4 research outputs found

    Non-Contact Human Motion Sensing Using Radar Techniques

    Get PDF
    Human motion analysis has recently gained a lot of interest in the research community due to its widespread applications. A full understanding of normal motion from human limb joint trajectory tracking could be essential to develop and establish a scientific basis for correcting any abnormalities. Technology to analyze human motion has significantly advanced in the last few years. However, there is a need to develop a non-invasive, cost effective gait analysis system that can be functional indoors or outdoors 24/7 without hindering the normal daily activities for the subjects being monitored or invading their privacy. Out of the various methods for human gait analysis, radar technique is a non-invasive method, and can be carried out remotely. For one subject monitoring, single tone radars can be utilized for motion capturing of a single target, while ultra-wideband radars can be used for multi-subject tracking. But there are still some challenges that need to be overcome for utilizing radars for motion analysis, such as sophisticated signal processing requirements, sensitivity to noise, and hardware imperfections. The goal of this research is to overcome these challenges and realize a non-contact gait analysis system capable of extracting different organ trajectories (like the torso, hands and legs) from a complex human motion such as walking. The implemented system can be hugely beneficial for applications such as treating patients with joint problems, athlete performance analysis, motion classification, and so on

    Ultra Low Latency 71~76/81~86GHz E-band Radiolink Design

    Get PDF
    Department of Electrical EngineeringFor the special purpose of a time-sensitive system, such as a financial network, banking network, or medical network for real-time access in hospital, a very low latency of several tenths of a nano-second with a 1.25 Gbps transceiver is required. However, most commercial radiolinks are too slow at 5 ~ 350 ???s of latency through the use of Layer-2 topology with higher-level digital modulation. In this work, a unique topology of an ultra low latency transceiver was implemented by using high-speed ASK modulation with the scheme of physical Layer-1 transmission. In order to achieve a range of tenths of a nano-second of ultra-low latency with simple low cost, the direct conversion architecture was tried first. It was simple but still needed to be revised to address several problems. First, it was too difficult to build an ASK modulator directly at a 70/80 GHz millimeter-wave as it was too sensitive at its physical dimension. Secondly, the flatness was important, but it was difficult to secure the required bandwidth. Most of all, the conversion loss was significantly increased when the received power is low. In order to solve these problems, a heterodyne transceiver was considered. The ASK modulation was conducted at the IF stage. By adopting the heterodyne topology, the burdens of building an ultra wideband ASK modulator in 70/80 GHz millimeter-wave range was alleviated. However, building a 1.25 Gbps ASK modulator in the IF stage presented another new challenge. Several wide band design techniques were proposed as well as trial and error. According to the measurement results, the sensitivity was -45 dBm for 1.25 Gbps under BER 10-12, or error free, and one-way latency was measured by 19.1 ns, which is a superior achievement compared to existing commercial radiolinks worldwide. It was field tested at 4.1 km and showed a good match with its link budget. As a field proven solution, this research result has been partially adapted to a financial network in service between Chicago and New York.ope
    corecore