effective cutting shape as: 
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Fig. 4.3 The geometry of function y(t) 

If the intersection between the cutting plane CP and the swept surface P(s,t) 

exists, Eq. (4.4) should satisfy the following three conditions: 
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From Eq. (4.3), we can know that 20
2
1)( gggty −=  is the polynomial function of t 

with degree 4n. Thus, there are 4n solutions to the function y(t)=0. To find the intervals 

of t that yield y(t)>0,  we need to investigate the geometry of the function y(t) when t 

varies from 0 and 1. There are four cases for function y(t) as follows: 
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(1) y(t)<0  for any t within 0 and 1, as shown in Fig. 4.3a; 

(2) One solution to the function y(t)=0  is within 0 and 1, as shown in Fig. 4.3b; 

(3) Two or more solutions to the function y(t)=0  are within 0 and 1, as shown in 

Fig. 4.3c; 

(4) y(t) ≥ 0 for any t in the interval of 0 and 1, as shown in Fig. 4.3d. 

If case (1) occurs, there is no solution of parameter s according to Eq. (4.4). As a 

result, the intersection between the swept surface and the cutting plane at Ci does not 

exist. If cases (2)-(4) occur, we can always find some t, where 0 ≤  t ≤ 1, that yield y(t) 

≥ 0. Therefore, the solution s to Eq. (4.4) exists. 

Given a function y(t), if any cases in (2)-(4) occurs, we can obtain the ranges of 

t that yield y(t) ≥ 0 and t∈[0,1]. Combine these ranges of t, we can get: 

R={[ t1, t2], … [ti, ti+1], …  [tm-1, tm]} 

Where t1<…< ti …< tm. Any ranges of t in R can yield the existence of solution s of 

the Eq. (4.4). However, according to Eq. (4.5), if the intersection between the swept 

surface and the cutting plane exists, we still need to make sure the parameter s lies 

within the range [0,1]. Since the feasible range R of t for the solution of Eq. (4.4) has 

been obtained, we can further use R to find the corresponding range of parameter s. 

Solve the following equations: 

0
)(

=
dt

tds
, 0)( =ts , 1)( =ts , where 10 ≤≤ t     (4.6) 

We can obtain a set of solutions '
jt  within the range [0,1] of Eq. (4.6) , as shown Fig. 

4.4. Subdivide the range [0,1] into smaller ones, and take each of the '
jt  as the 

subdivision point, we obtain a set R1: 

R1=={[0, '
1t ], … [ '

jt , '
1+jt ], … [ '

nt , 1]}; 
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Where '
1t <…< '

jt  …< '
nt . Intersect the range R and the range R1, and we can get a new 

subdivision range R2 as: 

R2={[ 1t , 2t ], … [ it , 1+it ], … [ 1−kt , kt ]} 

Where 1t <…< it  …< kt . 

 

 

 

 

 

 

 

Fig. 4.4 Finding the range R1 

In each of the subdivision range [ it , 1+it ], s(t) solely increases or decreases with 

the parameter t increases from it  to 1+it , as shown in Fig. 4.4. Thus, if 0 ≤ s( it ) ≤ 1 and 

0 ≤ s( 1+it ) ≤ 1, the intersection between the swept surface and the cutting plane at Ci , 

i.e. effective cutting shape, exists. We can then get the feasible range of s as 

[min(s( it ), s( 1+it )), max(s( it ), s( 1+it ))]. Unite all of the ranges of s that yield 

0 ≤ s( it ) ≤ 1 and 0 ≤ s( 1+it ) ≤ 1, we can get a new range Rs as: 

Rs={[s1, s2], … [si, si+1], … [sh-1, sh]} 

Where s1<…< si …< sh. and the corresponding range Rt that yields these range of s as: 

Rt={[t1, t2], … [ti, ti+1], …  [th-1, th]}; 

If Rs and Rt are not empty, the intersection between the swept surface and the cutting 

plane at Ci, i.e. effective cutting shape, exists. Then P(s(t),t) is the exact representation 

of  the effective cutting shape at the Ci. Otherwise, there is no intersection.  
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4.3 Constructing the Adjacent Tool Path 

 
Based on surface curve S(ui,v), we can use the algorithm in chapter 3  to obtain a iso-

parameter tool path and the swept surface generated by the  rational Bézier motion of 

cutter bottom circle along this tool path. Similarly, the swept surface of the motion of 

cutter bottom circle and the candidate next iso-parameter tool path can be obtained 

based on S(ui+∆u,v), where ∆u is the side step size. The intersection curve between 

these two swept surfaces yields the scallop curve h(v). For each point, h(vi), on the 

scallop curve h(v), if the distance between h(vi) and the surface S(u,v) is within the pre-

defined tolerance δ,  this candidate next tool path can be said satisfactory. Otherwise, 

the step size ∆u for the candidate next tool path needs to be modified. With this 

modified ∆u, a new candidate next tool path is generated and subsequently, the scallop 

height is re-checked. This process goes on until scallop height is within the pre-defined 

tolerance. Therefore, a suitable next tool path is found. Repeatly applying the above 

process, we can obtain the entire tool paths on the designed surface.  

The key issue in the above process is to find the intersection curve between the 

adjacent swept surfaces. This is a surface/surface intersection problem (SSI), which is 

always encountered in computer graphics. Many researchers tried different methods to 

solve this problem. Among these methods, the recursive subdivision method and the 

incremental tracing method are commonly used (Nadim et al., 1990). However, the 

disadvantage of these methods is the extremely heavy computational load. In computer 

graphic fields, most of the complex curve and surface intersection problems can also 

be solved by the numerical method. We adopt the numerical method to evaluate the 

scallop height. First, according to the curvature of the surface curve S(u0,v), we 

discretise the current tool path to a set of CC points. Second, for each of these CC 

points, find the intersection point hi between P1(s(t),t) and P2(s(t),t), where P1(s(t),t) 
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and P2(s(t),t), are the intersection curves between the cutting plane at this CC point and 

the two swept surfaces generated by the motion of cutter bottom on adjacent tool paths 

respectively. hi is on scallop height curve h(v),  as shown in Fig. 4.5. All the 

intersection points {hi} are used to represent the scallop height curve h(v). 

 

 

 

 

     

 

 

Fig. 4.5 Calculation of scallop height 

Based on the above descriptions, the process of generating the adjacent tool 

path can be divided into the following steps: (1) estimate the initial step over Li and the 

step size ∆u for the candidate next tool path, (2) generate the collision-free and 

gouging-free candidate next tool path, (3) discretise the surface curve S(u0,v) into a set 

of surface points{Ci} according to its curvature, (4) for each of these surface points Ci, 

find the intersections curves P1(s(t),t) and P2(s(t),t) between the cutting plane at Ci and 

the two neighboring  swept surfaces, (5) obtain the intersection point hi of P1(s(t),t) and 

P2(s(t),t), and (6) find the distance between hi and the designed surface S(u,v).  

As described in chapter 3, the swept surface generated by the piecewise 

rational Bézier motion of the cutter bottom circle is constituted by several Bézier 

surface patches. Because of this, some tough problems will be encountered, such as 

determination of the existence of intersection curve between the swept surface patches 
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and the cutting plane, and determination of positions that contribute to the generation 

of scallop height. We then identify and solve these problems in the following section. 

 

4.3.1 Generating the candidate next tool path 

In order to generate the candidate next tool path, the initial step over distance L and the 

step size ∆u need to be determined first. The step over distance L is very important to 

generate the next iso-parameter tool path. If L is too small, the result scallop height is 

small and good finish surface quality can be achieved, but the number of tool paths is 

very large and thus the machining efficiency is very low, and vice versa for a large L. 

Lin and Koren (1996) investigated this issue and estimated the initial step over Li for a 

specified CC point Ci as (see Fig. 4.6): 

Li =








⋅+
surface) designed (plane8

surface) designedconvex or  (concave
8

tol

tol

hrr
signrr

hrr
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  (4.7) 

Where rs is the radius of surface curvature in the cutting plane at Ci. re is the radius of 

effective cutting curvature on the same cutting plane. htol is the scallop height 

tolerance. If a convex surface is applied, sign is equal to 1; if a concave surface is 

applied, sign is equal to –1. Note that re is calculated according to the effective cutting 

shape generated in section 4.1.  

 

 

 

 

 

 

Fig. 4.6 Calculating the step over and the step size 
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After obtaining the step over distance Li at Ci, we need to calculate the step size 

∆ui. As shown in Fig. 4.6, the step size ∆ui is determined using the following equation: 

iLviLui Lvu =⋅+⋅ )(∆)(∆ YSYS  and  ∆vi = 0 

Therefore, we can get the step size ∆ui as: 

)( Luii /Lu XS ⋅=∆      (4.8)  

where  YL is the cross product of cutting direction XL and the surface normal ZL at Ci; 

Sv = vvu ∂∂ /),(S  and Su = uvu ∂∂ /),(S . 

For each of the CC points on S(u0,vi), the corresponding step over distance Li 

and the step size ∆ui can be calculated according to Eq. (4.7) and Eq. (4.8). The 

smallest step size in the set {∆ui} can be assigned as the step size ∆u of the tool path, 

and the candidate next tool path is generated based on the surface curve S(u0+∆u,v). 

Given a surface curve S(u0+∆u,v), the candidate next tool path without gouging 

and collision can be generated using the method presented in chapter 3. 

 

4.3.2 Discretizing surface curve S(u0,v) 

We then discretize the surface curve S(u0,v) into a set of surface points , so that the 

scallop height can be estimated at each of these positions. The key issue here is to find 

the distribution of these surface points.  Since the distribution of the surface points 

greatly depends on the geometry of S(u0,v), we can discrete S(u0,v) according to its 

curvature. We face the same problem as that in one tool path generation, where the 

sample points on the surface curve S(u0,v) need to be found so that the rational Bézier 

motion of the cutter bottom circle could be constructed, as mentioned chapter 3. 

Similar method is adopted here, but the fitting tolerance τ is chosen more strictly. The 

fitting tolerance τ is 0.5 to 1 times of surface error. 
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4.3.3 Finding intersection curve between the cutting plane and the 

swept surfaces  

 
In our approach, the swept surface is generated by the piecewise rational Bézier 

motion of the cutter bottom circle, and therefore it is constituted of a set of rational 

Bézier surface patches, as described earlier. Consequently, finding the intersection 

between the swept surface and the cutting plane at the CC point is equivalent to 

finding the intersection between all of the swept surface patches and the cutting plane. 

However, the problem becomes a little tougher because of the existence of these swept 

surface patches. First, for each of the swept surface patches, the existence of 

intersection curve with the cutting plane needs to be checked. Second, sometimes, the 

intersection of the swept surface with the cutting plane may result in two or more 

intersection positions, and we need determine which position contributes to the 

generation of scallop height. In this section, our main focus is to obtain the intersection 

curve between the swept surface and the cutting plane and solve the above problems. 

Since the swept surface is the combination of the rational Bézier surface 

patches, the intersection curve between the swept surface and the cutting plane are 

assigned as the combination of the intersection curves between the swept surface 

patchs and the cutting plane. In section 4.1, we have presented the method to check the 

existence of intersection between the rational Bézier swept surface patches and the 

cutting plane at the CC point. There, we assert that, if Rs and Rt are not empty, the 

intersection exists, and the corresponding ranges of parameter s and t can also be 

obtained. Then P(s(t),t) is  the intersection curve at the CC point. For each of the swept 

surface patches, this checking process must be performed, and the intersection curve 

between these swept surface patches and the cutting plane at the CC point Pai(si(ti),ti), 

where a indicates the ath tool path and i represents the ith swept surface patch, can be 
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obtained. Therefore, the combination of the intersection curves can then be expressed 

as follows: 

Pa(s(t),t)= Pa1(s1(t1),t1) ∪  Pa2(s2(t2),t2) ∪ … Pai(si(ti),ti) ∪ …Pak(sk(tk),tk)  (4.9) 

Where si and ti are the feasible parameters that contribute to the intersection curves, 

and k is the number of swept surface patches that have intersection with the cutting 

plane at the CC point. 

Thus, Pa(s(t),t) is the intersection curve between the swept surface and the 

cutting plane. For the example, in Fig. 4.7, there are two swept surface patches 

Pa1(s1,t1) and Pa2(s2,t2) that intersect with the cutting plane CP at CC, therefore, the 

intersection curve between the whole swept surface and CP constitutes of two 

intersection curves,   Pa1(s1(t1),t1) and Pa2(s2(t2),t2). 

 

 

 

 

 

Fig. 4.7 Intersection curve between the swept surface and the cutting plane 

 

 

 

 

 

 

 

Fig. 4.8 Location of the intersection positions 
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However, in some applications, the intersection between the swept surface on 

one tool path and the cutting plane at the specified CC point may result in two or more 

intersection positions, as shown in Fig. 4.8. According to Eq. (4.9), since the combined 

intersection curve Pa(s(t),t) includes the intersection curves at these intersection 

positions, problems may occur when we calculate the scallop height. For example, 

when we calculate the scallop height at the cutting plane at CC point 2, there are two 

intersection curves Pai(si(ti),ti) and Paj(sj(tj),tj) between the cutting plane CP and the 

swept surface in Fig. 4.8. Obviously, Paj(sj(tj),tj) is what we need to  calculate the 

scallop height. But if the result scallop height is calculated according to Pai(si(ti),ti), 

wrong decision (recalculating the step size or continuing to next checking point ) would 

be made, hence it will lead to inefficiency and inaccuracy. The key issue to solve this 

problem is to find the proper intersection curve at the specified position.  

 

 

 

 

 

 

 

Fig. 4.9 Finding the range of v for a swept surface patch 
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also corresponding to a specified parameter vi. Since all the swept surface patches 

contribute to generating the tool path, each of these swept surface patches is also 

corresponding to a range of v. The calculation of the range of v is based on the 

calculation of minimal distances between the beginning and ending parts of the swept 

surface patches and the designed surface curve S(u0,v). As shown in Fig. 4.9, the 

corresponding surface point that yields the minimal distance between the beginning 

part of the swept surface patches Pai(s,t) and the designed surface curve S(u0,v) is 

S(u0,vbni), and the corresponding surface point that yields the minimal distance 

between the ending part of Pai(s,t) and S(u0,v) is S(u0, vedi). Therefore the range [vbni 

,vedi] is the corresponding range of v for a swept surface patch. After finding the range 

of v for each of the swept surface patch that intersects with the cutting plane, we can 

check whether the parameter vi corresponding to the cutting plane is within this range. 

If so, the intersection curve of this patch with the cutting plane can be thought as part 

of effective cutting shape and is chosen to calculate the scallop height. Otherwise, we 

can discard this intersection curve. The detail algorithm can be described as follows:  

From the first swept surface patch Pai(s,t), where i=0, on  a single tool path: 

(1) Find the existence of the intersection curve between Pai(s,t) and the cutting 

plane CP at the CC point under consideration. 

(2) If the intersection does not exist, continue to the next swept surface patch and 

go back to step (1), until all the swept surface patchs are calculated. Otherwise, 

obtain the range of parameter v for this swept surface patch. 

(a) Obtain the corresponding surface point S(u0,vbni) that yields the minimal 

distance between S(u0,v) and the beginning part of Pai(s,t). 

(b) Obtain the corresponding surface point S(u0, vedi) that yields the 

minimal distance between S(u0,v) and the ending part of Pai(s,t).  
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(c) If the parameter vj of CC point S(u0,vj) is within [vbni, vedi], the 

intersection curve is on the effective cutting shape and is used to 

calculate the scallop height. Otherwise, go back to step (1), until all the 

swept surface patches are calculated. 

 
4.3.4 Obtaining the intersection point between the cutting plane and 

the swept surfaces on the neighboring tool paths 

From the definition of scallop height, we can know that the two swept surfaces on the 

current and its neighboring  tool paths are needed to calculate the scallop height. The 

intersections between the cutting plane at the CC point and the two swept surfaces on 

the adjacent tool paths yield two intersection curves. According to section 4.3.3, the 

combined intersection curve Pr(s(t),t) between the cutting plane and the swept surface 

on the current tool path can be obtained,  and similarly the combined intersection curve 

Pn(s(t),t)  between the same cutting plane and the swept surface on next tool path can 

also be obtained. The designed surface and the intersection point of Pr(s(t),t) and 

Pn(s(t),t) can be used to estimate the scallop height.  In this section, we focus on 

finding the intersection point between Pr(s(t),t) and Pn(s(t),t). 

Generally, Pr(s(t),t) and Pn(s(t),t) are ellipse-like shapes, as shown in Fig. 4.10, 

and thus there are two intersection points between these two curves. Obviously, the 

lower point (nearer to the designed surface) is what we need to calculate the scallop 

height. Hence, when calculating the intersection points between Pr(s(t),t) and Pn(s(t),t), 

the lower intersection point need to be identified. We can then use the analytical 

expression of Pr(s(t),t) and Pn(s(t),t) according to Eq.(4.9) and Eq. (3.4) to  find the 

intersection points. However, Pr(s(t),t) and Pn(s(t),t) are piecewise functions and very 

complicated, therefore the calculation of the intersection points is very difficult. In 

order to solve this problem, we can use two polygons to approximate the intersection 
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curves and find the lower intersection point between these two polygons (see Fig. 

4.10). 

 

 

 

 

 

 

Fig. 4.10 Polygonization of the effective cutting shape 

In our application, the method to polygonize the curve P(s(t),t) is similar to the 
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encountered in most of the applications in computer science. After calculation, we 
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between each of the intersection points and the YL axis in cutting plane. The 

intersection point that yields to the smaller distance is the lower intersection point and 

this point is what we need. 
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However, sometimes, the intersection points between Pr(s(t),t) and Pn(s(t),t) 

when the cutting plane is at the beginning and ending part of surface curve are 

different with the regular ones. Generally, there exist the following cases: 

(1) No intersection points exist between Pr(s(t),t) and Pn(s(t),t). 

(2) Only one intersection point exists between Pr(s(t),t) and Pn(s(t),t). 

If there is no intersection points between Pr(s(t),t) and Pn(s(t),t), it means that the two 

neighboring  swept surfaces of cutter motion have no intersection at this discrete 

testing position. Therefore, the scallop height at this position does not exist, and we 

can ignore the calculation of scallop height and continue to check the next position. If 

only one intersection point exists, we need to investigate the position of this 

intersection point carefully. If the intersection point locates in the upper intersection 

curve between the neighboring  swept surfaces, the calculation of scallop height using 

this point is not necessary. However, if the intersection point locates in the lower 

intersection curve between the neighboring  swept surfaces, this point should be used 

to execute the calculation of the scallop height. Generally, if the distances between this 

intersection point and the YL axis in cutting plane is larger than 0.2r, where r is the 

cutter radius, we can assume that this intersection point is on the upper intersection 

curve between the neighboring  swept surface. Otherwise, this intersection point is in 

the lower intersection curve and the calculation of scallop height based on this 

intersection point is needed.  

 

4.3.5 Calculation of scallop height 

As we mentioned earlier, the scallop height is the minimal distance between the lower 

intersection point of the curve Pr(s(t),t) and Pn(s(t),t) and the designed surface S(u,v). 

This problem is formulated as:  
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   Minimise distance[Plow, S(u ,v)] = f( u, v) 

   Subject to: 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1  

Different search algorithms are available to solve this optimisation problem. In our 

approach, we apply Downhill Simplex algorithm to find the minimum distance. The 

advantages of Downhill Simplex algorithm have been described in chapter 3. 

If the result scallop height is within the pre-defined tolerance, we can proceed 

to next CC point to check the scallop height. Otherwise, the candidate next tool path 

cannot meet the requirement and the step size ∆u needs to be reduced to generate a 

new candidate next tool path. The whole process is revisited until a suitable next tool 

path is found. 
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CHAPTER 5    

SOFTWARE SIMULATION RESULTS 

 
In this thesis, our tasks are to solve the problems in 5-axis machining of the sculptured 

surface and exploit the full potential flexibility of 5-axis NC machining. In the 

previous chapters, we have presented an algorithm to find the gouging-free and 

collision-free iso-parameter tool path using the piecewise rational Bézier motion of the 

cutter, and keep the scallop height between the neighboring tool paths within the pre-

defined tolerance. In order to show the advantages of this algorithm over traditional 

algorithms, in this chapter, we present the result of software simulation by employing 

the algorithm developed aforementioned. The proposed method has been implemented 

on PC using VC++ and OpenGL. 

 

5.1 The Designed Surface 

We choose several surfaces such as concave, convex surface with irregular curvatures 

as the surfaces to be machined by 5-axis NC machine tool. 

The first designed surface shown in Fig. 5.1a is a concave Bézier surface patch 

described by ∑∑
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The second designed surface shown in Fig. 5.1b  is a convex Bézier surface 

patch describe by ∑∑
==
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The third designed surface shown in Fig. 5.1c is a Bézier surface patch that is a 

wave-like surface. It can be described by ∑∑
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Fig. 5.1 The examples of designed surfaces to be machined 
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The fourth designed surface shown in Fig. 5.1d is a Bézier surface patch that is 

concave in general with an extrusion in the centre. This surface can be described 

by ∑∑
==

=
4

0

45
5

0
)()(),(

j
ijji

i
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5.2 Single Tool Path Generation 

In our application, a flat-end cutter with the radius of 0.3 and the cutter length of 1 is 

used. The position of the single tool path is at u = 0.3, and the surface error is chosen 

to be 0.005. 

 

 

 

 

 

 

 

 

 

                  

Fig. 5.2 The normal vectors of the CC points when τ =0.005 and τ =0.05 

First, a set of CC points were generated on the surface curve S(0.3, v),  

assigning the searching tolerance τ as 0.005 and 0.05 respectively.  Fig. 5.2 shows the 

(b) (a) 

(c) (d) 
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normal vectors of the CC points generated under the two surface error tolerances. We 

can see that the distribution of the CC points is according to the changes in curvature 

of the surface curve, i.e., CC points are dense on the surface part with larger curvature, 

while they are sparse where the curvature is smaller. Also, we can find that the larger 

the search tolerance, the less the CC points. For the sake of efficiency, the CC points 

with τ =0.05 is used here for the subsequent tool path generation. 

Second, the associated CLs to the CC points are generated.  The default 

inclining and tilting angles were chosen as λL=5° and ω L=0°. Fig. 5.3 shows the CLs 

before gouging avoidance (the left image shows the cutter postures and the right one 

shows the view from the back of the surface patch). There are gouging problems 

between the cutter and the designed surface in Fig. 5.3a, c and d, while there is no 

interference in Fig. 5.3b. The reason is that gouging is prone to occurring at concave 

surfaces. 

Gouging checking and avoidance is then performed and the result CLs after 

gouging avoidance can be shown in Fig. 5.4. We can see that the gouging no longer 

existed. However, the collision in Fig. 5.4c still exists because of the sharp change in 

curvature of this designed surface. Therefore, the algorithm for collision checking and 

avoidance need consequently be executed. Fig. 5.5 is the result CLs after collision 

avoidance for the third designed surface. 
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Fig. 5.3 The CLs before gouging avoidance  
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Fig. 5.4 The CLs after gouging avoidance 
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Fig. 5.5 The result CLs after collision avoidance for the third designed surface 

After that, the piecewise rational Bézier dual quaternion curve of cutter motion 

is generated and then goes through the tool path verification and correction process. 

The cutter undergoing the initially generated piecewise rational Bézier motion for the 

first designed surface is shown in Fig. 5.6a and some interference exists. The cutters in 

yellow indicate the CLs where there is interference problem; while the cutters in pink 

indicate the CLs with fitting problem. Fig. 5.6b shows the resulted tool path after the 

first modification of the piecewise rational Bézier dual quaternion curve. The 

interference and fitting problem abated as opposed to that in Fig. 5.6a. Fig. 5.6c shows 

the resulted tool path after the second modification of the dual quaternion curve, from 

which we can see that neither interference nor fitting problems are detected and, 

therefore, the whole tool path is generated. The process for generating the interference-

free tool path by the cutter undergoing the piecewise rational Bézier motion for the 

second, third and fourth designed surface is shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9. 

Fig. 5.10 shows the resulted fitting error bound between the surface curve S(0.3, v) and 

the tool path generated by the piecewise rational Bézier motion of the cutter at the CC 

points (surface tolerance τ=0.005).  
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Fig. 5.6 The cutter undergoing the piecewise rational Bézier motion for 1st surface 
              (a) The initial tool path; (b) the 1st modified tool path; (c) the 2nd modified tool path; 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 The cutter undergoing the piecewise rational Bézier motion for 2nd surface 
                    (a) The initial tool path; (b) the 1st modified tool path; 
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Fig. 5.8 The cutter undergoing the piecewise rational Bézier motion for 3rd surface 

              (a) The initial tool path; (b) the 1st modified tool path; 
 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9 The cutter undergoing the piecewise rational Bézier motion for 4th surface 

              (a) The initial tool path; (b) the 1st modified tool path; 
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Fig. 5.10 Fitting error bound between S(0.3, v) and the tool path 

 

5.3 Multi Tool Paths Generation 

Muti-tool path generation is an iterative process. According to chapter 4, the initial 

candidate next tool path is generated first, and the scallop height between the current 

and this candidate next tool path is consequently calculated. If the scallop height is out 

of tolerance (surface tolerance τ=0.005), the candidate next tool path is modified and 

the scallop height is recalculated. This process continues until we find the suitable 

scallop height between the current and candidate next tool path. This final candidate 

next tool path is then used as the next tool path. Fig. 5.11-Fig. 5.14 shows the process 

of finding the next tool path for above four surfaces defined in section 5.1. In Fig. 

5.11, for the first surface, the scallop height of the first round estimation of the next 

tool path can meet the requirement. Thus, only one round is needed to obtain the next 
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(c) (d) 
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tool path. In Fig. 5.12, for the second surface the scallop height in (c) is suitable and 

three rounds are needed to obtain the next tool path. For the third surface, four rounds 

are needed to generate next tool path, as shown in Fig. 5.13. From Fig. 5.14, we can 

see that for the fourth designed surface, the first round of the estimation of next tool 

path can meet our requirement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 The process of finding the next tool path for first designed surface 

(a) Scallop height error when the parameter v for candidate next tool path is 0.361 

(b) The CLs of the neighboring  tool paths 

Using the similar method aforementioned, we can get the entire iso-parameter 

tool paths for these designed surfaces. Fig. 5.15 shows the entire CLs to generate the 

first designed surface, and 24 iso-parameter tool paths are needed to manufacture this 
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surface. The CLs of the tool paths for the second surface are shown in Fig. 5.16. 18 

tool paths are needed to manufacture this surface. Fig. 5.17 shows the tool paths of the 

fourth surface. In this application, 37 tool paths are needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 The process of finding the next tool path for second designed surface 

(a)-(c) Scallop height error when the parameter v for candidate next tool 

path are 0.394, 0.374, 0.359  

(d) The CLs of the neighboring tool paths 
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Fig. 5.13 The process of finding the next tool path for 3rd designed surface 

(a)-(d) Scallop height error when the parameter v for candidate next tool path 

are 0.328, 0.322, 0.318,0.314  

(e) The CLs of the neighboring  tool paths 
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Fig. 5.14 The process of finding the next tool path for 4th designed surface 

(a) Scallop height error when the parameter v for candidate next tool path is 

0.340 

(b)  The CLs of the neighboring  tool paths 
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Fig. 5.15 The entire tool paths generation for first designed surface 

(a) The positions of the cutter axis 

(b) The CLs of the entire tool paths 

(c) Machined surface 
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Fig. 5.16 Entire tool paths generation for second designed surface 

(a) The positions of the cutter axis 

(b) The CLs of the entire tool paths 

(c) Machined surface 
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Fig. 5.17 Entire tool paths generation for 4th designed surface 

(a) The positions of the cutter axis 

(b) The CLs of the entire tool paths 

(c) Machined surface 

(a) 

(b) 

(c) 



Chapter 6 Conclusions and Future Work  

 92 

 

CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 
6.1 Conclusions 

In modern manufacturing, 5-axis machining is commonly used in automotive, 

aerospace and tooling industries. Compared to 3-axis machining, 5-axis machining 

offers many advantages. However, for the moment, 5-axis machining tool path 

generation remains a difficult task. The problems include insufficient support by 

conventional CAD and CAM systems, highly complex algorithms for gouging 

avoidance and collision detection. In order to improve the efficacy and reduce the 

problems of 5-axis tool path generation, in this project, efforts are concentrated on 

finding a new method that uses the cutter undergoing piecewise rational Bézier motion 

to generate 5-axis tool path for sculptured surface. Following are the conclusion of the 

thesis: 

(1) The state of art of 5-axis machining of sculptured surface has been studied. 

Traditional methods for tool path generation, verification simulation of gouging 

and collision, optimisation of cutter orientation and prediction the real scallop 

height have been stated. The general drawbacks of these methods have also 

been pointed out.  

(2) The fundamental mathematics required in developing the thesis has been 

presented. The basic geometric modelling methods in CAGD such as Bézier, 

B-spline, and NURBS curve and surface are reviewed and the concepts of 
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kinematic Driven geometric modelling such as dual, quaternion and dual 

quaternion representation of a spatial displacement are introduced. 

(3) An efficient approach to generate a single gouging-free and collision-free tool 

path for 5-axis sculptured surface machining using rational Bézier motion of 

the flat-end cutter is presented. The method deploys dual quaternion 

representation of a spatial displacement, and presents the mathematic form of 

cutter bottom circle undergoing the rational Bézier motion. According to the 

fundamental knowledge aforementioned, the procedure of 5-axis tool path 

generation is given in detail. First, a set of cutter contact points by considering 

local curvature of surface curve are obtained and the associated gouging-free 

and collision-free cutter locations are given. Second, all such cutter locations 

are converted to dual quaternion representation and then the rational Bézier 

dual quaternion motion curve that represents cutter motion is presented using 

the method for curve interpolation. Third, the swept surface of cutter 

undergoing rational Bézier motion is calculated and the interference checking 

is carried out based on this swept surface and the designed surface. Finally, the 

method of interference avoidance is presented and the feasible cutter locations 

on one tool path are obtained. 

(4) Multi tool paths generation using the similar method as in (3) have been 

generated. First, the effective cutting shape has been represented accurately by 

intersecting the swept surface of the motion of the cutter and the cutting plane. 

Second, an iterative process to generate the adjacent tool path so that the 

scallop height between two neighboring  tool paths is within the allowable 

tolerance has been conducted. In detail: (a) the candidate next tool path is 

obtained based on initial step size. (b) The scallop curve is calculated between 
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the two neighboring  swept surface generated by the rational Bézier of cutter 

motion. (c) The scallop height checking is carried out by finding the distance 

between the scallop curve and designed surface. (d) If the scallop height is out 

of tolerance, the step size is reduced and the whole process is revisited until a 

suitable next tool path is found. 

Compared with the traditional methods for tool path generation that mainly focus on a 

particular instant of the tool motion and studying local geometric issues at the instant, 

the main advantages of rational Bézier motions for tool path representation include: 

(a) The entire tool path can be represented using a much more compact set of control 

positions of the motion as opposed to a huge data set of discrete cutter positions;  

(b) Since the cutter motion representation is analytic, it provides an exact 

representation of effective cutting shape so that tool path verification can be 

carried out accurately. 

(c) Fewer CC points are involved thus less computation required; Since the tool path 

is represented analytically, complete elimination of gouging and surface accuracy, 

to a large extent, can be guaranteed between neighboring  CLs. 

(d) Furthermore, in our method, the effective cutter shape used for the generation of 

the cutter locations in the next tool path can be represented exactly. This could 

lead to an accurate computation of scallop height between two neighboring tool 

paths.  

 

6.2 Suggestions for Future Work 

In this thesis, we have presented a new method that uses the cutter undergoing 

piecewise rational Bézier motion to generate 5-axis tool path for sculptured surface. 

The future improvement of the algorithm can be focused on the following aspects: 
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(1) The collision between tool holder and the designed surface can be investigated. In 

our algorithm, the collision between the designed surface and the cutter has been 

checked. However, the collision may possibly occur between the tool holder and 

the designed surface. Further study need take the tool holder into account. 

(2) The swept surface of the cylindrical surface of the cutter undergoing the piecewise 

rational Bézier motion can be constructed and used to check collision. In our 

algorithm, the collision checking is still based on discrete points along the tool 

path. If we can generate the swept surface of the cylindrical surface of the cutter, 

the collision checking can be thought as finding the intersection between this 

swept surface and the designed surface. This representation is more compact. 

(3) The constant scallop height tool paths can be generated. In our algorithm, the tool 

paths are the iso-parameter tool paths. Although iso-parameter tool paths are 

computationally simple to generate, one serious problem of this method is the 

inefficient machining due to the non-predictable scallop remaining on the 

machined surface. If the constant scallop height tool path generation method is 

applied, the number of the tool path will be much smaller and the efficiency of the 

machining is improved. 

(4) The algorithm for modifying the dual quaternion curve when gouging or collision 

occur need to be improved. In our method, we first find out the surface points 

corresponding to the gouging or collision, and reconstruct the dual quaternion 

motion curve based on these points. It is better to modify rather than reconstruct 

this curve in order to achieve the efficiency of the algorithm. 
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