313 research outputs found

    Direct Digital Frequency Synthesizer Architecture for Wireless Communication in 90 NM CMOS Technology

    Get PDF
    Software radio is one promising field that can meet the demands for low cost, low power, and high speed electronic devices for wireless communication. At the heart of software radio is a programmable oscillator called a Direct Digital Synthesizer (DDS). DDS has the capabilities of rapid frequency hopping by digital software control while operating at very high frequencies and having sub-hertz resolution. Nevertheless, the digital-to-analog converter (DAC) and the read-only-memory (ROM) look-up table, building blocks of the DDS, prevent the DDS to be used in wireless communication because they introduce errors and noises to the DDS and their performances deteriorate at high speed. The DAC and ROM are replaced in this thesis by analog active filters that convert the square wave output of the phase accumulator directly into a sine wave. The proposed architecture operates with a reference clock of 9.09 GHz and can be fully-integrated in 90 nm CMOS technology

    Frequency Synthesizer Architectures for UWB MB-OFDM Alliance Application

    Get PDF

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Design of Digital Frequency Synthesizer for 5G SDR Systems

    Get PDF
    The previous frequency synthesizer techniques for scalable SDR are not compatible with high end applications due to its complex computations and the intolerance over increased path interference rate which leads to an unsatisfied performance with improved user rate in real time environment. Designing an efficient frequency synthesizer framework in the SDR system is essential for 5G wireless communication systems with improved Quality of service (QoS). Consequently, this research has been performed based on the merits of fully digitalized frequency synthesizer and its explosion in wide range of frequency band generations. In this paper hardware optimized reconfigurable digital base band processing and frequency synthesizer model is proposed without making any design complexity trade-off to deal with the multiple standards. Here fully digitalized frequency synthesizer is introduced using simplified delay units to reduce the design complexity. Experimental results and comparative analyzes are carried out to validate the performance metrics and exhaustive test bench simulation is also carried out to verify the functionality

    The GEOSAT Follow-on (GFO) Altimeter

    Get PDF
    The NAVY GEOSAT Mission (1985-1990) demonstrated the ability of an altimeter equipped satellite to provide global measurements of mesoscale ocean features with 3 centimeter precision. The GEOSAT radar altimeter, developed by JHU/APL, was an enormous success. Built with early 1980\u27s technology, the GEOSAT altimeter weighed 191 pounds and consumed 146 watts. The GFO radar altimeter, under development by E-Systems Inc., will achieve the GEOSAT measurement capability, but at one-third the weight and one-half the power (48 pounds, excluding antenna, and 76 watts). The GFO altimeter uses the same proven linear FM waveform, pulse repetition frequency (PRF), pulse compression technique, and alpha-beta tracker design as the GEOSAT radar altimeter, but takes advantage of current RF and digital signal processing technologies to produce an instrument that is both light-weight and reliable. Also, thanks to a cooperative working relationship with JHU/APL, the GFO radar altimeter design encompasses lessons learned from both the GEOSAT and TOPEX programs. Analysis of the range, waveheight, and back-scattering cross section performance indicates that the GFO altimeter will achieve the GEOSAT performance in all areas. Finally, the GFO altimeter design encompasses features allowing economical expansion; including a C-band channel for improved range accuracy, and a 33% higher PRF for improved instrument noise performance. The GFO dual-channel altimeter would weigh 107 pounds and consume 156 watts

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore